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1 Payoff formulas

First, we derive the the payoffs Πij(k) for the five strategies AVOID (or RESTRICT), C, FREE,

D, and FAKE (denoted 1, 2, 3, 4, 5, respectively, as in the main text). Recall that Πij(k) denotes

the payoff of a strategist of type i (resp., type j) when the random sampling consists of k players

of type i and N − k players of type j.

Denote Π(k) = {Πij(k)}5i,j=1,i 6=j , where, abusing notation, k is the number of AVOID (or

RESTRICT) players if they are present in the pair; otherwise, the number of C players if C is

present in the pair. Except for Π31(0) = Π51(0) = 0, we have

Π(k) =



1 C FREE D FAKE

1 − rc− c− εP
k rc− c− εP

k Π14(k) ( rkN − 1)c+ Nδ−εP
k − δ

C rc− c − rk
N c− c

rk
N c− c

rk
N c− c

FREE rc− c rk
N c − 0 0

D Π41(k) rk
N c 0 − 0

FAKE rk
N c− δ

rk
N c 0 0 −


(1)

where

• for RESTRICT, Π14(k) = rkc
k+ψ(N−k)−c−

εP +εR
k
∀1 ≤ k ≤ N and Π41(k) = rkcψ

k+ψ(N−k) ∀1 ≤

k ≤ N − 1 and Π41(0) = 0;

• for AVOID, Π14(N) = rc − c − εP
N

and Π14(k) = 0 ∀1 ≤ k ≤ N − 1, and Π41(k) =

0 ∀0 ≤ k ≤ N − 1.

We now derive the average payoffs Pij(x) and Pji(x) defined in the main text. For sim-
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plicity, consider c = 1. We have

P12(x) = P13 =
N−1∑
k=0

H(k,N − 1, x− 1, Z − 1) (r − 1− ε

k + 1
) = r − 1−

(
Z

N

)
−
(
Z − x
N

)
x

(
Z − 1

N − 1

) εP

P21(x) =
N−1∑
k=0

H(k,N − 1, x, Z − 1) (r − 1) = r − 1

P31(x) =
N−1∑
k=1

H(k,N − 1, x, Z − 1) (r − 1) = (r − 1)

1−

(
Z − 1− x
N − 1

)
(
Z − 1

N − 1

)


P15(x) =
N−1∑
k=0

H(k,N − 1, x− 1, Z − 1) (
r(k + 1)

N
+
Nδ − εP
k + 1

− δ − 1) =

=
r

N

(
1 + (x− 1)

N − 1

Z − 1

)
+

(
Z

N

)
−
(
Z − x
N

)
x

(
Z − 1

N − 1

) (Nδ − εP )− δ − 1

P51(x) =
N−1∑
k=1

H(k,N − 1, x− 1, Z − 1) (
rk

N
− δ) =

r(N − 1)

N(Z − 1)
x− δ

1−

(
Z − 1− x
N − 1

)
(
Z − 1

N − 1

)


P23(x) = P24 = P25 =
r

N

(
1 + (x− 1)

N − 1

Z − 1

)
− 1

P32(x) = P42 = P52 =
r(N − 1)

N(Z − 1)
x

P34(x) = P43 = P35 = P53 = P45 = P54 = 0

For AVOID: P41(x) = 0 and P14(x) =

(
x− 1

N − 1

)
(
Z − 1

N − 1

)(r − 1− εP
N

)

For RESTRICT: P14 and P41 are hard to compute analytically, we follow the sum formulas in

our numerical simulations.
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2 Some simplifications of the analytical results and proofs

2.1 Some simplifications

Here, using the well-known inequalities4

logN + γ < FN =
N∑
k=1

1

k
≤ logN + 1

where γ = 0.577215, we provide some simplifications of the conditions obtained in the main

text. First of all, regarding the conditions for risk-dominance of AVOID against D, FREE and

FAKE:

εP ≤
c(r − 1)

logN + γ

δ ≥ N − r
NFN−1

c+
FN

NFN−1

εP .

(2)

They can be simplified to

εP ≤ c(r − 1)/FN

δ ≥ (N2 − rN)c+ εP
N2 (log(N − 1) + 1)

+
εP
N
.

(3)

Now, the necessary condition for RESTRICT to be risk-dominant against D, which is

εP + εR ≤
N(r − 1)

FN
c, (4)

can be simplified to

εP + εR <
N(r − 1)

logN + γ
c. (5)

Furthermore, the necessary condition for RESTRICT to be favored to AVOID

(r − 1)c ≥ FN
N − 1

εR +
FN−1

N − 1
εP (6)

can be simplified to

(r − 1)c ≥ εR(logN + γ) + εP (log(N − 1) + γ)

N − 1
(7)
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2.2 Some proofs

2.2.1 Ratio of fixation probabilities

It has been shown that5

ρj,i
ρi,j

=
N−1∏
k=1

T−(k)

T+(k)
=

N−1∏
k=1

1 + eβ[Pij(k)−Pji(k)]

1 + e−β[Pij(k)−Pji(k)]
= eβ

PN−1
k=1 (Pij(k)−Pji(k))

Hence, considering two different strategies j and j′, the inequality

ρj,i
ρi,j
≥ ρj′,i
ρi,j′

holds if and only if

N−1∑
k=1

(πij(k)− Pji(k)) ≥
N−1∑
k=1

(Pij′(k)− Pj′i(k))

This can be further simplified, in large population limit, to1

N∑
k=1

Pij(k)−
N−1∑
k=0

Pji(k) ≥
N∑
k=1

Pij′(k)−
N−1∑
k=0

Pj′i(k)

2.2.2 Decrease of FN/N and FN/(N − 1)

We prove that FN/N > FN+1/(N + 1) and that FN/(N − 1) > FN+1/N . Indeed, we have

(N + 1)FN −NFN+1 = N(FN − FN+1) + FN = FN −
N

N + 1

=
N∑
k=1

(
1

k
− 1

N + 1
) > 0

(8)

Moreover,

NFN − (N − 1)FN+1 = N(FN − FN+1) + FN+1 > N(FN − FN+1) + FN > 0 (9)

Furthermore, since limN→+∞ FN = logN + γ 4, we have

lim
N→+∞

(
FN

N − 1
εR +

FN−1

N − 1
εP

)
= 0.
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2.2.3 Properties of the function in Equation (10) in the main text

Consider the following formula

N−1∑
k=1

k(1− ψ)

ψN + k(1− ψ)
rc− FNεR − FN−1εP − (N − 1)c. (10)

It is clear that it is a decreasing function of εR and εP since FN and FN−1 are positive. It

increases with r for a similar reason. Moreover, it decreases with ψ since

k(1− ψ)

ψN + k(1− ψ)
=

k

k +N ψ
1−ψ

=
k

k +N
(

1
1−ψ − 1

) (11)

is a decreasing function of ψ ∈ (0, 1) for all 1 ≤ k ≤ N − 1.

Furthermore, when r tends to infinity, fixing other parameters, ψ (and hence also its thresh-

old below which RESTRICT is better than AVOID, ψAVOID) tends to 1 since

lim
r→+∞

FNεR − FN−1εP − (N − 1)c

rc
= 0

and
N−1∑
k=1

k(1− ψ)

ψN + k(1− ψ)
= 0 at ψ = 1.

3 Performance of AVOID and RESTRICT depending on the

arrangement cost

In Fig. S1 we show the frequencies of the five strategies in case of AVOID and RESTRICT for

varying the cost of arranging commitment εP . In general, the smaller this cost, the higher the

frequency of AVOID and RESTRICT. For small cost of arranging commitment, both AVOID

and RESTRICT are highly frequent, dominating their population. When the cost is sufficiently

large, in case of AVOID the commitment free-riders FREE takes over. This observation is

similar to the pairwise case2. But in case of in case of RESTRICT the non-committers D take

over. Note that AVOID players do not have to pay this cost when playing with D because no

game is played between these strategies (see the models in the main text), while RESTRICT
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AVOID C FAKED FREE RESTRICT C FAKED FREE

εP εP 
Figure S1: Frequency of each strategy in case of AVOID (left) and RESTRICT (right) for varying εP . For

small cost of arranging commitment, both AVOID and RESTRICT are dominant, while commitment

free-riders FREE takes over when the cost is high in the first case, and the non-committers take over

in the second case. The blue line is the analytical threshold (derived in the main text of εP ) for which

AVOID is risk-dominant against all defectors and free-riders. Clearly, analytical results complies with

numerical ones. Parameters: In the right panel, εR = 1.0; In both cases, N = 5, Z = 100, r = 3,

δ = 2; β = 0.1;
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a b

1.9ρN

8.0ρN

Figure S2: Transition probabilities and stationary distributions in case of RESTRICT. For a given cost of

restriction εR, the better the effect of restriction on non-committers D, the better RESTRICT. Note the

arrow from D to RESTRICT for small ψ (panel a, ψ = 0.25) which disappears when ψ is large (panel

b, ψ = 0.5). Parameters: N = 5, Z = 100, r = 3; εR = 0.5; β = 0.1;

players have to (and also the cost of restriction εR) when playing with D. We therefore see

additionally that in case of AVOID when εP is sufficiently large, D does not increase in terms

of frequency while it does so in case of RESTRICT.

4 Contour plots for AVOID with varying N

For varying N , AVOID is abundant whenever a sufficient compensation is associated with

the commitment deal, see Figure S3. Hence, εP is the essential parameter deciding whether

the commitment strategy is successful. Furthermore, when the cost is small the frequency of

AVOID decreases with group size; but when the cost is sufficiently large this frequency in-

creases. It is like when we have a good law-enforcing system which reduces the cost of ar-

ranging commitment: then AVOID can lead to better cooperation; but once that cost cannot be

reduced sufficiently, then interacting in larger groups is actually better for AVOID because the

cost is shared between more AVOID players.
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 δ

 δ

cost of proposing, εP 

r=1.5

r=3.0

N = 2 N = 3 N = 5 N = 10

N = 4 N = 5 N = 10 N = 20

Figure S3: Contour plot of the frequency of AVOID as a function of εP and δ, for different group sizes N .

Parameters: Z = 100, β = 0.1. In general, for small enough cost of arranging the commitment,

AVOID is abundant whenever a sufficient compensation is associated with the commitment deal. That

is, εP is the essential parameter for the commitment strategy. Nonetheless, for small εP the frequency

of AVOID decreases with N , while for larger εp, it increases.
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 𝛹 

εR 
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 𝛹 

εR 

εP
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 N=5  N=10 
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Figure S4: Range of parameters ψ, εR and εP , generated from the analytical formula in Eq. (10) in the main

text, in which RESTRICT is better than AVOID, for different values of N . In general, the larger

N , the larger the parameter space in which RESTRICT is advantageous to AVOID in dealing with

non-committers D. Parameters: Z = 100, εP = 0.25, r = 3.
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εR εR 

 N=5  N=10 

 N=20  N=100 

r = 6

εR εR 

 𝛹 

 𝛹 

 N=5  N=10 

 N=20  N=100 

r = 3

r = 12
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 N=20  N=100 

r = 24

εR εR 

 N=5  N=10 

 N=20  N=100 

Figure S5: Range of parameters ψ, εR and εP , generated from the analytical formula in Eq. ... in the main

text, in which RESTRICT is better than AVOID, for different values of N and r. In general, the

larger r and N , the larger the parameter space in which RESTRICT is advantageous to AVOID in

dealing with non-committers D. Parameters: Z = 100, εP = 0.25.
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Figure S6: Frequency of RESTRICT as a function of εR and ψ, with (a) εP = 0.25 and (b) εP = 0.5. For a

large range of cost for restricting the access of non-committers, εR, and the restriction, ψ, RESTRICT

is better than AVOID. See the area below the double-stroke curves, which corresponds to the frequency

of AVOID (0.64 in panel a and 0.49 in panel b). In general, the larger εR, the smaller ψ required for

RESTRICT to be advantageous to AVOID. This clearly complies with analytical results generated

by Eq. (10) in the main text, as shown in the panels (c) εP = 0.25 and (d) εP = 0.5. Interestingly,

ψ is the decisive parameter on the frequency of RESTRICT. Parameters: N = 5, Z = 100, r = 3;

δ = 2; β = 0.1.
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 εP  εP 

 δ

CP AVOID

a b

Figure S7: Costly peer punishment (CP) versus AVOID. (a) Fraction of CP in a population with C and D; (b)

fraction of AVOID in a population with C, D, FREE and FAKE. Parameters: N = 5, Z = 100, r = 3;

δ = 2; εP = 0.25; β = 0.1.

5 RESTRICT vs. AVOID for varying N and r

We generate analytical results using Eq. (10) in the main text, describing the parameter space

where RESTRICT is better than AVOID in dealing with non-committers (hence, becomes more

frequent in the population with the other four non-proposing strategies). In general, the larger

N , the larger the parameter space in which RESTRICT is advantageous to AVOID in dealing

with non-committers, see Figure S4.

In Fig. S5 we show similar results for varying the public goods producing factor r. The

results show that the larger r, the larger parameter space where RESTRICT is advantageous to

AVOID. It complies with the Eq (10) in the main text, the left hand size of which is clearly an

increasing function of r.

In Fig. S6 we also show that these analytical results corroborate with the the numerical

simulations.
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6 Simple Punishment vs. AVOID

A costly peer punishment strategy, CP, in the PGG game, contributes to the public good. After

the PGG was played, the punisher can impose a fine δ upon each non-contributor (defector) D,

at a personal cost εP (see more details in reference3).

Figure S7 shows that, differently from AVOID where ε is the crucial parameter as long as

δ is sufficiently large, the frequency of CP always increases with δ. We observe that AVOID is

more frequent than CP most of the time.
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