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Additional file 1: DPM search method

We adopt a nonparametric Bayesian Dirichlet process mixture (DPM) model to clustering

the m sequence reads. Denote by {X i, i = 1, · · · ,m} the m independent sequence reads, with

X i = (Xi1, Xi2, · · · , Xin)T a binary vector at n sites. The DPM model can be written as:

Xij ∼ Bernoulli(pij), j = 1, . . . , n, i = 1, . . . ,m

pi = (pi1, . . . , pin)T

pi ∼ G, G ∼ DP(α,G0),

G0 =
n∏

j=1

G0j, G0j ∼ Beta(αj, βj),

where G is a random distribution of pi which is given a Dirichlet process (DP) prior with

concentration parameter α and base measure G0. The base measure G0 is formed by independent

Beta distributions with pre-specified prior parameters {(αj, βj), j = 1, · · · , n}. The DP prior has

the effect of grouping similar pi’s into clusters hence is widely used for clustering.

While the posterior inference of the above model can be achieved through Markov chain

Monte Carlo sampling, these sampling methods are often slow to implement. In this work, we

employ a fast search algorithm to find the maximum a posteriori (MAP) solution, following

the method of Daumé III (2007)24. The main idea is to set a score function, and sequentially

assign the ordered data points {X i, i = 1, · · · ,m} either to one of the existing clusters or

to a new cluster based on the score function. We choose a fast in-admissible score function

which has demonstrated extremely good performance on MAP search. In our algorithm, we

need to determine the marginal join likelihood: H(XS) =
∫
f(XS|p)dG0(p) and a conditional

probability of a new X conditional on XS: H(X|XS) = H(X,XS)/H(XS), for XS = {X i :

i ∈ S} and S is an index set. Here f is the joint likelihood of XS assuming that the elements in

XS are independent Bernoulli with a common parameter p. Due to the fact that the Beta prior

is conjugate to Bernoulli likelihood, we can calculate H(XS) and H(X|XS) analytically.
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