SUPPLEMENTAL INFORMATION for

The nuclear receptor NR2E1/TLX controls senescence

Ana O'Loghlen, Nadine Martin, Benjamin Krusche, Helen Pemberton, Marta M. Alonso, Hollie Chandler, Sharon Brookes, Simona Parrinello, Gordon Peters and Jesús Gil

Including:

Supplemental Table 1. Primary antibodies used in this study.

Supplemental Table 2. Primers for qRT-PCR and Taqman probes used in this study.

Supplemental Table 3. Sequence of siRNA and shRNA targeting NR2E1 used in this study.

Supplemental Table 4. Primers sets used for ChIP analysis.

Supplemental Table 5. Primers sets used for DPA analysis.

Supplemental Figure legends

Supplemental Table 1. Primary antibodies used in this study.

Target	Reference
NR2E1	H6506, R&D systems
CBX6	Ref. 44
CBX7	Ab21873, Abcam
CBX8	A300-882A, Bethyl Laboratories
FLAG	M2, Sigma
BrdU	A21303, Invitrogen
p16 ^{INK4a}	JC-8, CRUK
p21 ^{CIP1}	CP74, Sigma
β-Actin	sc-47778, Santa Cruz Biotechnology
α -Tubulin	T6074, Sigma

Supplemental Table 2. Primers for qRT-PCR and Taqman probes used in this study.

Primers for qPCR

<u>Human</u>

Target	Forward primer
p16	CGGTCGGAGGCCGATCCAG
p21	CCTGTCACTGTCTTGTACCCT
RPS14	TCACCGCCCTACACATCAAACT

<u>Mouse</u>

Target	Forward primer
p16	GTGTGCATGACGTGCGGG
p21	CCTGGTGATGTCCGACCTG
Rps14	GACCAAGACCCCTGGACCT

Reverse primer

GCGCCGTGGAGCAGCAGCAGCT GCGTTTGGAGTGGTAGAAATCT CTGCGAGTGCTGTCAGAGG

Reverse primer

GCAGTTCGAATCTGCACCGTAG CCATGAGCGCATCGCAATC CCCCTTTTCTTCGAGTGCTA

TaqMAN probes

<u>Human</u>

Target	Applied Biosystems Reference
CBX2	Hs01034268_m1
CBX4	Hs01106873_m1
CBX6	Hs00982441_g1
CBX7	Hs00545603_m1
CBX8	Hs00221034_m1
NR2E1	Hs01128417_m1
TBP	4333769F
RNU6B	1093

<u>Mouse</u>

Target	Applied Biosystems Reference
Cbx7	Mm00520005_m1
Nr2e1	Mm00455855_m1
Tbp	Mm00446971 m1

Supplemental Table 3. Sequence of siRNA and shRNA targeting NR2E1 used in this study.

siRNA

	Reference	Target sequence
<u>Human</u> siNR2E1.2	SI00050106	TCCCGTTAACATAGTGCTGAA
Mouse siNr2e1 4	SI00239400	TTGGGTATGAATCTATACTTA
siNr2e1.5	SI02698094	TACCAGCTTTACGGTCAATTA

shRNA

<u>Human</u>

shNR2E1.2 GATCCCCCAGAACTGAGTTAATAAGTGATTCAAGAGATCACTTATTAACTCAGTTCTGTTTTA shNR2E1.3 GATCCCCTCCCGTTAACATAGTGCTGAATTCAAGAGATTCAGCACTATGTTAACGGGATTTTTA

<u>Mouse</u>

shNr2e1.4 CCGGCGTGGACACAAGGAAGACAATCTCGAGATTGTCTTCCTTGTGTCCACGTTTTT shNr2e1.5 CCGGCCGGTTGATGCTAACACTCTACTCGAGTAGAGTGTTAGCATCAACCGGTTTTT

Supplemental Table 4. Primers sets used for ChIP analysis.

Primer	Forward primer	Reverse primer
CBX7 PS2 PS3	GAGGGAGAGGGAGAGGAAGA CCTGTCCTCCTCTTGACTGC	GAGCCATCGGATTCCATCTA AACGGATCCAGTGAGGTGAG
CDKN1A PS	TAGGGGAATGGTGAAAGGTG	TGAAAGCTGACTGCCCCTAT
NR2E1 PS2 PS3 PS4	GCAGGATTTTTCCCCCTTTA CCTTCTTTCCTTGGGAGACC GCAGAGAGGGTCGTCTTGTC	CCACACAGAGGGGACTGCTCT CTTTTTCCCCATTCCTGTCA CCTCTGAGGTCCATGAAAGC

Supplemental Table 5. Primers sets used for DPA analysis.

Probe Forward oligonucleotide

0	GGGCGGATGGAGGGGTGGGTGGACGGACGTGGAGACACTGGCCA
1	AACTGCGCCGCGGAGAAGGCCGGATTAGGGAGACCTCGGCCCTG
2	CGACGTCCGGACACGGTGGGAAGCCTTTTGGGTCCCGGCTCTCC
3	TGCAACTCGAGGGGCTGCGCCTCGGGCCCAGTCTCCTCCGCTGC
4	GGGAGGTGAGCAAATGGCCTCCCCGCTCTGAGCCTTGACTTTGT
4.mut	GGGAGGTGAGCAAATGGCCTCCCCGCTCTGAGCCT <u>CAGTCC</u> TGT
5	CGTCGGCTCCACTGGGCCCTGCCACTTCGGCCCCTGGCAGTCAC
6	CGGGAGGCTATGAGGCGCCCGCCTGGGTATTAAGGATCACGTCC
7	CGCCCCGGCGTCACAGCAAGACGGGGCGCGCGAGCCTCCGCCCC
8	GCCCCAGCCGGTGACCGAGCCAAATAAGTCCCACGGCAGCGCTC
9	GCGGCTCGCGGCCCGCGGCCCAATCGCAACCCGCGGGGGGGG
10	CCCGGGGGCGGGGTTCCGATGGGGGGCGGGGGCTCGGGGGCGGAGC
11	TGACCCTCAGGGCGCGAGCCGAGCCCGCGGCCGTTCCGCGCGCT
12	CCCGCCCGCCCCCTCCTTGCGCGCGCTCGCTCGCTGGCGCCGA
13	GGAAAACGTTGCGCAGGTTCAAAAATGGAACGTCGGCGGCGTGA
14	GGGAGCGCGAGGGGGTGTGCGCGCGCGTGCGCGCGCGCGC
15	CCGGACGAGGGTGACGGGGGACCCCGCCAGCCCCAGCATCGCGCG
16	CCGCAGCCGCGGCCCCGCAGCTCCGCCCCGGCCCGGCCC
17	CCGGGCCCGCTCGCCCGCCGCCCGCATGGAGCTGTCAGCCATC
18	GGCGAGCAGGTGTTCGCCGTGGAGAGCATCCGGAAGAAGCGCGT
19	GCGGAAGGTGAGGCTGCCCGGGGGGGGGCGGCTCCCAGGACCCCAGTG
20	GGGTCCCTCCCGTCCCCAGCACCGCTCCCTCCACGCTGGGGCTG

Probe Reverse oligonucleotide

0	TGGCCAGTGTCTCCACGTCCGTCCACCCACCCCTCCATCCGCCC
1	CAGGGCCGAGGTCTCCCTAATCCGGCCTTCTCCGCGGCGCAGTT
2	GGAGAGCCGGGACCCAAAAGGCTTCCCACCGTGTCCGGACGTCG
3	GCAGCGGAGGAGACTGGGCCCGAGGCGCAGCCCCTCGAGTTGCA
4	ACA AAGTCA AGGCTCAGAGCGGGGGGGGGCCATTTGCTCACCTCCC
4.mut	ACA <u>GGACTG</u> AGGCTCAGAGCGGGGGGGGGCCATTTGCTCACCTCCC
5	GTGACTGCCAGGGGCCGAAGTGGCAGGGCCCAGTGGAGCCGACG
6	GGACGTGATCCTTAATACCCAGGCGGGCGCCTCATAGCCTCCCG
7	GGGGCGGAGGCTCGCGCGCCCCGTCTTGCTGTGACGCCGGGGCG
8	GAGCGCTGCCGTGGGACTTATTTGGCTCGGTCACCGGCTGGGGC
9	GCCCGCCCCGCGGGTTGCGATTGGGCCGCGGGCCGCGAGCCGC
10	GCTCCGCCCCGAGCCCCGCCCCATCGGAACCCCGCCCCG
11	AGCGCGCGGAACGGCCGCGGGCTCGGCTCGCGCCCTGAGGGTCA
12	TCGGCGCCAGCGAGCGAGCGCGCGCGAAGGAGGGGGGGGG
13	TCACGCCGCCGACGTTCCATTTTTGAACCTGCGCAACGTTTTCC
14	GCGCGCACGCGCACGCGCGCGCACACCCCCTCGCGCTCCC
15	CGCGCGATGCTGGGGGCTGGCGGGGTCCCCGTCACCCTCGTCCGG
16	GGCCGGGCCGGGGCGGGGGGGGGGGGGGGGGGGGGGGGG
17	GATGGCTGACAGCTCCATGCGGGGGGGGGGGGGGGGGGG
18	ACGCGCTTCTTCCGGATGCTCTCCACGGCGAACACCTGCTCGCC
19	CACTGGGGTCCTGGGAGCCGCCCCCGGGCAGCCTCACCTTCCGC
20	CAGCCCCAGCGTGGAGGGAGCGGTGCTGGGGGACGGGAGGGA

Bold: consensus NR2E1 binding motif Underlined: mutated sequences

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. A reporter-based screen identifies NR2E1 as a regulator of CBX7 transcription.

(a) Re-testing of candidate cDNAs regulating CBX7 transcription using a human CBX7 promoter reporter in HEK283T cells. (b) NR2E1 wt and NR2E1 Δ 40 are expressed at a similar level. HEK293T cells were transfected with expression vectors for NR2E1 wt or the DNA binding domain mutant NR2E1 Δ 40 and NR2E1 protein level was checked by immunoblot. (c) Luciferase assay with a human CBX7 promoter reporter showing that NR2E1 activates the human CBX7 promoter through its DNA binding domain.

Figure S2. Regulation of the CBX7 promoter by NR2E1.

(a) DNA pulldown assay was performed using the probes described in Sup Table 5 that span the CBX7 human promoter. A preferential binding of NR2E1 to probe 4, that contains a consensus NR2E1 site is shown. A lower signal is detected with probes 8, 9 and 12 suggesting alternative binding sites. The arrow marks the size of the NR2E1 wt band. (b) Luciferase reporter assay using two mouse Cbx7 reporter constructs. -836 was used for the screen, while -536 lacks the homologous region shown to bind NR2E1 in the DPA assay. Luciferase activity is similar, suggesting that alternative binding sites o indirect mechanisms could contribute to Cbx7 activation by NR2E1.

Figure S3. NR2E1 overexpression inhibits senescence and extends cellular lifespan.

(a) NR2E1 wt but not NR2E1 DNA binding mutant delays senescence in IMR90 cells. (b) SA-β-Galactosidase staining of IMR90 cells infected with the indicated vectors is shown. (c) Mutation in the NR2E1 DNA binding domain impairs its ability to regulate INK4a and CDNK1a. qRT-PCR was performed using RNA from IMR90 cells infected with the indicated constructs. (d) NR2E1 overexpression extends the lifespan of WI-38 cells. WI-38 cells were infected with the indicated vectors. At passage 19, cells were seeded at low density, grown for 2 weeks and crystal violet, SA-

 β -Galactosidase and BrdU staining were performed.

Figure S4. Knockdown of NR2E1 inhibits the proliferation of human fibroblasts and prostate epithelial cells (HPrEC).

(a) Cartoon locating the sequences of human NR2E1 targeted by the different shRNA and siRNA used in this study. (b) NR2E1 knockdown by shRNA inhibits cell proliferation in IMR90. IMR90 cells were infected with two different shRNA vectors targeting NR2E1 or with a control vector, knockdown efficiency was checked by qRT-PCR (left) and growth curves were performed (right). (c) NR2E1 knockdown in HPrEC causes a decrease in CBX7 mRNA level. HPrEC were transfected with siNR2E1.2 or a scrambled sequence and the mRNA levels of NR2E1 and CBX7 were assessed by qRT-PCR 5 days later. (d) Knocking down NR2E1 in HPrEC results in premature senescence. HPrEC were transfected with siNR2E1.2 or a scrambled to IF to count relative cell numbers (left) and the percentage of p16^{INK4a} (middle) and p21 ^{CIP1} (right) positive cells. (e) Knockdown efficiency of shRNA vectors targeting p16^{INK4a} (shp16) or p21^{CIP1a} (shp21) used in Figure 5e, as assessed by qRT-PCR for p16^{INK4a} (left) and p21^{CIP1} IF (right).

Figure S5. Effect of NR2E1 in neural cells.

(a) Cartoon locating the sequences of mouse Nr2e1 targeted by the different shRNA and siRNA used in this study. (b) Nr2e1 knockdown by shRNA in mouse neural stem cells (NSC) downregulates *Cbx7* and upregulates *Ink4a* and *Cdkn1a*. NSC were infected with shRNA vectors targeting Nr2e1 or with a control empty vector, selected and qRT-PCR were performed 2 days later.

0

Vector NR2E1

0

Vector NR2E1

d

С

