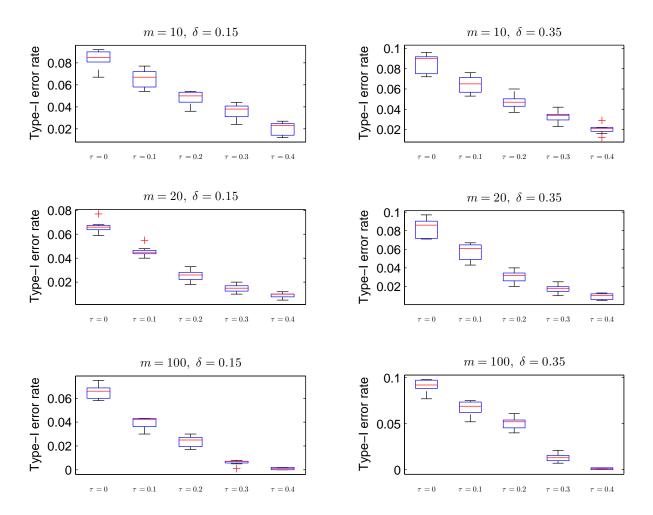
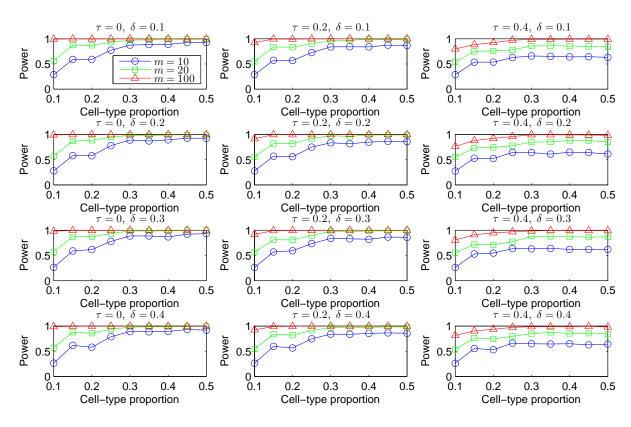

## **Supplementary Materials**


## Additional file 3: More results from Simulation I on type-I error and power

Supplementary Figure 5 summarizes the type-I error results from Simulation I, for  $\tau=0$  (shown in left column) and  $\tau=0.2$  (shown in right column), respectively. In the boxplots, each box represents the type-I errors from 1,000 simulations under a specific setting of m and  $\delta$ . It can be seen that when fixing  $\tau$ , changing  $\delta$  does not have an obvious effect on type-I error in general. However for m=100, increasing  $\delta$  tends to results in larger type-I error. The reason is that when the number of reads is large, for larger  $\delta$ , it is easier to form candidate groups therefore the chance of rejecting the null hypothesis tends to increase. Similarly, we draw boxplots for  $\delta=0.15$  (shown in left column) and  $\delta=0.35$  (shown in right column) in Supplementary Figure 6. From the figure we see a clear trend that when fixing  $\delta$ , type-I error decreases as  $\tau$  increases. In other words, larger  $\tau$  corresponds to more conservative test.


For power analysis, we draw the power curves for different number of reads and different cell-type proportions under different settings of  $\tau = 0, 0.2, 0.4$  and  $\delta = 0.1, 0.2, 0.3, 0.4$  in Supplementary Figure 7. It can be seen that in general, power increases as the number of reads gets larger, also as the cell-type proportion becomes more balanced. In addition, when fixing  $\tau$ , changing  $\delta$  does not have an obvious effect on power in general; whereas when fixing  $\delta$ , larger  $\tau$  results in slightly reduced power since bipolar detection becomes more conservative.



Supplementary Figure 5: Boxplot of type-I error in bipolar methylation detection, for different number of reads. Left column: when fixing  $\tau = 0$  and setting different values for  $\delta$ . Right column: when fixing  $\tau = 0.2$  and setting different values for  $\delta$ .



Supplementary Figure 6: Boxplot of type-I error in bipolar methylation detection, for different number of reads. Left column: when fixing  $\delta=0.15$  and setting different values for  $\tau$ . Right column: when fixing  $\delta=0.35$  and setting different values for  $\tau$ .



Supplementary Figure 7: Power in bipolar methylation detection, for different number of reads and different cell-type proportions when setting  $\tau = 0, 0.2, 0.4$  and  $\delta = 0.1, 0.2, 0.3, 0.4$ .