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In this supplemental document, we provide the regression extension of the Pseudo-REML method, additional
simulation results for the comparison of the REML method, Riley method and Pseudo-REML method, and
SPLUS/R program code to fit the Pseudo-REML method with a working example. We consider additional settings
when sample size is small (i.e., m = 5), when the within-study/between-study variation ratio is set to be close to
0.5 (i.e., median of s2ij is 0.25 and τ21 = τ22 = 0.5), and when the within-study correlation is generated from the
uniform distribution.

Regression extension of the Pseudo-REML method

The pseudolikelihood involving covariances can be defined as

logLp(ηηη1, ηηη2) = logL1(ηηη1) + logL2(ηηη2) (1)

where

logLj(ηηηj) = −1
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for j = 1, 2, (2)

and XXX is the p× 1 covariance vector.

The maximum pseudolikelihood estimator (η̃ηη1, η̃ηη2) can be shown to be consistent and asymptotically normal with
covariance matrix
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The information matrices I11, I22 and I12 can be empirically estimated as

Î11 =
1
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, for j = 1, 2 and i = 1, . . . ,m.

Additional simulation results

Table S1 summarizes the results from 1, 000 simulations under different within-study correlation and between-study
correlation, when number of studies is small (i.e., m = 5). When the between-group heterogeneity is comparable,
Riley method tends to underestimate the standard error, leading to confidence intervals with coverage probabilities
that are less than the nominal level (range of CP: 84 ∼ 89%). In contrast, the standard error of estimate for ∆
using the Pseudo-REML method is well estimated, and the coverage probabilities of confidence intervals are close
to the nominal level (range of CP: 91 ∼ 95%). When the between-group heterogeneity is relatively small, the
ranges of CPs are 84 ∼ 89% for Riley method and 94 ∼ 97% for the Pseudo-REML method, respectively. When the
between-group heterogeneity is relatively large, the ranges of CPs are 85% ∼ 89%, 94% ∼ 96% for the Riley and
pseudo-REML methods, respectively. The performance of Riley method when the between-group heterogeneity is
relatively large is slightly better than that when the between-group heterogeneity is comparable or relatively small.
In contrast, the performance of the Pseudo-REML method is similar to that in settings when the between-group
heterogeneity is comparable or relatively large. In summary, the Pseudop-REML method can produce confidence
intervals with coverage probabilities close to the nominal level under all settings considered.

Table S2 summarizes the results from 1, 000 simulations under different within-study correlation and between-study
correlation, when number of studies is large (i.e., m = 25), and the within-study correlations are generated from
uniform distributions. The findings are similar to those under constant within-study correlations. When for
meta-analysis with large number of studies, the three methods under comparison perform well in terms of bias,
and coverage probability.

To compare the efficiency in estimation between the Riley method and Pseudo-REML methods when the
number of studies is small, we plot the relative efficiency (RE) against the between-study correlation in Figure
S1. When the between-group heterogeneity is comparable, the relative efficiency of Riley method is around 83%
with range 60 ∼ 101% when m = 5, indicating a sizable efficiency loss. The results when the between-group
heterogeneity is relatively small and large are similar. In summary, our simulation studies suggest that the
Pseudo-REML method maintains good coverage probability of confidence intervals and high relative efficiency
when number of studies is small.

To assess the singular covariance matrix problem, we display the percentage of the singular covariance
matrix (SP) under different settings when m = 10 in Figure S2. We find that the REML method suffers greatly
from the singular estimated covariance matrix problem (SP> 25% under all settings). Riley’s method alleviates
this problem to some extent, but still has a sizable proportion of singular estimated covariance matrix in some
settings (range of SP: 0 ∼ 20%). In contrast, there is no singular estimated covariance matrix problem for the
Pseudo-REML method. In summary, for meta-analysis with small number of studies, REML method suffers greatly
from the singular estimated covariance matrix problem, even when within-study correlations are known. Riley
method alleviates such singular problem to some extend but still has a sizable proportion of singular estimated
covariance matrix. The pseudop-REML method suffers very little from singular estimated covariance matrix .

We also compared the performance of estimates under three different methods when the estimated covariance
matrix using REML method is singular. The results are summarized in Figure S3 when the number of studies
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Table S1: Estimates of bias, empirical standard error (ESE), model based standard error (MBSE), coverage
probability (CP) of ∆ = β1 − β2 in 1, 000 simulations based on data generated from BRMA model, withnumber
of studies m = 5 , for different between-study correlation ρB and within-study correlations ρWi. All entries in the

table are multiplied by 100.

REML Riley method Pseudo-REML
VR ρWi ρB Bias ESE Bias ESE MBSE CP Bias ESE MBSE CP
1 -0.5 -0.5 -2.4 53.4 -1.2 63.3 53.3 84.4 -0.5 52.9 63.6 92.8

0.0 1.1 52.2 1.9 56.1 48.9 86.9 1.3 50.8 60.0 91.7
0.5 0.4 44.6 -0.1 47.3 44.5 89.1 0.2 43.9 55.3 93.4

0.0 -0.5 -1.8 50.6 0.1 56.7 49.7 84.1 -0.8 52.3 60.3 91.3
0.0 1.0 48.7 -0.8 50.5 45.6 86.4 0.8 47.8 57.4 92.7
0.5 -0.9 40.5 0.9 43.0 41.0 88.4 -2.5 41.9 54.3 93.7

0.5 -0.5 -1.5 46.7 -1.6 55.4 46.8 86.6 -0.5 49.7 58.2 92.5
0.0 0.9 43.2 0.9 43.6 40.9 87.1 0.8 44.5 54.0 92.0
0.5 0.2 36.5 0.0 38.5 35.0 85.2 0.3 38.1 49.0 94.6

U[-0.8, 0.8] -0.5 -1.0 51.7 -1.2 56.1 50.7 87.7 -2.7 53.1 61.0 92.2
0.0 -1.3 46.9 -2.3 51.3 45.0 87.0 -1.5 48.9 56.1 92.3
0.5 0.9 40.4 1.9 46.3 41.3 86.1 0.1 42.5 54.6 94.0

U[-0.8, 0.0] -0.5 -3.0 55.0 -0.8 58.9 52.6 86.0 -3.6 54.9 63.0 91.6
0.0 -3.2 51.6 -1.9 55.2 48.7 85.9 -1.6 51.6 60.9 92.4
0.5 0.2 46.0 -1.2 49.9 45.0 88.5 0.7 45.5 56.4 94.4

U[0.0, 0.8] -0.5 -0.7 47.1 -1.6 52.7 47.5 88.0 -2.2 50.1 58.8 91.4
0.0 -0.6 44.9 -1.7 47.3 42.1 86.8 -1.4 46.4 52.9 91.6
0.5 0.2 38.5 1.4 41.0 36.3 87.0 -0.2 39.5 49.8 93.4

m = 10, ρWi is sampled from a uniform distribution U(0.8, 0.8), ρB = 0.5, and the within-study/between-study
variation ratio (VR) is close to 0.5. Specifically, 33% of the 1000 simulations have singular estimated covariance
matrix, which happened when the estimated correlation being -1 or 1. Overall speaking, when REML method has
singular estimated covariance matrix, the point estimates from three methods were similar. But their standard
error estimates were very different due to the singularity of estimated covariance matrix. This confirms that the
singular estimated covariance matrix lead to biased inference on standard error estimation and inflated Type I
errors.
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Table S1: Estimates of bias, empirical standard error (ESE), model based standard error (MBSE), coverage
probability (CP) of ∆ = β1 − β2 in 1, 000 simulations based on data generated from BRMA model, with number
of studies m = 5 , for different between-study correlation ρB and within-study correlations ρWi. All entries in the

table are multiplied by 100. (continued)

REML Riley method Pseudo-REML
VR ρWi ρB Bias ESE Bias ESE MBSE CP Bias ESE MBSE CP
2.5 -0.5 -0.5 -2.9 40.1 -0.8 49.9 43.0 85.2 0.2 39.7 57.3 96.1

0.0 0.7 42.2 1.7 45.6 42.3 86.6 1.1 39.5 55.7 95.5
0.5 2.6 37.2 0.0 41.9 39.0 89.0 0.8 35.4 54.0 96.5

0.0 -0.5 -2.2 40.6 -1.0 45.9 38.9 84.3 -0.4 39.4 54.1 94.5
0.0 1.2 38.9 -1.9 40.6 38.3 88.6 -0.2 37.1 53.1 96.0
0.5 -2.7 33.3 -0.6 37.1 35.2 87.9 -1.8 33.2 51.0 95.1

0.5 -0.5 -1.3 34.9 0.2 41.3 35.2 85.4 0.2 36.8 50.7 94.3
0.0 1.3 32.4 1.3 35.8 33.0 86.4 1.4 33.4 47.5 94.5
0.5 -0.5 29.6 0.1 31.4 28.9 85.6 0.6 30.4 45.5 95.4

U[-0.8, 0.8] -0.5 -2.6 41.3 -2.2 43.2 39.7 86.5 -2.9 40.3 54.7 95.2
0.0 -0.9 36.2 -1.0 42.3 35.8 85.3 -1.1 37.6 51.9 94.6
0.5 1.6 34.9 3.1 37.1 34.9 86.9 -0.4 34.8 50.0 95.9

U[-0.8, 0.0] -0.5 -0.8 44.0 0.6 49.5 42.5 84.5 -2.8 42.3 57.1 95.2
0.0 -1.8 39.9 -1.8 44.1 38.5 84.4 -1.5 40.0 55.8 94.6
0.5 0.8 38.4 1.6 43.6 38.9 87.8 0.9 37.1 52.5 96.2

U[0.0, 0.8] -0.5 -1.5 36.6 -1.3 40.6 35.7 86.6 -1.9 37.2 50.8 94.1
0.0 -0.5 35.0 -0.8 37.2 32.4 83.8 -1.4 35.4 47.9 93.6
0.5 1.8 30.3 0.6 33.9 30.6 86.2 -0.5 31.7 46.8 95.9

SPLUS/R program to fit the Pseudo-REML method and a working example

library(MASS)

library(mvmeta)

# 1. functions

## Function that can be directly used to analyze meta-analysis data

## Input:

## mydat: data of n rows and 4 columns, where n is the number of studies and 4 columns are

## Yi1 (effect size of outcome 1), Si1^2(variance of Yi1), Yi2(effect size of outcome 2), Si2^2(variance of Yi2)

##

## Output:

## estim: point estimates of (beta1, tau1^2, beta2, tau2^2)

## cov.estim: covariance matrix of the point estimates

pseudolik.est = function(mydat){

mydat1 = subset(mydat, select=c("Yi1", "Si1.2"))

mydat2 = subset(mydat, select=c("Yi2", "Si2.2"))

m=dim(mydat)[1]

estim.pseudo = rep(NA, length=4)

## 1.1. optimize the likelihood function to obtain the point estimates

my.pseudo1= mvmeta(mydat1$Yi1,mydat$Si1.2,method="reml")

my.pseudo2= mvmeta(mydat2$Yi2,mydat$Si2.2,method="reml")

## save the result for parameters: beta1, tau1^2

estim.pseudo[c(1:2)]=c(coef(my.pseudo1), my.pseudo1$Psi)

## save the result for parameters: beta2, tau2^2

estim.pseudo[c(3:4)]=c(coef(my.pseudo2), my.pseudo2$Psi)
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Table S1: Estimates bias, empirical standard error (ESE), model based standard error (MBSE), coverage
probability (CP) of ∆ = β1 − β2 in 1, 000 simulations based on data generated from BRMA model, with number
of studies m = 5 , for different between-study correlation ρB and within-study correlations ρWi. All entries in the

table are multiplied by 100. (continued)

REML Riley method Pseudo-REML
VR ρWi ρB Bias ESE Bias ESE MBSE CP Bias ESE MBSE CP
0.5 -0.5 -0.5 -2.9 67.5 -1.7 73.2 66.6 87.4 -0.4 66.3 89.1 96.2

0.0 1.1 64.6 1.6 66.3 58.2 85.8 2.8 62.1 80.1 94.5
0.5 -1.0 52.3 -0.8 54.9 51.2 87.5 0.0 51.9 71.8 95.5

0.0 -0.5 -2.6 65.8 -3.5 73.1 63.2 85.8 -0.8 66.6 83.8 93.2
0.0 0.1 60.6 -1.1 61.0 55.3 87.8 1.5 59.9 77.8 93.9
0.5 -1.7 48.7 -1.9 51.5 47.0 87.4 -1.8 49.1 70.8 95.4

0.5 -0.5 -2.2 61.6 -1.6 65.7 60.5 87.0 -0.3 62.8 83.1 95.5
0.0 2.4 53.9 1.3 56.9 51.5 87.7 1.2 54.6 73.5 94.4
0.5 0.2 43.6 -1.8 46.3 41.9 86.3 0.3 43.9 65.3 95.9

U[-0.8, 0.8] -0.5 -0.8 65.5 -2.1 68.6 62.5 87.5 -2.5 65.5 84.6 94.5
0.0 -0.8 59.5 -1.7 61.6 56.2 87.3 -1.8 59.8 77.3 94.7
0.5 1.0 48.4 2.4 52.6 48.5 87.2 0.6 49.6 70.8 94.9

U[-0.8, 0.0] -0.5 -3.0 69.1 -1.2 71.6 64.6 87.6 -2.8 67.9 87.7 94.9
0.0 -2.2 63.3 -1.4 66.0 58.8 85.4 -1.9 62.7 81.7 94.2
0.5 1.6 53.2 1.6 55.3 51.9 89.3 1.2 54.0 75.0 95.8

U[0.0, 0.8] -0.5 -1.3 62.4 -1.2 69.7 60.9 88.4 -1.7 63.4 82.6 95.1
0.0 -1.4 56.5 -2.4 59.1 52.6 85.7 -1.2 57.3 74.6 93.8
0.5 -0.1 45.9 0.7 46.5 43.2 86.2 -0.2 46.3 66.4 94.5

estim.pseudo = matrix(estim.pseudo, nrow=1)

colnames(estim.pseudo)=c("beta1", "tau1^2", "beta2", "tau2^2")

## 1.2. Information matrix calculation

## calculate I11.hat and I22.hat

Score1.beta = (mydat1$Yi1-coef(my.pseudo1))/(mydat1$Si1.2+my.pseudo1$Psi)

Score2.beta = (mydat2$Yi2-coef(my.pseudo2))/(mydat2$Si2.2+my.pseudo2$Psi)

Score1.tau2 = -1/(2*(mydat1$Si1.2+my.pseudo1$Psi)) + (mydat1$Yi1-coef(my.pseudo1))^2/(mydat1$Si1.2+my.pseudo1$Psi)^2/2

Score2.tau2 = -1/(2*(mydat2$Si2.2+my.pseudo2$Psi)) + (mydat2$Yi2-coef(my.pseudo2))^2/(mydat2$Si2.2+my.pseudo2$Psi)^2/2

Score1 = rbind(Score1.beta, Score1.tau2); Score2 = rbind(Score2.beta, Score2.tau2)

I11.hat = Score1%*%t(Score1)/m; I22.hat = Score2%*%t(Score2)/m

## calculation of I12.hat

I12.hat = Score1%*%t(Score2)/m

## 1.3. calculation of covariance matrix of estimates

myoff.diag = solve(I11.hat,tol=1e-100)%*%I12.hat%*%solve(I22.hat,tol=1e-100)/m

myupper = cbind(solve(m*I11.hat,tol=1e-100), (myoff.diag))

mylower = cbind(t(myoff.diag), solve(m*I22.hat,tol=1e-100))

myV=rbind(myupper,mylower)

colnames=rownames(myV)=c("beta1", "tau1^2", "beta2", "tau2^2")

mySandwich= myV

## 1.4. print the results

myresults = list(estim = estim.pseudo, cov.estim = mySandwich)

return(myresults)

}

# 2. Working Example
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Table S2: Estimates of bias, empirical standard error (ESE), model based standard error (MBSE), coverage
probability (CP) of ∆ = β1 − β2 in 1, 000 simulations based on data generated from REML model, with number
of studies m = 25 and different between-study correlation ρB and within-study correlations ρWi. All entries in the

table are multiplied by 100.

REML Riley method Pseudo-REML
VR ρWi ρB Bias ESE Bias ESE MBSE CP Bias ESE MBSE CP
1 U[-0.8, 0.8] -0.5 -0.1 21.9 0.1 22.7 21.1 92.2 0.1 22.6 22.2 92.9

0.0 0.1 20.2 0.1 20.5 19.4 93.7 0.2 20.4 20.1 93.9
0.5 0.8 17.2 0.6 17.3 17.2 93.8 0.8 17.5 17.9 93.5

U[-0.8, 0.0] -0.5 0.3 23.3 0.3 23.5 22.2 92.2 0.4 23.6 23.1 92.6
0.0 0.3 21.7 0.2 21.6 20.8 93.8 0.4 21.5 21.1 93.2
0.5 0.8 18.6 0.6 18.8 18.8 93.4 0.7 18.7 19.0 93.0

U[0.0, 0.8] -0.5 -0.5 20.8 -0.3 21.6 20.0 92.0 -0.2 21.6 21.3 92.9
0.0 -0.1 19.0 -0.1 19.2 17.9 92.7 -0.1 19.2 19.0 94.2
0.5 0.7 16.1 0.7 16.1 15.4 92.9 0.9 16.5 16.6 93.2

2.5 U[-0.8, 0.8] -0.5 -0.5 16.0 0.2 16.6 15.2 90.9 0.0 16.7 16.0 91.8
0.0 -0.3 15.2 0.1 15.6 14.4 92.0 0.1 15.6 14.9 91.9
0.5 0.7 13.6 0.4 13.5 13.4 92.9 0.5 13.7 13.8 93.8

U[-0.8, 0.0] -0.5 0.2 17.1 0.3 17.3 16.1 92.0 0.2 17.5 16.8 92.7
0.0 0.3 16.5 0.1 16.6 15.6 93.0 0.2 16.6 15.7 92.1
0.5 0.5 14.8 0.5 15.0 14.9 93.5 0.6 14.7 14.8 93.9

U[0.0, 0.8] -0.5 -0.4 27.6 -0.4 28.2 26.7 92.6 -0.2 15.7 15.2 92.0
0.0 -0.2 24.3 -0.2 24.6 23.4 93.8 -0.2 14.4 14.0 93.1
0.5 1.0 19.8 0.9 19.9 19.3 93.4 0.6 13.1 12.7 92.7

0.5 U[-0.8, 0.8] -0.5 -0.2 28.8 0.0 29.3 27.9 93.5 0.1 29.3 30.6 94.8
0.0 0.0 25.5 0.0 25.8 24.9 93.6 0.1 25.7 27.0 95.0
0.5 1.0 20.9 0.8 21.2 21.1 93.8 1.0 21.3 23.1 94.5

U[-0.8, 0.0] -0.5 0.7 29.8 0.6 29.9 29.4 94.4 0.9 29.8 31.9 95.8
0.0 0.0 27.0 -0.1 27.0 26.7 93.4 0.0 26.8 28.5 95.2
0.5 -0.3 21.8 -0.3 22.1 22.9 95.0 -0.3 22.1 24.6 96.5

U[0.0, 0.8] -0.5 -0.4 27.6 -0.4 28.2 26.7 92.6 -0.3 28.1 29.5 94.9
0.0 -0.2 24.3 -0.2 24.6 23.4 93.8 -0.2 24.5 25.8 95.6
0.5 1.0 19.8 0.9 19.9 19.3 93.4 1.1 20.2 21.7 95.1

# Data from Section 5.1 Sasee et al. (2012)

# Comparison between overall survival and disease-free survival for prostate cancer

# Log-hazard ratio estimates comparing combined therapy using Goserelin acetate with radiotherapy

# with respect to the overall survival (Yi1) and that with respect to disease-free survival (Yi2)

mydat=data.frame(cbind(c(1:5),

c(-0.21, -0.17, -0.67, -0.17, -0.46),

c(-0.85, -0.62, -0.87, -0.33, -0.56),

c(0.0576, 0.0121, 0.0324, 0.0169, 0.0196),

c(0.0064, 0.0121, 0.0441, 0.0144, 0.0121)))

colnames(mydat)=c("ID", "Yi1", "Yi2", "Si1.2", "Si2.2")

## Point estimates and covariance estimate

myresults = pseudolik.est(mydat)

6 www.sim.org Copyright c⃝ 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 00 ??–??
Prepared using simauth.cls



Y. CHEN, C. HONG, R. D. RILEY

Statistics
in Medicine

## The model based standard errors of beta1, beta2 and (beta1-beta2)

beta1.mbse = sqrt(diag(myresults$cov.estim)[1])

beta2.mbse = sqrt(diag(myresults$cov.estim)[3])

beta.df.mbse =sqrt(diag(myresults$cov.estim)[1]+diag(myresults$cov.estim)[3]-2*myresults$cov.estim[1,3])

mbse.pseudo =c(beta1.mbse, beta2.mbse, beta.df.mbse)
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Figure S1: Relative efficiency (RE) of estimator of ∆ = β1 − β2 based on Riley method and Pseudo-REML method comparing to the estimator

based on REML model, with number of studies m = 5 and different between-study correlation ρB and within-study correlations ρWi. Number

of simulations is 1, 000.
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Figure S2: Percentage of singular estimated covariance matrix (SP) with number of studies m = 10. U+, U-, and U denote the uniform

distributions U[-0.8, 0], U[-0.8, 0.8], and U[0, 0.8], respectively.
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Figure S3: Impact of the singular estimated covariance matrix in simulations based on data generated from REML model, with number of

studies m = 10, ρWi = 0.5 and ρB = 0.5, and the within-study/between-study variation ratio (VR) close to 0.5.
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