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Mice	
  

Lgr5-­‐EGFP-­‐Ires-­‐CreERT2	
  mice	
  (MGI:3764660)	
  were	
  bred	
  with	
  K-­‐rasLSL-­‐G12D	
  (MGI:2429948)	
  
and	
  R26R-­‐Confetti	
  mice	
  (MGI:4835542).	
  Triple	
  heterozygous	
  mice	
  of	
  10	
  weeks	
  of	
  age	
  were	
  
used	
   for	
   experiments	
   (referred	
   to	
   as	
   K-­‐ras	
   mice).	
   For	
   WT	
   experiments,	
   Lgr5-­‐EGFP-­‐Ires-­‐
CreERT2/R26R-­‐Confetti	
   mice	
   were	
   used.	
   Lgr5	
   cells	
   are	
   marked	
   with	
   green	
   fluorescent	
  
protein	
  EGFP	
  and	
  express	
  a	
  tamoxifen-­‐inducible	
  version	
  of	
  Cre	
  that	
  can	
  be	
  used	
  to	
  activate	
  
K-­‐rasG12D	
  and	
  R26R-­‐Confetti	
  alleles.	
  R26R-­‐Confetti	
  is	
  a	
  multicolor	
  Cre-­‐reporter	
  that	
  expresses	
  
one	
   out	
   of	
   four	
   possible	
   fluorescent	
   proteins	
   (nuclear	
   Green,	
   Yellow,	
   Red	
   or	
   membrane	
  
tagged	
   Blue)	
   as	
   a	
   random	
   outcome	
   of	
   the	
   recombination	
   process	
   [1].	
   Mice	
   were	
   mixed	
  
129/Ola	
  and	
  Bl6	
  background.	
  Raw	
  data	
  from	
  WT	
  short-­‐term	
  clonal	
  tracing	
  experiments	
  was	
  
reproduced	
   from	
   Snippert	
   et	
   al.,	
   2010.	
   To	
   rule	
   out	
   effects	
   due	
   to	
   strain	
   differences,	
   we	
  
repeated	
   the	
   experiment	
   in	
  WT	
   littermate	
   intestines	
   (72	
   hours).	
   The	
   new	
   data	
   correlated	
  
well	
  with	
  the	
  previously	
  reported	
  clonal	
  fate	
  data.	
  Mice	
  were	
  induced	
  with	
  5mg	
  tamoxifen.	
  
Recombination	
  of	
  Confetti	
   to	
   EGFP	
   is	
   inefficient,	
  while	
   the	
   three	
  other	
   colors	
   appear	
  with	
  
equal	
  frequency.	
  For	
  each	
  time	
  point,	
  at	
  least	
  two	
  mice	
  were	
  analyzed	
  and	
  scored.	
  	
  

Cre-­‐recombination	
   efficiency	
   shows	
   a	
   degree	
   of	
   variability	
   per	
   genetic	
   locus.	
   Therefore,	
  
clones	
   exist	
   that	
   express	
   oncogenic	
   K-­‐ras	
   but	
   that	
   are	
   not	
   marked	
   with	
   Confetti	
   (false	
  
negatives,	
   i.e.	
   169	
   clones/	
   2000	
   crypts)	
   and	
   vice	
   versa	
   (false	
   positives,	
   i.e.	
   8	
   clones/	
   2000	
  
crypts,	
  versus	
  383	
  true	
  positives/	
  2000	
  crypts).	
  Both	
  scenarios	
  in	
  fact	
  skew	
  the	
  data	
  towards	
  
an	
  underestimation	
  of	
  true	
  scale	
  of	
  the	
  bias.	
  For	
  scoring	
  false	
  negatives	
  and	
  false	
  positives,	
  
consecutive	
  sections	
  of	
  intestines	
  after	
  1	
  week	
  of	
  tracing	
  were	
  stained	
  against	
  pERK	
  (active	
  
K-­‐ras)	
  or	
  GFP	
  recognizing	
  all	
  fluorescent	
  protein	
  variants.	
  The	
  number	
  of	
  clones	
  reaching	
  the	
  
TA/villus	
  compartment	
  was	
  scored	
  in	
  two	
  different	
  mice.	
  

	
  

EdU	
  incorporation	
  

K-­‐rasLSL-­‐G12D	
   mice	
   were	
   bred	
   with	
   villinCreERT2	
   mice.	
   Double	
   heterozygous	
   mice	
   of	
   10	
  
weeks	
   of	
   age	
   were	
   used	
   for	
   experiments.	
   For	
   WT	
   experiments,	
   only	
   villinCreERT2	
  
heterozygous	
   littermates	
   were	
   used.	
   Mice	
   were	
   induced	
   with	
   5mg	
   tamoxifen.	
   Around	
   4	
  
days,	
  EdU	
  (100ul	
  10mM)	
  was	
  injected	
  2	
  hours	
  prior	
  to	
  sacrifice.	
  EdU	
  detection	
  and	
  lysozyme	
  
staining	
   to	
  mark	
   Paneth	
   cells	
  was	
   performed	
   as	
   described	
   [2].	
   Crypts	
  were	
   scanned	
   using	
  
Leica	
   Sp8X	
  microscope,	
  EdU	
  and	
   lysozyme+	
   cells	
  were	
   scored	
   in	
  3D	
  over	
  >	
  100	
   crypts	
  of	
  3	
  
mice	
  per	
  group.	
  EdU+	
  TA	
  cells	
  were	
  scored	
  per	
  cross-­‐section	
  over	
  >	
  100	
  crypts	
  of	
  3	
  mice	
  per	
  
group.	
  EdU+	
  cells	
  adjacent	
  to	
  Paneth	
  cells	
  at	
  the	
  crypt	
  base	
  were	
  scored	
  as	
  EdU+	
  CBC	
  cells.	
  

	
  

Tissue	
  preparation	
  and	
  analysis	
  by	
  confocal	
  microscopy	
  

For	
  whole-­‐mount	
  imaging,	
  intestines	
  were	
  opened	
  along	
  their	
  length	
  and	
  villi	
  were	
  scraped	
  
off	
  using	
  a	
  microscope	
  glass.	
  Subsequently	
  proximal	
  small	
  intestines	
  were	
  cut	
  in	
  parts,	
  fixed	
  
in	
  4%	
  Paraformaldehyde	
  at	
  room	
  temperature	
  for	
  30	
  minutes	
  and	
  washed	
  in	
  cold	
  PBS.	
  Next,	
  
parts	
  were	
   prepared	
   free	
   from	
   connective	
   tissue	
   and	
  muscle	
   layers,	
   transferred	
   to	
   a	
   new	
  



microscope	
   slide	
   with	
   crypt	
   bottoms	
   oriented	
   to	
   the	
   top,	
   embedded	
   with	
   vectashield	
  
(Vector	
   Laboratories)	
   and	
   sealed	
   with	
   coverslips.	
   Confocal	
   images	
   were	
   acquired	
   using	
   a	
  
Leica	
  Sp5	
  AOBS	
  microscope.	
   Images	
  were	
  processed	
  using	
   ImageJ,	
  Photoshop	
  and	
  Volocity	
  
(PerkinElmer).	
  Threshold	
  for	
  Lgr5hi	
  cells	
  was	
  set	
  at	
  66%	
  of	
  the	
  average	
  signal	
  from	
  10	
  bright	
  
GFP	
   positive	
   cells	
   at	
   the	
   entire	
   base	
   of	
   the	
   crypt	
   (as	
   previously	
   described	
   [1]).	
   Crypts	
  
harboring	
   multiple	
   clones	
   upon	
   induction	
   were	
   excluded	
   from	
   the	
   analysis	
   since	
   these	
  
clones	
  will	
  compete	
  with	
  each	
  other	
  on	
  a	
  neutral	
  basis.	
  

	
  

K-­‐ras	
  induced	
  phenotypes	
  in	
  the	
  mouse	
  

Our	
  findings	
  of	
  minor	
  morphological	
  abnormalities	
  in	
  the	
  small	
  intestine	
  are	
  similar	
  to	
  data	
  
from	
   previous	
   reports	
   [3-­‐5]	
   where	
   in	
   each	
   case	
   inducible	
   versions	
   of	
   Cre	
   were	
   used.	
  
However,	
  these	
  findings	
  contrast	
  with	
  data	
  from	
  transgenic	
  overexpression	
  of	
  mutant	
  K-­‐ras	
  
[6]	
  or	
  activation	
  of	
  endogenous	
  K-­‐rasG12D	
  at	
  early	
  stages	
  in	
  development	
  via	
  villinCre,	
  Fabpl-­‐
Cre	
  or	
  CDX2-­‐G22Cre	
  [7-­‐9].	
  

This	
  may	
  be	
  due	
   to	
   the	
   timing	
  of	
  K-­‐rasG12D	
  activation.	
   For	
   instance	
   in	
  pancreas,	
  embryonic	
  
activation	
   results	
   in	
   neoplasias	
   with	
   occasional	
   advanced	
   lesions	
   [10].	
   Activation	
   in	
   adult	
  
acinar	
  cells	
  [11,	
  12],	
  or	
  adult	
  ducts	
  [5,	
  13]	
  rarely	
  yield	
  neoplasias	
  during	
  normal	
  homeostasis.	
  
A	
  similar	
  phenomenon	
  may	
  occur	
  in	
  the	
  small	
  intestine,	
  in	
  which	
  the	
  effects	
  of	
  KrasG12D	
  may	
  
vary	
  per	
  developmental	
  stage.	
  Subtle	
  differences	
  in	
  mouse	
  genetic	
  backgrounds	
  may	
  play	
  a	
  
role	
  as	
  well,	
  since	
  differences	
  have	
  been	
  observed	
  between	
  research	
  groups	
  that	
  used	
  the	
  
same	
  villinCre	
  transgene	
  [7,	
  14].	
  Alternatively,	
  the	
  exact	
   location	
  within	
  the	
   intestinal	
  tract	
  
that	
  is	
  subject	
  to	
  the	
  study	
  may	
  explain	
  differential	
  outcome	
  of	
  experiments.	
  For	
  instance,	
  in	
  
our	
  manuscript	
  we	
  focused	
  mainly	
  on	
  the	
  duodenum	
  and	
   jejunum	
  parts,	
  while	
  Feng	
  et	
  al.,	
  
used	
   the	
   same	
   Lgr5-­‐EGFP-­‐ires-­‐CreERT2	
   strain	
   but	
   specifically	
   focused	
   on	
   colon	
   and	
   distal	
  
small	
   intestine	
  (because	
  the	
  other	
  cre	
  transgene	
  they	
  rely	
  on,	
  CDX2-­‐G22Cre,	
  only	
  becomes	
  
activated	
  during	
  development	
  in	
  those	
  parts	
  of	
  the	
  gut)	
  [9].	
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Supplementary Theory

In the main text, we discussed a biophysical modeling scheme to address both clonal
evolution of stem cells within crypts following the activation of K-ras, and the dynamics of
crypt fission. In the following sections, we provide a more detailed account of the theoretical
schemes, leaving the central results for the main text.

1 Biased drift of the K-ras mutant stem cell population

1.1 Neutral drift in normal homeostasis

Under conditions of normal homeostasis, it has been shown that stem cells at the base of
the crypt undergo a process of neutral competition in which the loss of a stem cell through
commitment to differentiation is compensated by symmetrical self-renewal of neighboring
stem cells [1,2]. As a result, single stem cell-derived clones undergo a pattern of neutral
drift in which continual clonal loss is compensated by the expansion of neighboring clones
(Suppl. Fig. 1). This process continues until all of the stem cells in a crypt become clonal.

To model clonal evolution on this background, following Refs. [1,2], we introduced a
simple model in the main text that captures the fundamental aspects of the dynamics. In this
model, the stem cell compartment is represented as a one-dimensional chain of equipotent
cells which extend around the circumference of the crypt base region. Following stem cell
division, neighbouring cells are displaced from the chain and commit to differentiation and
loss. Through this process of stem cell loss and replacement, marked stem clones undergo
neutral drift dynamics around the crypt base until the clone is lost or it expands across the
entire chain and the crypt becomes monoclonal (i.e., fixed). The one-dimensional dynamics
follows from the experimental observation that clones do not expand through the apex of the
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crypt at the base. In this model, the resulting clone dynamics can be resolved analytically
and depends on just two parameters – the effective loss/replacement rate, λ, of stem cells
from the base of the crypt, and the total number of stem cells in the crypt, N . Note that,
within this scheme, stem cell divisions leading to asymmetric fate do not change clone size.
The loss/replacement rate is therefore distinct from the stem cell division rate.

Before summarising properties of the neutral clone dynamics, it is helpful to comment on
the integrity of the model. Of course the one-dimensional arrangement of equipotent cells
represents a caricature of the true stem cell organisation at the crypt base. Indeed, recent
studies based on in vivo live-imaging using intravital microscopy suggest that the short-term
self-renewal potential varies through the crypt base region, with stem cells at the border of the
niche temporarily biased or “primed” towards displacement and differentiation, while those
at the base region are biased towards survival (Ritsma et al., private communication). These
studies show that, following division, crypt base progenitors can move interchangeabily be-
tween the border and base region, suggesting that Lgr5+ cells form a single, heterogeneous,
stem cell pool. Fortunately, the dynamics of such a “multicomponent” system converge
rapidly onto the effective one-dimensional model (on timescales comparable with the “equi-
libration” time – the typical time scale for transfer between border and base regions).

However, in making use of the effective one-dimensional model, we must therefore be
careful to fix the total stem cell number, N , not by the number of Lgr5+ cells at the crypt
base, but by an effective stem cell number which accounts for priming. From the results of
the intravital live-imaging, this number is found to be approximately one half of the Lgr5+
population, consistent with the bias of cells at the base region towards self-renewal. Indeed,
further evidence in support of this conjecture can be found in a recent and meticulous study
of intestinal stem cell dynamics [3]. Following the results of the intravital live-imaging study
of Ritsma et al, in this paper, we take the effective stem cell number to be around 8 in both
the WT and K-ras mutant crypts. However, crucially, our conclusions rest, not on the precise
number, but on the relative change of the loss/replacement rate following K-ras activation.

With this background, it is useful to summarise the results of the neutral dynamics of the
one-dimensional model because (a) it will be used to analyze the clonal dynamics in the WT
crypt and (b) it serves as a benchmark to describe the biased drift dynamics of cells following
K-ras activation. In particular, at a time t following the genetic marking of a single stem cell,
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one may show that the fraction of clones with 1 ≤ n ≤ N − 1 stem cells is given by [1],

Pn(t) =
2

N

N−1∑
k=1

sin

[
πk

N

]
sin

[
πkn

N

]
e−4 sin

2[ πk2N ]λt, 1 ≤ n ≤ N − 1,

while the fraction of clones that have either become extinct, P0(t), or have saturated the
crypt, PN(t), is given respectively by,

P0(t) =
2

N

N−1∑
k=1

cos2
[
πk

2N

](
1− e−4 sin2[

πk
2N ]λt

)
,

PN(t) =
2

N

N−1∑
k=1

(−1)k+1 cos2
[
πk

2N

](
1− e−4 sin2[

πk
2N ]λt

)
.

To apply these expressions, it is necessary to exclude crypts in which the number of labeled
stem cells is zero, corresponding to clones that have (or will soon) become lost. We therefore
define the ‘persisting’ clone size distribution as,

P (pers.)
n =

Pn(t)

1− P0(t)
, 1 ≤ n ≤ N.

At time scales in excess of the typical loss time 1/λ, but shorter than the time scale for crypts
to drift to monoclonality, N2/λ, these equations enter a scaling regime where [1]

P (pers.)
n ≈ 1

〈n(t)〉
f(n/〈n(t)〉),

with 〈n(t)〉 =
√
πλt and f(x) = πx

2
exp(−πx2/4). With this background, we turn now to

consider the dynamics of the K-ras activated cells in the field of WT cells.

1.2 Biased drift following K-ras activation

Following induction, it is evident from the clonal fate data (Fig. 1) that K-ras activation
results in a strongly accelerated progression towards fixation. However, the extinction of a
fraction of K-ras mutant clones at early times suggests that K-ras activation provides only a
bias, with “drift” from larger to smaller clones still possible. To assess whether the dynamics
of the mutant clones in the WT background can be described as a biased drift process, let
us first consider the impact of such a bias on the simple one-dimensional model of the stem
cell compartment. Specifically, let us suppose that, following the loss of a stem cell through
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commitment to differentiation, a neighboring cell in which K-ras has been activated will
have a higher chance of effecting its replacement through symmetrical cell division than a
WT neighboring cell.

Let us, therefore, again define Pn(t) as the probability of finding a K-ras mutant clone with
n ≥ 0 stem cells at a time t post-labeling. Then, if we define λ(1+δ) as the loss/replacement
rate leading to expansion of the mutant clone, and λ(1− δ) as the rate leading to contraction,
we obtain the Master equation for the time evolution of the probability,

Ṗn(t) = λ∆̂Pn(t)− λ [(1− δ)δn,1 + (1 + δ)δn,−1 − 2δn,0]P0(t)

−λ [(1− δ)δn,N+1 + (1 + δ)δn,N−1 − 2δn,N ]Pn(t) + δn,1δ(t), (1)

where, defining the one-dimensional lattice translation operator, Êm = emk̂ with [k̂, n]=1,
∆̂ = ∆̂0 − δ(Ê1 − Ê−1), and ∆̂0 = (Ê1 + Ê−1) − 2 denotes the lattice Laplacian. The
first term on the right-hand side of the equation describes the biased random walk of the
boundaries of a labeled clone, the second term reflects the possibility of clone extinction,
while the third term reflects the effect of clone fixation when all stem cells have become
monoclonal. The final term imposes the initial boundary condition: the induction results in
the labeling of just one stem cell per crypt at t = 0. Eq. (1) describes a discrete diffusion
equation on the interval 1 ≤ n ≤ N − 1, with absorbing boundaries at n = 0, N imposed by
the second and third terms of the equation.

Before discussing the solution of Eq. (1), it is useful to reflect on the biological source
of the bias. In principle, the bias of clonal fate towards expansion may reflect an “active”
process in which K-ras mutant cells promote the loss of neighbouring WT cells. Equally,
the bias may reflect the “passive” effect of a differential cell cycle time. If stem cell loss and
replacement is a manifestation of symmetrical stem cell division promoting the displacement
of neighbours form the niche, with attendant loss of stemness, cells which acquire a prolifera-
tive advantage will be equally biased towards “survival”. If the net stem cell loss/replacement
rate scales in proportion to the stem cell division rate, we may therefore consider the ratio
(1 + δ)/(1− δ) as reflecting the relative increase in the cell division rate. Intriguingly, from
the study of proliferation kinetics using EdU incorporation, we do indeed find that much, if
not all of the bias can be associated with the acceleration in the cell division rate.

To solve Eq. (1), we note that for 1 ≤ n ≤ N − 1 it is sufficient to solve the discrete
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diffusion equation,

Ṗn(t) = λ∆̂Pn(t) , (2)

subject to the initial condition Pn(0) = δn,1, and “artificial” boundary conditions P0(t) =

PN(t) = 0. These boundary conditions do not reflect the true behaviour of P0(t), PN(t), but
they ensure that Eqs. (1) and (2) give the same results for Pn(t) with 1 ≤ n ≤ N − 1. Once
the solution for 1 ≤ n ≤ N − 1 is known, it is a simple matter to calculate P0(t) and PN(t)

by integrating Eq. (1) to obtain,

P0(t) = λ(1− δ)
∫ t

0

P1(t
′)dt′ , and PN(t) = λ(1 + δ)

∫ t

0

PN−1(t
′)dt′. (3)

In contrast to the pure diffusion process (described by δ = 0), the operator ∆̂ is non-
Hermitian. However, we can restore the Hermitian diffusion form by effecting a similarity
transformation. Setting Pn(t) = vnGn(t), one obtains

Ġn = λ
[
(1− δ)vGn+1 + (1 + δ)v−1Gn−1 − 2Gn

]
.

Then defining v =
√

1+δ
1−δ and µ =

√
1− δ2, one obtains

Ġn = µλ

[
∆̂− 2

(
1

µ
− 1

)]
Gn.

Finally, applying the boundary conditions on Gn, and setting fk = 2( 1
µ
− 1) + 4 sin2[ πk

2N
],

the solutions of Eq. (2) take the form,

Pn(t) = vn
N−1∑
k=1

ak sin

[
πkn

N

]
e−µλtfk .

To fix the coefficients, ak, we must make use of the boundary condition, Pn(0) = δn,1.
Making use of the orthogonality condition,

N

2
ak =

N−1∑
n=1

v−nPn(0) sin

[
πkn

N

]
=

1

v
sin

[
πk

N

]
,
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we obtain

Pn(t) =
2

N
vn−1

N−1∑
k=1

sin

[
πk

N

]
sin

[
πkn

N

]
e−µλtfk .

We can now use this result to obtain the extinction and fixation probability. Making use of
Eq. (3), we obtain

P0(t) =

√
1− δ
1 + δ

2

N

N−1∑
k=1

1

fk
sin2

[
πk

N

] [
1− e−µλtfk

]
PN(t) =

(
1 + δ

1− δ

)(N−1)/2
2

N

N−1∑
k=1

(−1)k+1

fk
sin2

[
πk

N

] [
1− e−µλtfk

]
.

1.3 Analysis of the experimental data

With the theoretical background in place, we now turn to the analysis of the experimental
data. As discussed above, to address the experimental data, we cannot fix the number of
stem cells, N , by the number of Lgr5+ cells. Instead, following Ritsma et al., we take the
effective stem cell number, N = 8, noting that the qualitative conclusions will be largely
insensitive to the precise value. To quantify the size of the clone from the experimental data,
we take the fraction of fluorescently labelled cells in proportion to the total number of Lgr5+
cells at the crypt base (estimated at between 14 and 16 for the small intestine), divided into
octants. For example, a clone with 1-2 marked cells out of 16 would belong to the first octant,
3-4, the second, and so on. Here, by choosing octants, we note that each effective stem cell
contributes to 1/8 of the total crypt cells, on average.

To calibrate the method, and obtain an estimate for the effective loss/replacement, we
can make use of the WT clonal fate data obtained in the study of Ref. [2]. By fitting the
effective steady-state stem cell loss/replacement rate, to the observed increase in the average
clone size, we obtain a figure of λ = 0.25 ± 0.05/day (Fig. 2A,B). (Here we have included
a time offset of around 24 hours to account for the delayed activity of the Cre following
drug administration.) With this value, comparison of the clone size distributions with theory
provides an excellent agreement of the model with experiment (Fig. 2C).

To analyze the dynamics of cells following Kras activation, we can follow the same proce-
dure taking, once again, N = 8. In this case, we have to fit the average clone size to both the
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average loss/replacement rate, λ, and the bias, δ. However, to further constrain the model, we
will suppose that the largest contribution towards the bias drift derives from the substantial
increase in the cell division time of the K-ras mutant cells, as evidenced by the proliferation
assay using short-term EdU incorporation. In this case, we may set the rate at which Kras
activated cells are lost and replaced by neighbouring WT cells by the loss/replacement rate
in WT tissue, i.e. the bias conferred by Kras activation is a passive one leaving the dynamics
of the WT neighbours unchanged. We therefore impose the constraint λ(1− δ) = 0.25/day.
Then, by fitting the model to the average clone size, we obtain a bias of δ = 0.45 ± 0.05

(Fig. 2A,B). Once again, with these parameters, comparison of the measured clone size
distribution reveals an excellent fit of the model to the experimental data (Fig. 2D).

This completes our analysis of the clonal fate data. In the next section, we turn to consider
the question of crypt fission.

2 Analysis of the crypt fission data

From the quantitative analysis of the short-term clonal fate data, we found that K-ras acti-
vation confers a major survival (and proliferative) advantage of the mutant intestinal stem
cells over that of wild-type. However, by itself, this result does not disclose whether the fre-
quency of crypt fission is perturbed following K-ras activation. In the following section, we
will develop a theoretical approach to study the development of crypt fission events following
genetic labeling of tissue.

2.1 Crypt fission: theory

To undertake this programme, let us begin by defining pX as the probability that a crypt is
both marked at induction by color X and becomes fixed over time (defined operationally
as acquiring more than 50% labeled cells of color X). Since we find that the three confetti
colors that label efficiently are approximately equally represented, we set pX = p0 for all
colors. (Note that we found no marking of the fourth color, the nuclear GFP.) Although we
are interested in the problem of crypt fission, it is important to recognize that crypts of a
common color can “cluster” by chance, i.e. stem cells of the same color X can, with some
probability, be induced in neighboring crypts and both drift to monoclonality. To assess
the crypt fission frequency, we must be careful to take into account this contribution to the
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statistics.

Therefore, let us first consider the cluster statistics when crypts do not undergo fission at
all. In this case, if we suppose that the induction frequency is low (i.e., the probability that
the crypt becomes marked and drifts to monoclonality is very small, p0 � 1), an assumption
that will be tested self-consistently below, the chance that a labeled monoclonal crypt is
found isolated, surrounded by unmarked near-neighbours, is given simply by

PX ' ncolor × p0 ,

where ncolor = 3 denotes the number of colors. (Here, we work with a general value for the
number of colors, ncolor, so that the color dependence can be monitored below.) The chance
that two neighbors have the same color is then given by

PXX = ncolor × zp0(1− p0)z−1 × p0 ' ncolor × zp20 = zp0PX ,

where z denotes the average coordination of neighboring crypts. Empirically, this figure is
found to be similar to the “close-packing density”, 6. Similarly, the chance of finding two
neighboring monoclonal crypts of different colors is given by,

PXY ' ncolor(ncolor − 1)× zp20 = (ncolor − 1)PXX = (ncolor − 1)zp0PX .

Finally, turning to three crypt clusters (all neighbours), we find that

PXXX ' ncolor ×
1

2
z(z − 1)p30 =

1

2
(z − 1)p0PXX =

1

2
z(z − 1)p20PX

PXXY ' 3(ncolor − 1)PXXX

PXYZ ' ncolor(ncolor − 1)(ncolor − 2)PXXX ,

and so on. Evidently, with each additional crypt, the probability of finding the cluster is
suppressed by a factor p0. Therefore, at low induction frequency, p0 � 1, the chance induc-
tion of high cluster sizes becomes negligibly small. Together, these expressions represent
the baseline probabilities of crypt clustering due to chance induction and fixation events in
neighbouring crypts.

With these expressions in hand, let us now turn to consider the contribution to clustering
of fixed crypts from the (infrequent) process of crypt fission. Later, we will consider the
potential influence of crypt extinction on the statistics. If we assume that crypt fission follows
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a Poisson random process in which the time between consecutive fission events is statistically
uncorrelated (i.e. Markovian), with a crypt fission rate, f , the chance that a labeled crypt has
expanded to generate a cluster of n labeled crypts is controlled by a simple birth-type process,
C 7→ C + C, and given by

Fn(t) = e−ft(1− e−ft)n−1, n > 0 .

The result for F1 is easy to understand: F1 = e−ft simply denotes the decay in the survival
probability of single isolated labeled crypts due to crypt fission. Moreover, at long times,
ft� 1 (which may translate to an unreasonably long time for the experimental system), the
cluster size distribution approaches the form of an exponential,

Fn(t) =
1

〈n(t)〉
e−n/〈n(t)〉 ,

where 〈n(t)〉 = eft denotes the average cluster size, i.e. without compensation by crypt
death and loss, the average crypt number would be predicted to rise exponentially, albeit
with a potentially very small exponent.

Pieced together, these two types of contribution (sporadic chance induction of clusters,
and the aggregation of marked crypts due to fission) lead to the first few results in the “hi-
erarchy”: For a crypt to remain as single and isolated, it must be created as such, and not
undergo fission, viz.

PX(t) = ncolorp0F1(t) = ncolorp0e
−ft

Similarly, for two neighbouring marked crypts to survive, they must be induced as such, and
neither crypt must undergo fission, viz.

PXY(t) = ncolor(ncolor − 1)zp20F
2
1 (t) = (ncolor − 1)zp0e

−ftPX(t)

By contrast, two neighbouring crypts of common color could derive either from chance
induction as neighbours, or following the fission of a single isolated crypt, viz.

PXX(t) = ncolorzp
2
0F

2
1 (t) + ncolorp0F2(t) = (zp0e

−ft + 1− e−ft)PX(t) .

For higher order clusters, the number of “permutations” that contribute increases rapidly.
For example a cluster with three marked crypts, XXX, can be generated by chance, without
any crypt fission. It could also arise from a chance pair followed a single fission event, or a
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single crypt can undergo two rounds of fission, leading to the expression,

PXXX(t) = ncolor
1

2
z(z − 1)p30F

3
1 (t) + ncolorzp

2
0 × 2F2(t)F1(t) + ncolorp0F3(t)

=

[
1

2
z(z − 1)p20e

−2ft + zp02e
−ft(1− e−ft) + (1− e−ft)2

]
PX(t) .

Although it is possible to enumerate straightforwardly higher order cluster contributions,
such a program rapidly becomes unwieldy. Fortunately, for low induction frequencies, p0 �
1, the leading contribution to the probability derives from fission events, with subleading
terms suppressed by a factor of order zp0/(1− e−ft). Taking only this leading contribution,
we have

Pn×X = (1− e−ft)n−1PX .

2.2 Fit of the model to the data

With these results in hand, we now turn to the comparison of the model with the measured
experimental data. Starting with the WT system, the steady progression of crypts towards
monoclonality implied by neutral drift does not allow a reliable assessment of the frequency
of fixed crypts. At these early times, the vast majority of crypts contain only small clonal
clusters. However, by 8 weeks, the majority of crypts have become resolved and information
can be gathered on clustering. In the following, we have considered data from 8 and 16 weeks
post-labelling. The raw data is shown in Figs. 3C and F. With four data points to constrain
two parameters, p0 and f , by making a fit of the ratio PXX(t)/PX(t) and PXY(t)/PX(t) to
the experimental data, with z = 6, we estimate the crypt induction frequency to be around
pWT
0 ' 0.006± 0.002 per crypt and the fission rate to be low at around fWT = 0.01± 0.002

per eight weeks (Fig. 3G). At this rate, we can expect the vast majority of crypts to undergo
zero rounds of fission over the life time of the animal. Moreover, with these parameters,
the frequency of three-crypt clusters XXX is small with measured values consistent with
the model, while larger clusters are both predicted and found to be absent even at 16 weeks
post-induction.

For K-ras, the accelerated drift towards monoclonality allows additional measurements
to made at 2 weeks post-induction. At this very early timepoint, the majority of clonal
marked crypts have already expanded over more than 50% of the base region allowing them
to be safely classified as monoclonal. In this case, from a fit to the data, we obtain fKras =
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0.27 ± 0.04 per 8 weeks, some 30 times larger than WT, while the induction frequency is
comparable at pKras

0 ' 0.008 ± 0.002 per crypt (Fig. 3H). (Note that, following induction,
at the 16 weeks timepoint, only two colors were expressed. Fortunately, from the analysis
above, one may see that, while PXX(t), PXY(t), and PXXX(t) depend explicitly on the number
of colors, ncolor, the ratios, PXX(t)/PX(t), and PXXX(t)/PX(t) are independent allowing
these values to be safely compared with theory without any adjustment. Since the ratio
PXY(t)/PX(t) scales as (ncolor− 1) we expect the measured value to be a factor of 2 smaller
than theory at 16 weeks, a prediction supported by the experimental data.) Significantly, the
fit of the data at 8 and 16 weeks provides a good prediction of the observed frequencies at 2
weeks post-induction, lending further support to the validity of the model.

With these fits, we can further assess the ability of the model to predict the frequency of
higher order clusters. The results are shown in the table below:

8 weeks 16 weeks

expt. model error

XX 0.30 0.27 0.1

XXX 0.062 0.079 0.008

XXXX 0.029 0.013 0.003

XXXXX 0.002 0.003 0.002

XXXXXX 0 0.001 0.001

XXXXXXX 0 0 0

expt. model error

0.44 0.45 0.04

0.18 0.20 0.02

0.031 0.072 0.014

0.006 0.030 0.009

0.006 0.013 0.006

0.009 0.005 0.004

Although these findings show broad quantitative agreement of the model with the experimen-
tal data, at 16 weeks post-induction, the former has a tendency to slightly over-estimate the
latter for the largest cluster sizes. Although this apparent departure may be a consequency
of small number statistics, the discrepancy may also follow from the Markovian character of
the approximation used for the modelling scheme. More precisely, in building the model of
crypt fission, we have assumed that the timing between consecutive fission events is random
and statistically uncorrelated. However, following fission, there may be an enforced delay
between the next fission event while the Paneth cell numbers build and the stem cell com-
partment is regenerated in full. The impact of this “refractory” period will be particularly
significant for the largest clusters, which rely on multiple rounds of fission. As a result, the
theoretical model may provide a small overestimate of the tails of the distribution.
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2.3 Crypt death

In the analysis of the data, we did not take account of the possibility that crypts may become
lost altogether over time due to the loss of all stem cells from the crypt base. The association
of stem cell competence with proximity to the Paneth cell niche suggests that crypt extinction
due to the chance loss of all stem cells is unlikely. This view is corroborated by histological
studies which show a lack of variability in the circumferential size of crypts near the base
[1]. Nevertheless, even a low rate of crypt loss may be competitive with the low crypt fission
rate in the wild-type tissue. Therefore, in this final section, we will return to consider the
possible impact of crypt death, and whether the data can be used to estimate its potential
frequency.

To implement this program, we must go back and reconsider the changes that can occur
in crypt number over time when we account for both crypt fission and loss. In this case, the
crypts now undergo a birth-death type process,

C 7→

{
C + C Pr. f

∅ Pr. d
,

where, as before, f denotes the fission rate and d the loss rate. If, for simplicity, we assume
that both of these events, crypt fission and death, follow a Poisson random process in which
the time between consecutive events is again statistically uncorrelated, the chance that a
labeled crypt has expanded to generate a cluster of n labeled crypts is given by (N. T. J.
Bailey, The Elements of Stochastic Processes, J. Wiley & Sons, New York, 1964)

Fn(t) =

{
d
f
β(t) n = 0

(1− β(t))
(

1− d
f
β(t)

)
[β(t)]n−1 n ≥ 1

where

β(t) =
1− e−(f−d)t

1− (d/f)e−(f−d)t
.

The survival probability of a single marked crypt is therefore given by

F surv.(t) = 1− F0(t) = 1− (d/f)β(t) .

Therefore, if we focus on the distribution of “surviving” crypts, i.e. clusters that contain at
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least one labeled crypt, then the probability is given by

gn(t) =
Fn(t)

F surv.(t)
= (1− β(t))[β(t)]n−1 n ≥ 1 .

Note that, in the absence of crypt death (d = 0), the distribution recovers the simpler form
defined above. Moreover, for (f − d)t� 1 (which may, as before, translate to an unfeasibly
long time), the distribution approaches an exponential scaling form,

gn(t) =
1

〈n(t)〉
e−n/〈n(t)〉 ,

where 〈n(t)〉 = 1
(1−d/f)e

(f−d)t denotes the average cluster size.

With these results, we can now once again consider the leading order contributions to the
cluster probabilities. However, in this case, the enterprise becomes even more daunting since
any given crypt configuration can be reached by a multitude of different permutations involv-
ing crypt expansion by fission and loss by death. For example, consider the chance that, after
a time t post-labelling, a cluster will involve a single isolated labelled crypt. Clearly, such
an event could arise from multiple sources. In the first place, over the timecourse, a single
marked crypt may have undergone a history in which its number ended up unchanged (ei-
ther by not expanding at all, or by transiting through an equal number of fission and death
events). This would contribute factor of ncolorp0 × F1(t)

F surv.(t)
to the probability. Here we must

use a normalization, F surv.(t), that includes all possible channels of loss starting from an
arbitrary initial configuration of marked crypts. Taking into account all initial conditions,
one crypt, two, etc., we have that,

F surv. = 1− ncolorp0F0(t)− ncolorzp
2
0F

2
0 (t)− ncolor(ncolor − 1)zp20F

2
0 (t)− · · ·

Alternatively, we can arrive at a single marked crypt from the net extinction of one crypt
from an induced pair leading to a contribution of ncolorzp

2
0 × 2F0(t)F1(t)

F surv.(t)
, where the factor of

two accounts for the multiplicity. Similarly, we gain a further contribution from a process
in which two out of three initially marked crypts become extinct leading to a contribution
ncolor

1
2
z(z − 1)p30 × 3

F 2
0 (t)F1(t)

F surv.(t)
, and so on. Equally, a single marked crypt could follow from

the extinction of one of the marked crypts in a neighboring pair of different color, leading to
a contribution ncolor(ncolor − 1)zp20 ×

F0(t)F1(t)
F surv.(t)

, and so on and so forth.

However, while the induction probability, p0, and effective rate constant (f − d), remain
small, the leading contribution will arise from the first of these processes (chance induction
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following by “quiescence”), viz.

PX(t) ' ncolorp0 × F1(t) ,

with F surv. ' 1.

Similarly, if we consider the probability of two marked neighboring crypts to have differ-
ent color, although there are many potential contributions, the dominant one will arise from
the contribution in which the net number has not changed from the initial condition, i.e.

PXY(t) ' ncolor(ncolor − 1)zp20 × F 2
1 (t) = (ncolor − 1)zp0F1(t)PX(t) .

Turning now to the cluster probability of a common color, let us consider chance of find-
ing two neighboring crypts. Once again, such an event could arise from multiple sources.
First, it can arise from the net fission of a single marked crypt, with a probability, ncolorp0 ×
F2(t)

F surv.(t)
. Second, this configuration can follow from the induction of two neighbouring

crypts followed by a zero net increase in the size of the cluster, leading to a contribution
ncolorzp

2
0 ×

(F 2
1 (t)+2F0(t)F2(t))

F surv.(t)
. Finally, we can obtain two marked crypts through a sequence

of extinction events from clusters of larger size and/or broader composition. However, once
again, while the induction probability, p0, and rate (f − d), remain small, the leading contri-
bution will arise from the first two of these processes, viz.

PXX(t) ' ncolorp0 ×
F2(t)

F surv.(t)
+ ncolorzp

2
0 ×

F 2
1 (t)

F surv.(t)
=

(
F2(t)

F1(t)
+ zp0F1(t)

)
PX(t) .

Similarly, taking only the leading contributions, we have the higher order cluster probability,

PXXX ' ncolor
1

2
z(z − 1)p30 ×

F 3
1 (t)

F surv.(t)
+ 2ncolorzp

2
0 ×

F1(t)F2(t)

F surv.(t)
+ ncolorp0 ×

F3(t)

F surv.(t)

=

(
F3(t)

F1(t)
+ 2zp0F2(t) +

1

2
z(z − 1)p20F

2
1 (t)

)
PX(t) .

On this background, we can consider whether crypt death plays an important role in the
unfolding of the crypt clonal dynamics. With only two timepoints for the wild-type system,
it is impractical to attempt to estimate the two rate constants and the induction frequency
from the experimental data. However, we can estimate the potential impact of crypt death by
turning to an extreme limit where d� f . In this case, the dynamics converges rapidly onto
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a pure death process in which

Fn(t) =


1− e−dt n = 0

e−dt n = 1

0 n > 1

.

In this case, it is evident that both PXY(t)/PX(t) and PXX(t)/PX(t) scale in proportion to
F1(t) = e−dt and would be predicted to undergo a progressive decay. Such behavior is easy
to understand as any initial configuration must eventually pass through a state with a single
marked crypt before undergoing extinction altogether. However, such decay is at odds with
the experimental data which show that, even for the WT system where the fission rate is low,
the frequency of XX clusters steadily rises over time, while the frequency of XY clusters
remains approximately constant. Although we are not able to rule out a death rate altogether,
we can conclude it is as best comparable and likely smaller than the fission rate of crypts
even in the wild-type system. Extrapolated to the K-ras mutant system, where the fission
rate some 30 times larger than wild-type, it is clear that the impact of crypt death may be
neglected in the analysis of the data.

2.4 Comparison with previous studies

Finally, previous studies have attempted to estimate the rate of crypt fission in normal tissue.
In particular, 25 years ago, Totafurno et al. introduced a model involving the continuous
growth and bifurcation of crypts through fission [4]. Based on the analysis of crypt burfur-
cations, they introduced a model based on the notion of a continuous and regular crypt cycle
and concludes a crypt fission rate of around once per 15 weeks, a factor of 50 higher than
that predicted by this work, and greatly in excess of that found even for K-ras mutant crypts.
It is evident that these findings are inconsistent both with the analysis presented in this work
and with the clonal fate data reported here. However, since the model discussed by Totafurno
et al. differs fundamentally from that considered in this work, it is difficult to comment on
the potential source of discrepency.

In a second more recent study, Li et al. made use of a clonal fate study using a mutation-
induced marker system to infer a crypt “cycle time” [5]. From a study of the average clone
size of crypts, using a model similar to the one implemented here, they deduced a crypt fis-
sion rate in control animals of around f = 0.03 per eight weeks, a factor of three larger than
that estimated here. Given the potential for variation by mouse strain, position within the
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small intestine, and toxicity of the mutagen, the coincidence of these small rates is surpris-
ingly good.
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