
Structural and Kinetic Effects on Changes in the ${\rm CO_2}$ Binding Pocket of Human Carbonic Anhydrase II

Dayne West^{1,2}, Chae Un Kim³, Chingkuang Tu², Jim Gordon¹, Arthur H. Robbins¹, Sol M. Gruner^{3,4}, David N. Silverman^{2,*}, and Robert McKenna^{1,*†}

¹Department of Biochemistry and Molecular Biology, ² Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, and Cornell High Energy Synchrotron Source (CHESS)³, Physics Department⁴, Cornell University, Ithaca, NY 14853, USA.

Figure S1

Figure S1. pH profiles of $R_{H2O}/[E]$ (s⁻¹) for the hydration of CO_2 catalyzed by the following variants of HCA II: wild type (black, \bullet); V143A (blue, Δ); V143I (red, \blacksquare); and V143L (green, \Diamond). Data were obtained from rates of depletion of ¹⁸O from CO_2 measured by membrane inlet mass spectrometry at 25 °C in solutions containing 25 mM ¹⁸O-enriched CO_2 /bicarbonate. No buffers were added.