Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure

Li-Cheng Chen[†], Hong Lan[†], Li Sun[†], Yan-Li Deng, Ke-Yi Tang, and Qiu-Hong

Wan*

Region	Primer name	Location	Primer sequence $(5 \rightarrow 3)$	Product length (bp)	Positive BAC clones ^a
			F: AGCGTCTTGCACAGTGCAGACGT	223	110G1, 744D1, 285F5, 515F3,
	N-BG	BG	R: CGTGGACGCTCGGAGCTTCGAGA		1007B2, 1228H11, H1-8B2F1, etc.
BG			F: CTGGGCAGGAGGTGGTGA	404	110G1, 1279H12, 302C12, 844G6
	110G1-F	end-primer	R: TTCTCGGAGGGGCGTGTAG		980G4, 1314A1, 922G5,
					M64-6D1G2, M109-4G12A7, etc.
			F: TCCCAGAGCCCTTTCGGTAACAAC	442	M23-1B5D8, H28-4B11E7, etc.
	IN-11α	MHC-IIα	R: GCGCCGTCCGTCACCTCCTG		
G			F: GCATCCACAACCGGGAGCAG	161	M23-1B5D8, H28-4B11E7,
Core	N-11β	мнс-пβ	R: GTAGTTGTGGCGGCAGTACGTGTC		542D2 , etc.
			F: CGACCGGTGACGTTGGGTGAAC	144	M23-1B5D8, H28-4B11E7,
	N-DMA	A DMA	R: CGTGGACGCTCGGAGCTTCGAGA		514C2, 542D2, etc.

Table S1. Primers used for screening BACs

	N-I-1	MHC-I	F: CCCGCCTCGCCCTCACCTT	235	514C2, 542D2, 122F9 ^b , etc.
			R: GGGGGATTTATCAGAACGCCTACG		
	N Tor?	Tan	F: AGTCGTGCTGCCCATCTGCT	142	514C2 , 1018A2 , H28-4B11E7
	N-1ap2	1 <i>ap2</i>	R: GCGGGGTTGTTGGAGCGATTCTAC		
	NI 2	МНС І	F: GGAGGCCCAGGTGTAGTAGGTGC	288	122F9, 1189C6, H24-3G7B3,
Class I	11-1-2	MHC I	R: GCGGGCCGTGCTGGAGAG		H56-2A11C2, etc.
	122E0 E	and primar	F: TGGGGTGGTGGCTCCTCCTCTT	436	122F9 , 988E8 , H24-3G7B3,
	1221 7-1	end-printer	R: AGGGCCTGGTGGGTGGATGAAG		H56-2A11C2

^a Shaded BACs were used in the tiling path (Figure 1). Bold BACs are from the routine genomic library, and other BACs are from the

reverse-4D library. The "etc" represents that there are more possible positive BACs in the reverse-4D library; however, we stopped screening

owing to inconvenient non-gridded properties of the reverse-4D library for obtaining lots of positive BACs ^[S1].

^b This BAC is a real positive clone due to universal class I primers but it does not overlap with the BACs in the Core Region.

Locus ^a	No. of	Species ^b	Prominent features of the highest amino	Amino acid	Positive	E-value ^c	Conserved domain	
	exons		acid similarity	seq. ass. no.	(%)			
Blec1	5	Rock pigeon	C-type lectin domain family 2 member B	EMC86793	87	1e-26	CLECT	
Blec2	5	Rock pigeon	C-type lectin domain family 2 member B	EMC86793	87	3e-26	CLECT	
-fo7	14	Chickon	Zing finger protain 602	NP_0010928	72	0.0	COC 5048 SED1	
2JP7	14	Chicken	Zine ninger protein 092	26	12	0.0	0000740 5111	
TRIM7.2	7	Turkey	TRIM protein 7	ADU03778	97	0.0	RING BBOX PRY SPRY	
zfp6	3	Turkey	B-locus zinc finger protein 2	ACA64750	66	0.0	KRAB COG5048	
1.1	2	Green	Zing financia CKD1	EMD25061	75	0.0		
СКГІ	2	seaturtle	Zinc linger protein CKKI	EWIP25001	15	0.0	KRAB COO3048	
с. с	2	Green			76	0.0		
zjps	3	seaturtle	Zinc finger protein	EMIP25063	15	0.0	KRAB COG5048 SFP1	
LAO	7	Chicken	L-amino-acid oxidase	BAJ53002	89	0.0	Amino_oxidase	

Table S2. Comparison of the crested ibis MHC genes with those in other species

TDIM7 1	7	Turkov	TDIM protoin 7	10161755	04	0.0	RING BBOX BBC PRY
1 KIWI / . 1	1	Turkey	TKIM protein 7	ACA04755	94	0.0	SPRY
Hep21	3	Chicken	Hep21 protein precursor	NP_989852	85	9e-64	none found
TRIM39.2	6	Chicken	TRIM protein 39	BAJ53005	87	0.0	RING BBOX PRY SPRY
TDIM07 0	7	Turkov	TDIM 27	٨	70	0.0	RING BBOX COG4467
<i>I KIWI27.2</i>	1	Turkey	I KIW 27	ACA04758	19	0.0	PRY SPRY
TRIM39.1	6	Chicken	TRIM protein 39	BAJ53007	77	1e-141	PRY SPRY
TRIM27.1	6	Chicken	TRIM 27	AAW82327	83	0.0	RING BBOX PRY SPRY
TRIM-like	8	Mallard	Zinc finger protein RFP	EOB02164	71	0.0	RING BBOX PRY SPRY
	6	Turkov	TPIM protein 41	AC \ 64761	04	0.0	RING BBOX BBC PRY
1 KI//141	0	Turkey	TKIM protein 41	ACA04701	94	0.0	SPRY
CND211	Q	Humon	Guanine nucleotide binding protein	EAW52606	100	0.0	WD40
GIVD2LI	0	Huillall	β-2-like1	EAW 33090	100	0.0	W D40
BTN1	44	Turkey	B-butyrophilin 1	ACA64763	73	0.0	PRY SPRY
BTN2	9	Turkey	B-butyrophilin 2	ACA64764	70	2e-115	BBC SPR SPRY KRAB

zfp4	2	Mallard	Zinc finger protein 271	EOA93444	92	0.0	COG5048
zfp3	3	Mallard	Zinc finger protein 208	EOA93445	88	0.0	COG5048
BG2	43		No significant homology				IG_MOG_like V-set COG5048
zfp2	4	Mallard	Zinc finger and SCAN domain-containing protein 2	EOA94931	89	0.0	COG5048
BG1	2	Green seaturtle	Butyrophilin subfamily 2 member A1	EMP39643	73	3e-78	IG_MOG_like V-set
BTN1-like	7	Chicken	Butyrophilin subfamily 1 member A1	NP_0010299 89	62	4e-53	PRY SPRY
zfp1	2	Mallard	Zinc finger and SCAN domain-containing protein 2	EOA94844	59	2e-111	COG5048
COL11A2	Partial ^d	Mouse	Collagen alpha-2(XI) chain precursor	Q64739	85	0.0	Collagen COLFI
DAA	4	Mallard	MHC class II alpha chain	AEH96282	87	5e-143	MHC_II_alpha IgC

DAB	6	Swan goose	MHC class II beta chain	ACH81993	85	2e-147	MHC_II_beta IgC
DBA1	4	Mallard	MHC class II alpha chain	ADM53418	81	5e-131	MHC_II_alpha IgC
DBB1	6	Swan goose	MHC class II beta chain	ACH81993	83	7e-142	MHC_II_beta IgC
DBA2	4	Mallard	MHC class II alpha chain	ADM53418	81	5e-131	MHC_II_alpha IgC
DBB2	6	Thin-billed prion	MHC class II beta chain	ACO36253	86	8e-138	MHC_II_beta IgC
DBA3	4	Mallard	MHC class II alpha chain	ADM53418	81	5e-131	MHC_II_alpha IgC
DBB3	6	Thin-billed prion	MHC class II beta chain	ACO36253	86	1e-137	MHC_II_beta IgC
BRD2	Partial ^d	Japanese quail	Serine threonine Kinase	BAC82511	89	0.0	Bromo
DMA	Partial ^d	Mallard	MHC class II M alpha chain	EOA93964	80	2e-99	MHC_II_alpha IgC
DMB1	5	Turkey	MHC class II M beta chain 1	ACA64776	70	5e-109	IgC

DMB2	Partial ^d	prairie	MHC class II M beta chain 2	AGC96181	79	1e-118	IgC
		chicken					
	7	Red-billed			07	1. 170	
UAA	/	gull	MHC class I antigen	AD W 65600	8/	1e-1/9	MHC_I IgC
	10	Golden	Transporter associated with antigen		70	0.0	ABC_membrane
IAPI	12	pheasant	processing 1	AFN53621	19	0.0	ABC_ATPase
<i>TA</i> D2	0		Transporter associated with antigen		75	0.0	ABC_membrane
IAP2	9	Тигкеу	processing 2	ACA04/80	/5	0.0	ABC_ATPase
LTB4R1	Partial ^d	Chicken	Leukotriene B4 receptor 1	BAF63011	81	2e-125	7tm_1
TNXB	Partial ^d	Mallard	Tenascin-X	EOA94117	76	0.0	FN3
UBA	Partial ^d	Red-billed gull	MHC class I antigen	ADW65600	84	2e-171	MHC_I IgC

Greater

UCA1	7	Red-billed gull	MHC class I antigen	ADW65600	84	2e-166	MHC_I IgC
ADPRH 1	6	Rock pigeon	[Prtein ADP-ribosylarginine] hydrolase	EMC80157	80	3e-171	ADP_ribosyl_GH
ADPRH 2	8	Rock pigeon	[Prtein ADP-ribosylarginine] hydrolase	EMC80157	83	0.0	ADP_ribosyl_GH
UCA2	7	Red-billed gull	MHC class I antigen	ADW65600	84	9e-168	MHC_I IgC
ADPRH 3	4	Rock pigeon	[Prtein ADP-ribosylarginine] hydrolase	EMC80157	84	4e-99	ADP_ribosyl_GH
UDA	7	Red-billed gull	MHC class I antigen	ADW65600	82	9e-166	MHC_I IgC
OR	1	Green seaturtle	Olfactory receptor 11A1	EMP42676	76	1e-135	7tm_4 7tm_1
PHD finger protein7-like	11	Chicken	PHD finger protein 7-like	XP_425998	67	3e-114	zf-HC5HC2H

No significant homology

^a Excludes two *TAP1* pseudogenes.

1

^b Species in which the highest scoring matches were found.

^c Expect value.

^d Partial CDSs (coding sequences) were obtained due to gaps.

^e Predicted CDS was similar to the mRNA sequence of ubiquitin specific peptidase 42 (*USP42*) by BLASTN; however, no significant homology was

determined by BLASTP.

Fragment	Primer	Primer location	Primer sequence $(5 \rightarrow 3)$	Size	Extension	Excluded
	name			(bp)	time	segment
COL11A2-DAA	P1-F	COL11A2	CCTGCTTCCCAGTATCACGTTCCTGC	4071	5 min	COL11A2–
	P1-R ¹	DAA, DBA1/2/3 (exon 4)	ATCATCGTGGGCACCATCCTCATCATCA			DBA1/2/3
DAA-DAB	P2-F	DAA (3'UTR)	TGTGGGCTGGGTACTGGGACCAGTGCAG	3979	5 min	DAA-
	$P2-R^1$	DAB, DBB1/2/3 (intron 2)	TGCAAGGAGGTCAGGGAAGGGCGCAGGGGC			DBB1/2/3
DAB-DBA1-DBB1	P3-F	DAB (exon 2)	AACAGCGGTTTTCCAGGAGCTGGCTGT	5437	7 min	DAB
	$P3-R^1$	DAB, DBB1/2/3 (exon 2)	GCCCCACATCGCTGTCGAAGTGC			-DAB
DBA1-DBB1-DBA2/	P4-F	<i>DBA1/2/3</i> (intron 2)	CCTGTTGTGCCTCACTGCCCACCCGGG	4963	6.5 min	DBA1/2
DBA2-DBB2-DBA3	$P4-R^1$	<i>DAA, DBA1/2/3</i> (exon 3)	CTGCCCACCGCCCTCCTGAAGCACT			-DAA
DBB1-DBA2-DBB2	P5-F	DBB1 (exon 2)	GAGCGGGTGAGGTATGTGAAGAGGTA	5473	7 min	
	P5-R	<i>DBB2/3</i> (exon 2)	CCACCGCAGCCCGTTTCTGCTCCAGTAT			

Table S3. Long and accurate PCR primers used to verify assembly of the complex MHC region showing tandem repeated " $\alpha\beta$ " units

DBB2-DBA3-DBB3	P6-F	DAB, DBB1/2 (3'UTR)	AGCTCAGCTTTGTTGTCACTGCTCTGCA	5224	7 min
	P6-R	<i>DBB3</i> (3'UTR)	GCAGGGTTGGCAGCAGCGGGTAGGAC		
DBB3-BRD2	P7-F	DAB, DBB1/2/3 (exon 2)	CCCCCTGGGCGAGCCCCAAGCCAAGT	4800	6.5 min
	P7-R	BRD2	TCACCCGCGGCCTCCCGTGGCTGTCACCTA		

¹The reverse primers P1–P4 were II α - or II β -universal since we hoped to prove the absence of some segments simultaneously (no corresponding PCR

product), and these putatively inexistent segment are listed in the column "Excluded segment."

Application	Locus	Location	Primer name	Primer sequence $(5' \rightarrow 3')$	Size (bp)	<i>T</i> a (℃)
	UAA	Exon 1	A-F	GCCGTCGTCGGGGGGGGGGGG	229	58
		Exon 2	A-R	TGCTCTGTGCGATCTGGGTCTG		
	UBA	Exon 5	B-F	TTGCCGTCATTGCTGGATTCGCCT	153	58
		3'UTR	B-R	TTGCTTTGCACTAGCAGTTCTCTAC		
qR1-PCR	UCA1/2	Exon 2	C-F	ACACCGAGACCCGGAACTTTC	171	58
		Exon 3	C-R	CGTCGTAGCCCATCTGCC		
	UDA	Exon 6	D-F	GTACGGCGTGGCGTCAGGGATC	118	58
		3'UTR	D-R	AGCCCCCACCGTAGCTGGGACTG		
	DAB	Exon 3	IIB1-5'R	AAGGTCTCCCCCATGCAGTCGAGCTCC	470	64
	DBB1/2/3	Exon 3	IIB2-5'R	CTCGACTGCACGGGGGTAGATTTC	463	60
	DAA	Exon 3	IIA1-5'R	CCCCCAGCTCCACAGGGTCCTCAGA	451	60
3 KACE	DBA1/2/3	Exon 3	IIA2-5'R	CCCCCAGCTCCACTTGGCGTTTGGG	451	62
	UAA/UBA	Exon 3	UABA-5'R	TGGTGCTACCGTCATAAAGTGTG	432, 438	58
	UCA1/2	Exon 3	UCA-5'R	CATCTGCCAATATCCCGTGTGTGT	457	62

Table S4. Primers for quantitative real-time PCR (qRT-PCR) amplification and full-length cDNA sequence isolation

	UDA	Exon 3	UDA-5'R	GCATCCTGCCGCCCTCCCGTGTGT	462	61
	DAB	Exon 2	IIB1-3'F	GTTTTCCAGGAGCTGGCTGTGT	889, 934	62
	DBB1/2/3	Exon 2	IIB2-3'F	TACGTACAGTTCCAGTTTAAGTGC	889	61
DAA DBA1/2	DAA	Exon 2	IIA1-3'F	CAACGCGATAATCCAGACTGACTTGT	1266	64
	DBA1/2/3	Exon 2	IIA2-3'F	GCACACGATCCACCAAGCTGAGTTCC	1008	63
JRACE	UAA	Exon 2	UAA-3'F	GGGACACCCAGACCCAGATCG	1116	62
	UBA	Exon 2	UBA-3'F	CAGGTTGCTCTTGCGGAAAGAGCCCACACA	1379	59
	UCA1/2	Exon 2	UCA-3'F	ACCCGGAACTTTCTGGGACCACACA	1119	60
	UDA	Exon 2	UDA-3'F	ACTGGGTGAGAGGGAGCCCTCACACA	1037	61

Figure S1. Genomic location (a) and electrophoresis (b) of seven long and accurate PCR primers (P1–P7). Only the shortest fragments were obtained for forward and/or reverse primers with non-specific binding. P4 amplified two different fragments with the same length due to the high sequence similarity among *DBAs 1–3*. M: DL2504 DNA marker (NormalRunTM 250bp-IV DNA ladder, Generay

Biotechnology).

Figure S2. Full-length amino acid alignments of IIa (a) and IIB genes (b). Dots

indicate identity to the first sequence. Crosses represent putative antigen-binding sites

10 20 30 40 50 60 70 80 90 ${\tt MAGGRGIPLALLAVLTLRGAGAVKVGNAIIQTDLYQRDERLQQEGGQFMFDFDGDEIFHVDLQKQETIWRLPEFGKFASFEAQGALQNIA}$ Nini-DAA Nini-DBA1 Nini-DBA2 Nini-DBA3 \rightarrow Exon2 → Exon1 130 120 100 110 140 150 160 170 180 Nini-DAA $\texttt{VMKQNLKIMTENSNHSQATIASPEVTVFSEDPVELGDPNVLTCYVDKFWPSVISITWLRNGQEVTDGVLETVFYRGQDCTFRKFSYLPFI$ Nini-DBA1 Nini-DBA2 .G.SW.NFLAKQ..V.SPFVP.....PKRQ......I.PRD.NS..... Nini-DBA3 ++ ++ ++ + Exon3 Nini-DAA (a) Nini-DBA1 Nini-DBA2т. Nini-DBA3 Exon4 10 20 30 40 50 60 70 80 90 Nini-DAB Nini-DBB1 Nini-DBB2 Nini-DBB3 + + + ++ \downarrow + + + Exon2 -> Exon1 130 170 100 110 120 140 150 160 180 Nini-DAB $\texttt{PDILEQARAEVDRYCRHNYGVSTPFIVERRVQPKVKVSPMQSSSLPQTDRLVCAVTGFYPAEIEVKWFKNGQEETERVVSTDVIQNGDWT$ Nini-DBB1 Nini-DBB2 Nini-DBB3 → Exon3 210 220 230 240 250 260 190 200 (b) YQVLVMLETTPQRGDTYTCQVEHVSLQHPVTQDWELQPDAARSKMLTGVGGFVLGLIFLALGLFLYVRKKGASLPRLQGS Nini-DAB Nini-DBB1 Nini-DBB2 └**→** Exon4 Nini-DBB3 Exon5 Exon6

inferred from Brown et al. ^[S2] and Stern et al. ^[S3].

Supplementary References

- [S1] Ye, Q., He, K., Wu, S.-Y. & Wan, Q.-H. Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant. *PLoS One* 7, e32154, doi:10.1371/journal.pone.0032154 (2012).
- [S2] Brown, J. H. *et al.* Three-dimensional structure of the human class-II histocompatibility antigen HLA-DR1. *Nature* 364, 33-39 (1993).
- [S3] Stern, L. J. *et al.* Crystal-structure of the human class-II MHC protein
 HLA-DR1 complexed with an influenza-virus peptide. *Nature* 368, 215-221 (1994).