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Supplementary Figure 1. Cooperative growth of yeast in sucrose leads to bistability 

and a fold bifurcation. Yeast cells grow cooperatively in sucrose by sharing the 

hydrolysis products26; this cooperative breakdown of sucrose makes the per capita growth 

rate of yeast ~40% higher at intermediate cell densities than at low cell densities6. It is a 

well characterized experimental system that displays a strong Allee effect34 under daily 

dilutions6. During the daily dilution, only a small fraction (e.g. 1 in 500, for dilution 

factor 500) of the population is transferred to the fresh media. This is equivalent to 

introducing a mortality rate and leads to a negative growth rate at low initial cell 

densities. Therefore, cultures starting below a critical density go extinct, whereas cultures 

starting at higher initial densities survive and reach a finite stable fixed point. At 

intermediate dilution factors, yeast populations are bistable, with one stable fixed point at 

a finite population density and the other at extinction. A fold bifurcation occurs where the 

stable and unstable fixed points “collide” and annihilate. Increasing the dilution factor 

lowers the resilience of yeast populations and eventually pushes them to collapse after 

crossing the fold bifurcation (i.e. a tipping point). The data for this figure is taken from 

Reference 6. The stable fixed points are estimated by the mean of at least 46 replicate 

populations at equilibrium over 5 days and the error bars correspond to the standard 

deviation of day-to-day fluctuations. More details on the fitting of unstable fixed points 

and the error bars given by bootstrap can be found in the Supplementary Information of 

Reference 6. 
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Supplementary Figure 2. The difference in coefficient of variation and temporal 

correlation between isolated and connected population may be partly due to a minor 

shift in bifurcation. (a) There is a small difference in the equilibrium density between 

the two groups of isolated and connected populations. The difference can be caused by 

small variation in experimental conditions (e.g. ~1% difference in the grow rate); it may 

also reflect a real difference due to some influence of spatial coupling on the stability 

landscape. Error bars are standard errors of day-to-day variations. (b, c) Because the 

difference in the equilibrium density may imply a minor shift in the bifurcation, we plot 

the warning indicators versus equilibrium population density (note that lower population 

density corresponds to higher dilution factor); this corrects the possible shift in the 

bifurcation to some extent. After correction we find that the increases of CV and 

temporal correlation in connected populations are still smaller than those in isolated 

populations. Error bars are SEs given by bootstrap for isolated populations and SEMs 

(n=4) for connected populations. 
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Supplementary Figure 3. The size of fluctuations is suppressed in populations with 

100% dispersal treatment. (a) For each dilution factor (500, 1000, 1200 and 1400), 

there are 10 populations going through the “100% dispersal treatment”. On each day, the 

10 populations are mixed completely during the dispersal step. The triangle denotes the 

mean of 10 populations. Populations recovered from a “2x dilution shock” on day 2; 

there is a clear increase of recovery time with dilution factor, as a result of critical 

slowing down.  (b) The mean equilibrium density of three experimental groups. The 

difference in mean population density between different groups may be due to variation 

in experimental conditions or the influence of spatial coupling; correcting the difference 

does not change the trend in indicators (Supplementary Figure 2). (c) The standard 

deviation of population fluctuations is reduced by dispersal. The standard deviation is 

calculated among 10 populations with 100% dispersal treatment over the last 3 days; the 

error bars are standard errors of day-to-day variations. The data used in Figure 2 for 

isolated and connected populations are plotted in light red and light blue. Temporal 

correlation is also expected to be suppressed (Supplementary Note 1 and Supplementary 

Figure 4). However, we are not able to get a reliable estimate of temporal correlation 

from the data of 100% dispersal treatment group because: 1) the sample size is too small; 

2) populations have not fully reached equilibrium by the end of experiment, which also 

means it is difficult to remove gradient-type heterogeneity before statistical analysis 

(Methods).   
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Supplementary Figure 4. Stochastic simulations based on a phenomenological model 

of yeast growth show that increases in coefficient of variation and temporal 

correlation are suppressed by population dispersal. For each dilution factor, there are 

40 populations on a one-dimensional lattice. In the two simulation runs, the indicators are 

calculated over a span of 50 days (a) and 5 days (b) after an initial period of 10 days to 

stabilize the populations. Error bars are standard errors of day-to-day variations (n=50 for 

a and n=5 for b, respectively). The phenomenological model of yeast growth is briefly 

outlined in the following paragraph. More details of stochastic simulations can be found 

in the Supplementary Information of Reference 6. Dispersal rules in simulations are the 

same as those used in our experimental protocols.  

The phenomenological model of yeast growth is based on two phases: a slow exponential 

growth phase at low cell densities, followed by a logistic growth phase with a higher per 

capita growth rate at intermediate cell densities. This model has five parameters: Tlag is 

the lag time before yeast cells start to grow after being transferred into new media. In the 

slow exponential phase, the population grows with a constant per capita growth rate γlow. 



6 
 

After the population reaches a threshold density Nc, the subsequent logistic growth is 

determined by γhigh (γhigh>γlow) and the carrying capacity K.  
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In the simulations, we used the parameter values listed in Supplementary Table 1. They 

are chosen as the values used in fitting an experimental fold bifurcation of this system6. 

 

We note that the exact values of equilibrium population density and statistical indicators 

in our simulations do not match perfectly with the experimental data. This is expected 

because: 1) our two-phase yeast growth model is an obvious simplification; 2) we only 

have crude estimates of the location of bifurcation and the magnitude of noise. 

 

 

Supplementary Table 1. Parameters of a phenomenological model of yeast growth 

used in the simulations. 

Parameter Value 

γhigh 0.439 hr-1 

γlow 0.309 hr-1 

K 1.76×105 cells/μl 

Tlag 2.97 hr 

Nc 2.76×102 cells/μl 
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Supplementary Figure 5. Our experiment and simulations suggest that large sample 

sizes are required to observe an increase in spatial correlation. (a) We tested the two-

point correlation between nearest neighbors in the connected populations but failed to 

observe any increase near the tipping point. The spatial correlation, defined as the two-

point correlation between all neighboring pairs, was estimated by the Moran’s 

coefficient8,32 (Methods). Error bars are SEs given by bootstrap for isolated populations 

and SEMs (n=4) for connected populations. (b) In simulations, a statistically significant 

increase of spatial correlation is observed in connected populations given a large sample 

size (L is the number of populations on a one dimensional array). In our experiment, we 

have 4 replicate arrays with L=10 in each array. (c,d) Given the same sample size, 

coefficient of variation and temporal correlation are better warning indicators than spatial 

correlation in simulations. Thus, our results suggest that to observe the increase in spatial 

correlation may require more data than other indicators; nonetheless it can be a useful 

warning indicator in spatial data sets with very large sample sizes. 
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Stochastic simulations are performed in the same procedure as described in 

Supplementary Figure 4 (at dilution factors 500, 1000, 1200, 1400 and 1600; D=0.5). 

Indicators are calculated over a span of 5 days after an initial period of 10 days to 

stabilize the populations. The colored regions correspond to 16%-84% confidence 

interval of 100 simulation runs and can be asymmetric. We note that the values of 

indicators in simulation are not directly comparable to experimental data (Supplementary 

Figure 4). We also note that the indicators here are calculated based on an ensemble of 

replicates at a fixed condition. The performance of indicators based on detrended 

temporal fluctuations of a single population may be worse35 because: 1) in a changing 

environment, temporal fluctuations are averaged over different environmental conditions; 

2) the sample size is reduced by temporal correlation.  
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Supplementary Figure 6. Recovery length can be measured given a sharp boundary 

between two regions of different quality. (a) On both sides of the sharp boundary, 

population density is varying across the region. In each region, population density 

recovers from ( 0)boundaryn n x≡ =  to the equilibrium eqn of the corresponding 

environmental condition. One can quantify the spatial scale of recovery by: 1) half-point 

recovery length halfL , 1( ) ( )
2

half eq boundaryn x L n n= = + ; or 2) exponential recovery length 

expL , 
exp| |/| ( ) | | |eq eq boundary x Ln n x n n e−− = −  (Supplementary Note 2 and Methods). (b) The 

recovery length in each region indicates how far away its environmental condition is 

from the relevant bifurcation point (dashed arrows). The recovery rate is smaller closer to 

the bifurcation point, thus leading to longer recovery length (Supplementary Note 2). 

Typically we are interested in predicting impending collapse of the high-quality region 

(good or intermediate), so we designed the experiment in Figure 4 to measure highL . An 

example to measure the recovery length in the low-quality region lowL  is shown in 

Supplementary Figure 8. However, we note that the recovery length measured in a bad 

region is not expected to indicate its distance to the bifurcation point that leads to 

population collapse; instead it reflects the distance to re-establishment. 
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Supplementary Figure 7. Increase of recovery length before the collapse of 

connected populations in real time. We conducted an independent experiment to 

observe the increase of recovery length before population collapse in a slowly 

deteriorating environment. Yeast populations were connected by dispersal to nearest 

neighbors (D=0.5) with a bad region of 1 patch (dilution factor 2500) at the boundary. 

Experimental procedure is similar to the experiment in Figure 4 (Methods). (a) Profiles of 

the control group, which were grown at fixed conditions. The control group has a good 

region of 5 patches at fixed dilution factors ranging from 500 to 2000. The connected 

populations initially had a uniform profile (Day 1, in red) and gradually approached the 

steady-state profiles (Day 8, in purple). The change of total population density of 6 

patches over time is plotted in the last panel. Populations survived and reached steady-

state profiles up to around dilution factor 1800. We note that temperature in this 

experimental run was 30.0C and may have resulted in a minor shift of the tipping point. 
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(b) Profiles of the experimental group, which were grown in a slowly deteriorating 

environment. The initial profile of population density was close to the steady-state profile 

of dilution factor 1600 and we slowly deteriorated the good region by increasing the 

dilution factor by 50 per day (Supplementary Table 2). Populations started to collapse 

around Day 5 (dilution factor 1850), in accordance with the control group. Error bars 

denote standard deviation of 8 replicates. (c) The recovery profile revealed an increasing 

spatial scale of recovery as the environment deteriorated. The profile is averaged over 

replicates and normalized by the equilibrium population density, which is taken as the 

population density in the patch furthest from the bad region. (d) We fit the recovery 

profile and found an increase in two measures of recovery length before population 

collapse. The red line marks the estimated day (Day 5) that populations started to 

collapse. Error bars are SEs given by bootstrapping the 8 replicates. We were not able to 

obtain a reasonable confidence interval for exponential recovery length after Day 5, 

because the population density was low and our sample size was small (fitting became 

very sensitive to noise). In fact, after the tipping point is crossed recovery length is no 

longer a meaningful measure, because the steady-state profile is global extinction.   

 

 

Supplementary Table 2. Dilution factor of the experimental group in a slowly 

deteriorating environment. 

Day 1 2 3 4 5 6 7 8 9 

Dilution factor 1650 1700 1750 1800 1850 1900 1950 2000 2050 
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Supplementary Figure 8. Measurement of recovery length at the boundary with a 

region of higher quality. (a) Connected populations would gradually “recover” in space 

from a region of higher quality. In principle, the recovery length can be measured in this 

scenario (Supplementary Figure 6), suggesting that boundaries may be introduced by 

conservation efforts such as setting up marine reserves36. (b) We experimentally set up a 

superior patch at dilution factor 250 next to a relatively good region with varying dilution 

factors from 750 to 1400. Experimental procedure is similar to the experiment in Figure 4 

(Methods). The steady-state profiles are shown. (c) We fit the steady-state profiles and 

found a modest increase in the spatial scale of recovery from a superior region. Although 

this spatial scale did not show a significant increase in our system, it may be a useful 

measure in other systems with different stability landscapes. The fitting was performed 

similarly to the analysis of data presented in Figure 4 (Methods). Here the position of half 

recovery is defined as the midpoint between the equilibrium population density and the 

density at the boundary 1( ) [ ( 5) ( 0)]
2

halfn x L n x n x= = = + = . The equilibrium population 

density was taken as the average of population density from position 3 to 5. The data 

points used in fitting the exponential recovery length were from position 0 to 5. Error 

bars are SEs given by bootstrap. 
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Supplementary Figure 9. Spatial statistics in the presence of environmental 

heterogeneity. We performed stochastic simulations based on the phenomenological 

model of yeast growth (Supplementary Figure 4) and introduced environmental 

heterogeneity by drawing the dilution factor of each patch from a Gaussian 

distribution 2( , )DF DFN μ σ . (a, b) In the presence of heterogeneity, the signals in spatial 

correlation8 and spatial variation are enhanced. The level of environmental heterogeneity 

DF

DF

σ
μ

is set as 0 (no heterogeneity) or 0.1 (with heterogeneity). For each dilution factor, 

there are 1000 populations on a one-dimensional array (dispersal rate D=0.5). The 

indicators are averaged over a span of 5 days after an initial period of 10 days to stabilize 
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the populations. Error bars are standard errors of 100 simulation runs. (c) We can 

increase the level of environmental heterogeneity by tuning the standard deviation of 

dilution factor. Three scenarios are shown as we vary DF

DF

σ
μ

 from 0 to 0.1 ( 1600DFμ = ).   

(d, e) An increasing level of environmental heterogeneity could potentially lead to false 

alarms. At a fixed condition (dilution factor 1600), we varied DF

DF

σ
μ

 from 0 to 0.1 and 

observed increases in spatial correlation and spatial variation of connected populations 

(D=0.5). The isolated populations (D=0) serve as a control group: there is no spatial 

correlation but spatial CV is not suppressed (Supplementary Figure 4).  

In our simulations, we have not explored the effect of correlations in landscape 

characteristics (correlated landscape)8 or in noise (environmental correlation)37; they are 

both expected to enhance spatial correlation. In the scenario of correlated landscapes, the 

recovery length resulting from “islands” of different environmental quality may 

contribute to the increase in spatial correlation.  
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Supplementary Figure 10. A linear gradient is removed from connected populations 

to eliminate spurious spatial correlation.  We observed a small gradient in connected 

populations which is presumably caused by some spatial heterogeneity in experimental 

conditions (temperature, dilution errors, etc.) We removed the gradient by performing a 

linear fit across the array. Removing gradient-type spatial heterogeneity before statistical 

analysis is similar to the detrending procedure commonly used in time-series analysis; it 

prevents spurious signals such as positive spatial correlation. (a-e) The mean optical 

density at each position of the array (4 replicate arrays over a span of at least 5 days), 

error bars are standard deviations. The red line corresponds to the linear fit. A larger 

slope will lead to higher spatial correlation and thus a spurious signal. (f) Spurious spatial 

correlation is eliminated by removing the gradient. Spatial correlation is still above 0, 

because there is always some level of heterogeneity in the experimental conditions. Error 

bars are SEMs (n=4).  
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Supplementary Note 1. Early warning signals in a spatially explicit first-order 

autoregressive model.   

Critical slowing down is a generic property of dynamical systems in the vicinity of 

bifurcations38,39. Here we use a simple model to investigate warning indicators based on 

critical slowing down40,41 in connected populations.  

The behavior of a single isolated population in discrete time and space can be described 

by the following first-order autoregressive (AR(1)) process42, 

1t t tu uρ σζ+ = +    (1) 

where t t equ n n= −  is the deviation of the population density from its equilibrium value at 

time t; 
1

rTeρ
−

= , rT is the recovery time and indicates the distance from the bifurcation; 

σ  is the strength of the demographic fluctuations modeled by independent Gaussian 

variables tζ (i.e. white noise).  

To characterize the dynamics, we compute the statistics of an isolated population: 

variance 2
isolated tVAR u=< >  and the lag-1 autocorrelation 

1 1
2 2

1

1 t t t t
isolated

isolatedt t

u u u uAR
VARu u

+ +

+

< > < >
= =

< >< >
. The bracket denotes the expectation operator 

which averages over realizations.  

The variance is obtained by squaring both sides of equation (1), averaging over 

realizations, and using the time invariance of the averages (the AR(1) process is second-

order stationary given | | 1ρ < ): 

2

21isolatedVAR σ
ρ

=
−

 (2) 

The expression for lag-1 autocorrelation is obtained by multiplying both sides of equation 

(1) by tu  and averaging over realizations: 

1isolatedAR ρ=   (3) 
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For one-dimensional populations, the spatially explicit first-order autoregressive model 

takes the following form37,43,44 

1, , , 1 , 1 ,[(1 ) ]
2 2t x t x t x t x t x
D Du D u u uρ σζ+ − += − + + +

  
(4) 

where D is the rate of dispersal; there are a total of L  patches, 1, 2, ,x L= K . One can 

write this model in a slightly more compact form 

1t t tρ σ+ = +u Mu ζ  (5) 

where M  is a L L×  matrix describing dispersal. Bold symbols denote vectors, the entries 

being values at different patches. For example, a population of four patches with periodic 

boundary conditions would have the following dispersal matrix 

1 0
2 2

1 0
2 2

0 1
2 2

0 1
2 2

D DD

D DD

D DD

D D D

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟

= ⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟
⎜ − ⎟
⎝ ⎠

M  (6) 

Note, however, that equation (5) can describe the dynamics of a population with an 

arbitrary dispersal pattern represented by M 45. In particular, the dispersal matrix for 

isolated patches is the identity matrix.  

In the following, we will assume: 1) M  is positive definite (i.e. 0t t >
Tu Mu ), which 

avoids some pathological cases like division by zero; 2) t t t t≤T Tu Mu u u , which follows 

from the existence of a stable equilibrium and also requires the existence of an 

eigenvector of  M with eigenvalue 1. For example, when M  is symmetric and the sum of 

each row is 1, the first assumption is satisfied if all the diagonal elements are larger than 

1
2

 (i.e. 1
2

D < ); the second assumption is always satisfied and the equality sign holds for 

any tu  if and only if M  is the identity matrix (i.e. 0D = ). Under these assumptions, we 

next show that VAR  and 1AR  are suppressed in spatial populations. 
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Similar to the model of a single isolated population, we estimate the variance of 

connected populations t t
connectedVAR

L
< >

=
Tu u  by squaring both sides of equation (5) and 

obtain 
2 2 2

t t t t Lρ σ< >= < > +T Tu u u M u  (7) 

Since t t t t≤T Tu Mu u u , 2
t t t t≤T Tu M u u u , and equation (7) yields 

2

21connected isolatedVAR VARσ
ρ

≤ =
−

 (8) 

This equation and equation (2) imply that the variance is smaller in connected 

populations coupled by dispersal than in isolated populations.  

We can also estimate ρ  by multiplying both sides of equation (5) with t
Tu  and 

averaging over realizations: 

1t t

t t

ρ +< >
=
< >

T

T

u u
u Mu

 (9) 

We can readily see that 1AR  in spatial populations is smaller than that in isolated 

populations because 

1 1 1

1 1

1 1t t t t t t
connected isolated

t t t tt t t t

AR ARρ+ + +

+ +

< > < > < >
= = ≤ = =

< > < >< >< >

T T T

T TT T

u u u u u u
u u u Muu u u u

 (10) 

Hence, 1AR are also suppressed in connected populations. Simulation results on the 

suppression of both indicators by dispersal are shown in Supplementary Figure 4. 

When the dispersal matrix M  is diagonalizable (e.g. M  is symmetric), one can explicitly 

compute VAR  and 1AR . Upon iterating equation (5), we observe that, at a stationary 

state, tu is given by 

1
0

k k
t t k

k
σ ρ

∞

− −
=

= ∑u M ζ  (11) 

The computation of moments of tu  is aided by the representation of M  in terms of its 

eigenvectors jh  with unit norm and eigenvalues jλ  

1

0

L
T

j j j
j
λ

−

=

=∑M h h  (12) 
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The variance is then given by 
2 21 1

2 2
2 2

0 0 0

1
1

L L
k kt t

j
j k j j

VAR
L L L

σ σρ λ
ρ λ

− ∞ −

= = =

< >
= = =

−∑∑ ∑
Tu u  (13) 

where we used the independence of tζ  and the summation of an infinite decreasing 

geometric series. 

The AR1 can be computed similarly, and the result is given by 
2 1

2 2
0

11
1

L
j

j j

AR
VAR L

ρλσ
ρ λ

−

=

=
−∑  (14) 

One can also compute higher order autocorrelation coefficients and show that they decay 

as τρ for very large lag τ .   
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Supplementary Note 2. Recovery length in mathematical models. 

When a dynamical system is closer to a tipping point, it recovers from perturbations more 

slowly, a phenomenon called critical slowing down. In Figure 3, we classify possible 

indicators of critical slowing down1,2 based on the type of perturbations (deterministic vs. 

stochastic) and measurements (temporal vs. spatial). In time-series data, one can estimate 

the recovery time directly by measuring how long it takes for a population to recover 

from a pulse perturbation (Fig. 3a). In contrast, under stochastic perturbations (e.g. 

demographic noise), critical slowing down leads to an increase in the temporal 

correlation and the temporal variation (Fig. 3c). In spatially extended populations, 

fluctuations at different locations would allow for similar indicators based on spatial 

statistics, including the spatial correlation and the spatial variation (Fig.3d).  

The last and unexplored category of early warning signals is the spatial counterpart of 

recovery time: “recovery length”. The recovery length characterizes the spatial scale over 

which population density recovers from a pulse perturbation in space, such as at a 

boundary with a region of lower quality (Fig. 3b). Here we use mathematical models to 

demonstrate that the recovery length increases towards the tipping point and provides a 

novel indicator of critical slowing down in spatial data. 

 

Half-point recovery length 

We use the following continuous model of a spatial population ( , )c t x exhibiting the Allee 

effect46 to demonstrate the half-point recovery length: 

2
*

2 ( )( )c D c gc K c c c
t x
∂ ∂

= + − −
∂ ∂

 (1) 

In the non-spatial limit ( 0D = ), the fold bifurcation occurs when the finite stable fixed 

point (carrying capacity) K and the unstable fixed point *c meet, i.e. *c K= .  

A region of infinite mortality at 0x <  is represented by a boundary condition ( ,0) 0c t =  

for equation (1). The stationary solution in this “depletion region” ( )depc x  is obtained by 

setting the left hand side of equation (1) to zero, and reads 
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*

*
*

* * *
*

3 ( )( )

( ) 22 ( )( ) sinh[ arcsinh(2 )]
2

dep
K K cc x K

K cK gK K cK c c K c x
D K c

−
= −

−−
− + − + +

+

(2) 

 

Upon measuring ( )depc x  in the units of K  and x  in the units of 2 1/2( / )D gK , the shape of 

the depletion region depends only on 
*c

K
. This dependence is shown in Supplementary 

Figure 11. Note that no non-trivial solution exists when *

2
Kc > . 

The length of the region where ( )
2dep
Kc x <  is the half-point recovery length halfL . 

halfL increases closer to the bifurcation (i.e., larger 
*c

K
) and diverges as 

*1ln( )
2

c
K

− − .  

 

Exponential recovery length 

To derive the exponential recovery length, we start with the discrete model introduced in 

Supplementary Note 1. Suppose we have a steady-state recovery profile that does not 

change over time 1, ,t x t x xu u u+ = ≡ , then we have  

1 1[(1 ) ]
2 2x x x x
D Du D u u uρ − += − + +

 
(3) 

We can look for a solution in the form of (ln )x x
xu e λλ= = , and solve for λ  to find the 

characteristic spatial scale. Alternatively, closer to the equilibrium we can take the 

continuous limit 1 ( )x x
du u u x
dx+ − → and equation (3) becomes 

2

2

2(1 )( ) ( )d u x u x
dx D

ρ
ρ
−

=  (4) 

Given the boundary condition ( ) 0u x →+∞ = , the non-trivial solution of equation (4) is 

an exponential function 
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exp/ exp 2( ) ,
1

x L Du x e L ρ
ρ

−= =
−

 (5) 

The exponent expL determines a characteristic spatial scale of recovery that we name as 

the exponential recovery length.  

 

 
Supplementary Figure 11. Analytical solution of recovery profile in a continuous 

model with the Allee effect. (a)The shape of the depletion region ( )depc x  as a function of 

*c (unit: K). (b) The approach of ( )depc x  to its limiting value at x →+∞ is approximately 

exponential. 
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Supplementary Note 3. Spatially connected populations may collapse before the 

tipping point of a local population. 

Our experiments have not explored the effects of spatial coupling on the global stability 

of a meta-population45,47. For example, spatially extended populations subject to dispersal 

may require a critical patch size for survival48,49. Moreover, stochastic local extinctions or 

the introduction of a bad region can possibly drive the connected populations to collapse 

before the tipping point of a local population. Here we provide an example using the 

continuous model introduced in Supplementary Note 2, 

2
*

2 ( )( )c D c gc K c c c
t x
∂ ∂

= + − −
∂ ∂

 (1) 

The fold bifurcation of an isolated population occurs when *c K= . In a homogeneous 

environment, spatially coupled populations become unstable when *c K= . However, in 

the presence of spatial heterogeneity, spatial coupling may reduce population stability. In 

this continuous model, populations exposed to unoccupied territories (i.e., patches with 

0c = ) will contract when *

2
Kc > . This follows from the exact solution for the expansion 

velocity v  of travelling waves46,50: 

*( 2 )
2

Dgv K c= −  (2) 

when *

2
Kc > , the velocity becomes negative, so the population shrinks instead of 

expands. The point at which *

2
Kc = is called the “Maxwell point”51. Thus, spatial 

coupling may cause populations to collapse at conditions before the bifurcation point of a 

local population. 

In our experiments, connected populations under different setups (with or without a bad 

region) collapsed at relatively different conditions. This could be caused by the existence 

of the Maxwell point, or by other factors such as the finite patch size in our experiment 

and variation in experimental conditions between different experimental runs. 
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Supplementary Note 4. Formula of statistical indicators. 

1) Sample standard deviation:  

2

1

1 ( )
1

N

i
i

s n n
N =

= − < >
− ∑  

 n< > : the sample mean. N : total number of samples. 

2) Coefficient of variation: the sample standard deviation divided by the sample 

mean. 

3) Temporal correlation 

The temporal correlation, defined as the lag-1 autocorrelation, was estimated by the 

Pearson’s correlation coefficient between the population densities at subsequent days. 

The sample Pearson’s correlation coefficient: 

, 1, 1
1

1

( )( )
1

1

N

t i t t i t
i

t t

n n n n

N s s
ρ

+ +
=

+

− < > − < >
=

−

∑
  

,t in : sample i at day t; tn< > : the sample mean at day t;  ts : the sample standard 

deviation at day t. 

To correct for negative bias in small samples, we used a modified estimator with an 

additional term 1
N

 for lag-1 autocorrelation31. 

4) Spatial correlation 

The spatial correlation, defined as the two-point correlation between all neighboring 

pairs, was estimated by the Moran’s coefficient8,32.  

Moran’s coefficient at day t 

, ,

2
,

1

1 ( )( )

1 ( )

ij t i t t j t
i j

t N

t i t
i

w n n n n
W

I
n n

N =

− < > − < >
=

− < >

∑∑

∑
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1
0ij

neighbors
w

others
⎧

= ⎨
⎩

 

The weight ijw takes the value of 1 for nearest neighboring populations and 0 otherwise. 

W is the total number of neighboring pairs; 1W N= − in our one-dimensional array with 

reflecting boundaries.  

The expectation of Moran’s coefficient is 1
1N

−
−

 in the absence of spatial correlation33; 

we used a modified estimator with an additional term 1
1N −

 so that the expectation is 0.  
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