Evidence from In Situ X-Ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an amorphous Molybdenum Sulfide Electrocatalyst.

Benedikt Lassalle-Kaiser,^{* \$€} Daniel Merki,⁺ Heron Vrubel,⁺ Sheraz Gul, ^{\$} Vittal K. Yachandra, ^{\$} Xile Hu^{*+} and Junko Yano^{*\$}.

^{\$} Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

^e Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, 91191 Gif-sur-Yvette, France.

⁺ Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-LSCI, BCH 3305, Lausanne, CH 1015, Switzerland.

Supplementary Information

Figure S1. Current density as a function of potential for the MoS _x film during <i>in situ</i> XAS measurements.	S2
Figure S2 . Polarization curve of the MoS_x film on a rotating disk carbon electrode	\$3
X-ray absorption data analysis details	S4
Figure S3. k^3 -weighted EXAFS signal for the MoS _x film and reference compounds	\$5
Figure S4. k^3 -weighted EXAFS signal and fits for the MoS _x film.	S6
Figure S5. Combined sulfur K-edge and Molybdenum L-edge spectra of the MoS _x film	S 7

Figure S1. Current density as a function of potential applied on the MoS_x film during *in situ* XAS measurements. Room temperature, pH = 2, nitric acid.

Figure S2. polarization curve of the MoS_x film on a rotating disk carbon electrode at pH = 2; scan rate = 2 mV/s, rotating speed = 4500 rpm.

X-ray absorption data analysis details

EXAFS curve fitting was performed with Artemis and IFEFFIT software using *ab initio*-calculated phases and amplitudes from the program FEFF 8.2. These *ab initio* phases and amplitudes were used in the EXAFS equation:

$$\chi(k) = S_0^2 \sum_j \frac{N_j}{kR_j^2} f_{eff_j}(\pi, k, R_j) e^{-2\sigma_j^2 k^2} e^{-2R_j/\lambda_j(k)} \sin(2kR_j + \phi_{ij}(k))$$

The neighboring atoms to the central atom(s) are divided into *j* shells, with all atoms with the same atomic number and distance from the central atom grouped into a single shell. Within each shell, the coordination number N_i denotes the number of neighboring atoms in shell *j* at a distance of R_j from the central atom. $f_{eff_j}(\pi,k,R_j)$ is the *ab initio* amplitude function for shell *j*, and the Debye-Waller term $e^{-2\sigma_j^2k^2}$ accounts for damping due to static and thermal disorder in absorber-backscatterer distances. The mean free path term $e^{-2R_j/\lambda_j(k)}$ reflects losses due to inelastic scattering, where $\lambda_j(k)$ is the electron mean free path. The oscillations in the EXAFS spectrum are reflected in the sinusoidal term, $\sin(2kR_j + \varphi_{ij}(k))$ where $\varphi_{ij}(k)$ is the *ab initio* phase function for shell *j*. S₀² is an amplitude reduction factor due to shake-up/shake-off processes at the central atom(s). The EXAFS equation was used to fit the experimental data using *N*, *R*, and the EXAFS Debye-Waller factor (σ^2) as variable parameters. For the energy (eV) to wave vector (k, Å⁻¹) axis conversion, E₀ was defined as 20010 eV and the S₀² value was fixed to 0.84. All fits were performed in the R space.

Figure S3. Panel A: k^3 -weighted EXAFS signal for the as prepared MoS_x film (dotted black) and poised at +0.3 (plain black) and -0.3 V (dash-dot black). Panel B: k^3 weighted EXAFS signal of Mo₃S₄ (blue) MoS₃, (plain green) and MoS₂ (red).

Figure S4. k^3 -weighted EXAFS data (black) and fit (red) for the as prepared MoS_x film, (A, dotted black) poised at 0.3V (B, plain black) and at -0.3V (C, dash-dot black).

Figure S5. Combined sulfur K-edge and Molybdenum L_3 - and L_2 -edge spectra of the as prepared MoS_x film. The spectrum is normalized to the L_2 edge jump. When used separately, each spectrum is normalized to its own edge jump and its own pre-edge is subtracted.