

Figure S1 Growth characteristics of *Synechocystis* 6803 wild type (WT), *Asll1404-1405* mutant (Mut1) and strains complemented with *Anabaena* sp. PCC 7120 *exbBD* homologs (*all5046-all5047*) or *Synechococcus* sp. PCC 7002 *exbBD* homologs (*al317-a1318*). Strains were cultured at 30 °C under continuous illumination of 40 µmol photons $m^{-2} \cdot s^{-1}$. (A) WT and Mut1 cells were grown in BG11 medium supplemented with 1 mM ammonium ferric citrate. (B) WT cells were grown in YBG11 containing 2 µM ammonium ferric citrate or 2 µM FeCl₃ (replacing ammonium ferric citrate with the same concentration of FeCl₃ and omitting citric acid). (C) WT, Mut1 and complementation strains were cultured in iron-deficient BG11 medium (replacing ammonium ferric citrate with ammonium citrate).

Supplemental data Figure S2

Figure S2 Putative components, amino acid sequence alignment, and transcriptional analysis of tonB, exbB, exbD genes in Synechocystis 6803. (A) The genomic organization of the exbB-exbD gene clusters in *Synechocystis* annotations deposited Cyanobase is shown based on the in (http://genome.kazusa.or.jp/cyanobase). (B) Alignment of the amino acid sequences of the putative ExbB and ExbD proteins in Synechocystis 6803. Identical and similar residues are shaded in black and gray, respectively. (C) Transcript levels of the putative exbB genes in Synechocystis wild type and Asll1263 mutant cultured under standard iron concentration (+Fe) or iron-limiting (-Fe) conditions for 24 h. The reference gene is the housekeeping gene *rnpB*. (D) Transcript levels of the known iron uptake genes in wild type and mutants cultured under standard iron concentration (+Fe) or iron-limiting (-Fe) conditions for 24 h. (E) Transcript levels of exbB genes in the single mutants of other exbB-exbD gene clusters cultured under standard iron concentration (+Fe) or iron-limiting (-Fe) conditions for 24 h.

Supplemental data Figure S3

Figure S3 PCR results, showing complete segregation of the three single mutants and three double mutants. Primer 1: sll1404-1/sll1406-2; primer 2: slr0677-1/slr0678-2; primer 3: sll0477-1/sll0479-2. The primers used are listed in Table S2.

Supplemental data Table S1

Table S1 Strains, plasmids and primers used in this study.

Strains, plasmids and primers	Derivation and / or relevant characteristics ^a	Reference(s) or source
Synechocystis strains		
PCC6803	Wild type	This study
Mut1	Km ^r , Synechocystis 6803 mutant, result of transformation with pHS036	This study
Mut2	Em ^r , Synechocystis 6803 mutant, result of transformation with pHS178	This study
Mut3	Sp ^r , Synechocystis 6803 mutant, result of transformation with pHS205	This study
Mut12	Km ^r Em ^r , Synechocystis 6803 mutant, result of transformation with pHS036 and pHS178	This study
Mut13	Km ^r Sp ^r , Synechocystis 6803 mutant, result of transformation with pHS036 and pHS205	This study
Mut23	$\mathrm{Em}^{\mathrm{r}}\mathrm{Sp}^{\mathrm{r}}$, Synechocystis 6803 mutant, result of transformation with pHS178 and pHS205	This study
Mut123	Km ^r Em ^r Sp ^r , <i>Synechocystis</i> 6803 mutant, result of transformation with pHS036, pHS178 and pHS205	This study
WT(Ω-PsbAII-Sll0477-flag)	Sp ^r , Omega- P_{puball} -Sll0477-flag integrated into slr0168 in the genome of Synechocystis wild type	This study
WT(Ω-PsbAII-Slr0678-flag)	Sp^{t} , Omega- P_{puball} slr0678-flag integrated into slr0168 in the genome of Synechocystis wild type	This study
Mut1(Ω-PsbAII-Sll1404-Sll1405)	Sp ^r , Omega- P_{psbAll} -Sll1404-sll1405 integrated into slr0168 in the genome of Synechocystis Mut1	This study
Mut1(Ω-PsbAII-Slr0677-Slr0678)	Sp ^r , Omega-P _{psbAll} -slr0677-slr0678 integrated into slr0168 in the genome of Synechocystis Mut1	This study
Mut1(Ω-PsbAII-Sl10477-Sl10478-Sl1047 9)	Sp ^r , Omega-P _{psbAll} -sll0477-sll0478-sll0479 integrated into slr0168 in the genome of Synechocystis Mutl	This study
Mut2(Ω-PsbAII-Sll1404-Sll1405)	Sp ^{r} , Omega-P _{psbAll} -sll1404-sll1405 integrated into slr0168 in the genome of Synechocystis Mut2	This study
Mut2(Ω-PsbAII-Slr0677-Slr0678)	Sp ^r , Omega-P _{psbAll} -slr0677-slr0678 integrated into slr0168 in the genome of Synechocystis Mut2	This study
Mut2(Ω-PsbAII-S110477-S110478-S11047 9)	Sp ^r , Omega-P _{psbAll} -sll0477-sll0478-sll0479 integrated into slr0168 in the genome of Synechocystis Mut2	This study
Mut1(Ω-PsbAII-All5046-All5047)	Sp ^{r} , Omega-P _{psbAll} -all5046-all5047 integrated into slr0168 in the genome of Synechocystis Mut1	This study
Mut1(Ω-PsbAII-A1317-A1318)	Sp ^r , Omega- P_{psbAll} -a1317-a1318 integrated into slr0168 in the genome of Synechocystis Mut1	This study
Yeast strains		
Y187	MATa, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, met-, gal80, URA∷GAL 1 _{US4} —GAL 1TATA—LacZ	Harper et al. (1993)
Y187 (pGKT7-Sll1404/ pGADT7-Sll1405)	Ap ^r Km ^r , Y187 transformed with pHS635 and pHS636	This study
Plasmids		
pHS036	Ap ^r Km ^r , PCR fragment containing <i>sll1404-sll1405</i> cloned into pMD18T, and C.K2 inserted in its <i>NcoI</i> site	This study
pHS 175	Ap ^r Km ^r , PCR fragment containing <i>sll0477</i> cloned into pMD18T	This study
pHS 176	Ap ^r Km ^r , PCR fragment containing <i>sll0479</i> cloned into pMD18T	This study
pHS 178	Ap ^r Cm ^r , PCR fragment containing <i>slr0677-slr0678</i> cloned into pMD18T, which was excised by <i>ClaI</i>	This study

and NheI and then inserted by C.CE2

pHS 205	Ap ^r Sp ^r , an omega drug, linked to the <i>Hind</i> III endonucleases side of plasmid pHS175	This study
pHS 208	Ap ^r Sp ^r , the DNA fragment digested from the pHS176 with <i>Pst</i> I and <i>BamH</i> I, was cloned to the <i>Xba</i> I side of pHS205	This study
pHS 211	Ap ^r , PCR fragment containing the psbAIIpromoter region was cloned into pBluescript II SK(-)	Jiang et al. (2012)
pHS 215	Ap ^r Sp ^r omega cassette from pRL57 inserted into pHS 211 at the ClaI site	Jiang et al. (2012)
pHS 298	Ap ^r Sp ^r , <i>PpsbAII</i> expression vector, Omega- P_{psbAII} from pHS215 inserted into Platform0168 at the <i>EcoR</i> I site	Jiang et al. (2012)
pHS 431	Ap ^r Sp ^r , the <i>sll0477</i> -flag fragment was cloned to the P <i>psbAII</i> expression vector, pHS298	This study
pHS 433	Ap ^r Sp ^r , the <i>sll0477-sll0478-sll0479</i> -flag fragment was cloned to the P <i>psbAII</i> expression vector, pHS298	This study
pBAD24	Ap ^r , <i>araBAD</i> promoter, AraC	Guzman et al. (1995)
pHS 503	Ap ^r , the PCR <i>sll1404-sll1405</i> the <i>Nde</i> I side of pBAD24	This study
pRL 446	Km ^f , a cloning vector with a kanamycin resistance marker (C.K2)	Elhai and Wolk (1988)
pRL 57	Sp ^r , cloning vector with a spectinomycin resistance cassette omega	Black et al. (1993)
pRL 598	Cm ^r Em ^r , cloning vector with a erythromycin resistance marker (C.CE2)	Elhai and Wolk (1988)
pHS 635	Km ^r , the <i>sll1404</i> fragment was cloned into the pGKT7 vector	This study
pHS 636	Ap ^r , the <i>sll1405</i> fragment was cloned into the pGADT7 vector	This study
pHS 791	Ap ^r Sp ^r , the <i>all5046-all5047</i> fragment was cloned to the PpsbAII expression vector, pHS298	This study
pHS 792	Ap ^r Sp ^r , the <i>a1317-a1318</i> fragment was cloned to the PpsbAII expression vector, pHS298	This study
pGADT7	Ap ^r , Yeast two-hybrid expression vector with ADH1 promoter and a fusion of GAL4 AD	Clontech
pGBKT7	Km ^r , Yeast two-hybrid expression vector a fusion of GAL4 DNA binding domain (DNA-BD).	Clontech
Primers		
sll1404-1	5'-GTGTGACTTCTGGGATGGGAG-3'	
sll1406-2	5'-TGGTGCTGGGATGCCTTCAT-3'	
slr0677-1	5'-CCACTATTACCCACGCATTGGA-3'	
slr0678-2	5'-TGCAAAGCCCGGTCAATGGC-3'	
sll0477-1	5'-GTGAAGCCATACCATAGCCCAT-3'	
sll0477-2	5'-AAGGGCAAGGATGGACAGCAGT-3'	
sll0479-1	5'- TTGAAGGAAGTGGGCGGTGA-3'	
sll0479-2	5'-GGACTGACAGCACCTTTGGC-3'	
slr1484-1	5'-GAGGAGGGGCACCGCCACT-3'	
slr1484-2	5'-AGGGATTGATGACCCAGGGAA-3'	
slr0677com-1	5'-TGGTGAATCCCATTGAGTTGATGCAAAAGGG-3'	
slr0678com-2	5'-TTACTTGTCGTCGTCGTCCTTGTAGTCCTGTTGGGGGGGCACTGGG-3'	
sll0477com-1	5'- TGCTGGATAATTGCAAGAG-3'	

sll0479com-2	5'-TCACTTGTCGTCGTCGTCGTCCTTGTAGTCAGGCATGGCCCCAGCACC-3'
exbB-1	5'-TGGGTAATAATTTAATGCAGACGGACC-3'
exbD-2	5'-TTACTTCGCTTTGGCGGTTTCTTCG-3'
all5046-1	5'-CATATGGGAATCCAAAATCTTTTTGC-3'
all5047-2	5'-CATATGTTAACGTTTTTGAGTGGCGAT-3'
a1317-1	5'-CATATGTGGCCCTTAGTACTCTTGTC-3'
a1318-2	5'-CATATG CTATTGCTGATTATTTTGTAACT-3'
psbAIIoe-1	5'-GCGTGCAAGGCCCAGTGATC-3'
psbAIIoe-2	5'-CATATGGTTATAATTCCTTAGTTCAGATTGGAACTGACTAAACTTAGTC-3'
sll1404Y2H-1	5'-CATATGGCCGGGGGCATAGTGG-3'
sll1404Y2H-2	5'-CTCGAGTCATCGGGAAGTCGCATACTC-3'
sll1405YH-1	5'-CATATGACCAACCGGAGGAAAAAGAG-3'
sll1405YH-2	5'-CTCGAGTTAGTTCTTGGGCGTGGCG-3'
rnpB-1	5'-TTAGTTCTTGGGCGTGGCG-3'
rnpB-2	5'-TTGCCCCTCCGACCTTGCTT-3'
sll1263-1	5'-CCAAGTTCGTCGCTTTATCCGC-3'
sll1263-2	5'-ACCACAGCCACCGCAATCAGC -3'
sll1404RT-1	5'-CGAGCGTGCCTATTTTTGGAGT-3'
sll1404RT-2	5'-TGTCCCCAGTAAGCCCAGGA-3'
slr0677RT-1	5'-AGAGGTTGTGGTTTTGGGGGC-3'
slr0677RT-2	5'-TGGGTGGGGCAAACGCA-3'
sll0477RT-1	5'-CGGAGGCTACCCAGGC-3'
sll0477RT-2	5'-ATTCACTGCCCACTGCGG-3'
slr1484RT-1	5'-ACAGCCCGTATTTGGTCGC-3'
slr1484RT-2	5'-CTGGGAGTTGGTTTCGGTTT-3'
slr0513RT-1	5'-TCACGGCATTACAACACCGA-3'
slr0513RT-2	5'-TCTGGGTGAAGCCATACCAT-3'
slr0327RT-1	5'-TCTCACCGTTTCCTATGCCCA-3'
slr0327RT-2	5'-ACCACTCAGCAGAAGACCAA-3'
slr1295RT-1	5'-CCAAAAGTTATCCCGTCGCCT-3'
slr1295RT-2	5'-ACGAGCCAAATCCACTGTGA-3'
sll1878RT-1	5'-CGCTATCCCCACGAACTATCC-3'
sll1878RT-2	5'-GCCACAAAACGGGAAGCAGG-3'
slr1392RT-1	5'-GTGGTGGTGAACGCTGCCCA-3'
slr1392RT-2	5'-CACGGGGTGATCGGAAAGA-3'

^{*a*} Ap, ampicillin; Km, kanamycin; Sp, spectinomycin; Cm, chloramphenicol; Em, erythromycin.

References

- Black T, Cai Y, Wolk CP (1993) Spatial expression and autoregulation of *hetR*, a gene involved in the control of heterocyst development in *Anabaena*. *Mol. Microbiol* 9: 77–84.
- Elhai J, Wolk CP (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows the cloning into long polylinkers. *Gene* 68: 119–138.
- Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* 177: 4121–413.
- Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. *Cell* 75: 805–816.
- Jiang HB, Lou WJ, Du HY, Price NM, Qiu BS (2012) Sll1263, a unique cation diffusion facilitator protein that promotes iron uptake in the cyanobacterium Synechocystis sp. strain PCC 6803. *Plant Cell Physiol* 53: 1404–1417.