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ParisTech, 6 et 8, Avenue Blaise Pascal, Cité Descartes — Champs sur Marne, 77455 Marne la

Vallée Cedex 2, France, and NASA Ames Research Center Exobiology Branch, Mail Stop 239-4,

Moffett Field, California, 94035-1000

E-mail: chipot@ks.uiuc.edu

1

chipot@ks.uiuc.edu


Justification of a stratification strategy: Diffusion timescale

In the canonical ensemble, a system of dimension d is equipped with the Boltzmann-Gibbs proba-

bility measure, i.e. the canonical measure1

µ(dx) = Z−1 exp[−βV (x)] dx, (S1)

where x ∈ Rd is the system configuration, V : Rd → R is the potential energy function and

Z =

∫
Rd

dx exp[−βV (x)] is the normalization constant or the so-called partition function. To

sample this measure, one can use the overdamped Langevin dynamics,


dxt = −∇(V − At ◦ ξ)(xt) dt+

√
2β−1 dWt,

A′t(z) = 〈Fξ(xt)|ξ(xt) = z〉,
(S2)

where At ◦ ξ denotes the composition of At with ξ, so that At ◦ ξ(x) = At[ξ(x)], and A′t is

the estimated mean force, i.e. −∇V + (A′t ◦ ξ)∇ξ. The dynamics can be viewed as a standard

overdamped Langevin dynamics associated with the time varying potential V − At ◦ ξ. The law

of the process xt will be denoted by ψt(x)dx.

Let us consider a geometrical transformation carried over a reaction pathway of length L

and assume that convergence of the free energy is achieved within t0. Let us further consider

that the reaction path can be broken down in a series of N non-overlapping windows of lengths

L1, . . . ,LN , for which convergence is attained after t′1, . . . , t
′
N — continuity of the free-energy
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gradient in the adaptive biasing force algorithm obviates the need for overlapping windows. We

want to demonstrate that t0 >
∑
i

t′i. For all intents and purposes, let us drop the drift part of the

adaptive biasing force equation and only retain the Brownian motion of the latter. Let us further

assume that the probability distribution of configurations, ψ(t, x), follows,

|ψ(t, x)− ψ∞(x)| ∝ exp[−λ(L )t] (S3)

If we compare the free-energy profile at some value of the transition coordinate obtained from

a single simulation and from a stratification scheme, the difference is equal to some tolerance, ε.

Typically,

exp[−λ(L1)t
′
1] = ε (S4)

which can be rewritten as λ(L1)t
′
1 = ε′ = − ln ε, or, in an equivalent form, as t′1 =

ε′

λ(L1)
.

More generally,
∑
i

t′i = ε′
∑
i

1

λ(Li)
and t0 =

ε

λ(
∑
i

Li)
. From the above, it is rather

obvious that if L increases, λ should decrease accordingly. For the sake of argument, let us now

choose a law where λ varies with 1/L 2 and consider the Fokker-Planck equation for pure diffusion

(i.e. in the absence of drift), ∂tψ = ∆ψ.

When t tends towards infinity, ψ is expected to be constant. We can write the probability distri-

bution of configurations at time t as ψ(t, x) = ψ =
∑

k ψk(x)Ak(t), where ψk(x) is a solution of

∆ψk = −λkψk. From the latter, it follows that
∑
k

dAk
dt

= −
∑
k

Akλkψk, which are independent

vectors. From dAk/dt = −Akλk, one can infer the solutions Ak(t) = Ak(0) exp(−λkt). These

solutions are valid over the interval [0; L ].

As an example, let us consider ψk(x) = sin(kπ/L )x. The second derivative of ψk(x) is

−(kπ/L )2 sin(kπ/L )x and λk = (kπ/L )2. For k = 1, the eigenvalue is (π/L )2, which is in

line with our law for λ in 1/L 2. Over the series of sequential windows, (
∑
i

Li)
2 = (L1 + L2 +

· · · )2+ cross-terms, which is greater than L 2
1 + L 2 + · · · . It follows that (

∑
i

Li)
2 is always
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greater than (
∑
i

L 2
i ). The time required for convergence in a single run is t0 = ε′(

∑
i

Li)
2, and∑

i

ti = ε′
∑
i

L 2
i . As a result, t0 >

∑
i

t′i.

The adaptive biasing force algorithm formally converges

In this section, we would like to study the longtime convergence of the adaptive biasing force

algorithm. We restrict ourselves to the following simple setting. We consider the overdamped

Langevin dynamics,

dxt = −∇V (xt) dt+
√

2β−1 dWt (S5)

where xt lives in the N -dimensional torus TN (namely in [0, 1]N with periodic boundary condi-

tions) and ξ(x1, . . . , xN) = x1. We direct the reader to references 2,3 for extensions to more

general situations of the results presented below.

Starting from equation (S5) and using the above choice of the transition coordinate ξ, the

adaptive biasing force dynamics writes,


dxt = −∇V (xt) + A′t(X

1
t )e1 dt+

√
2β−1 dWt

A′t(x1) = E(∂1V (xt)|X1
t = x1)

(S6)

whereX1
t denotes the first coordinate of the vector xt, e1 is the vector with coordinates (1, 0, . . . , 0)

and ∂1V denotes the partial derivative of V (x1, . . . , xN) with respect to x1. We would like to

understand under which assumptions the adaptive biasing force dynamics (S6) indeed converges

faster to equilibrium than the original unbiased dynamics (S5).

One way to understand this convergence is to look at the way the law of xt evolves. Let us

denote ψ(t, x) the density of xt. For the original dynamics (S5), the density ψ satisfies the Fokker-

Planck equation,

∂tψ = div (∇V ψ + β−1∇ψ). (S7)
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For the adaptive biasing force dynamics, the density ψ satisfies



∂tψ = div (∇V ψ + β−1∇ψ)− ∂1(A′t(x1)ψ)

A′t(x1) =

∫
∂1V ψ dx2 . . . dxN∫
ψ dx2 . . . dxN

(S8)

It ought to be noted that equation (S8) is a nonlinear partial differential equation (PDE), which

makes the study of its longtime behavior much more complicated than for the linear Fokker-Planck

PDE (S7).

To study the longtime behaviors of these densities, we need a mathematical tool — Entropy

techniques and logarithmic Sobolev inequalities.4 The convergence rate is computed using the

relative entropy of the law at time t with respect to the equilibrium measure. As a preliminary step,

we need to introduce three definitions. Let ψ and ψ∞ denotes two densities of probability measures.

First, the entropy of ψ with respect to ψ∞ is defined by H(ψ|ψ∞) =

∫
ln

(
ψ

ψ∞

)
ψ. We recall that

the entropy is a non-negative quantity which can be seen as a measure of the distance between two

probability measures since, for all probability densities ψ and ψ∞,
∫
|ψ − ψ∞| ≤

√
2H(ψ|ψ∞).

Second, the Fisher information of ψ with respect to ψ∞ (we invite the reader to check reference

4 for more on this subject) is defined by I(ψ|ψ∞) =

∫ ∣∣∣∣∇ ln

(
ψ

ψ∞

)∣∣∣∣2 ψ. Third, the measure

ψ∞(x) dx is said to satisfy the Logarithmic Sobolev inequality with constant ρ (in short LSI(ρ)) if,

for any probability density ψ, H(ψ|ψ∞) ≤ 1
2ρI(ψ|ψ∞).

The Logarithmic Sobolev inequality constant can be seen as a way to measure the multimodal-

ity of a probability measure, or the metastability of the associated overdamped Langevin dynamics,

as illustrated by the following result. Let ψ satisfy the linear Fokker-Planck equation (S7). Then,

the two following statements are equivalent,

– The probability density Z−1 exp[−βV (x)] satisfies a LSI(R).

– The probability densityψ satisfies: for any initial conditionψ0, for all t ≥ 0,H(ψ(t, ·)|ψ∞) ≤

H(ψ0|ψ∞) exp(−2β−1Rt).
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The original overdamped Langevin dynamics (S5) thus converges to equilibrium at a rate β−1R,

R being the logarithmic Sobolev inequality constant associated with the canonical measure Z−1×

exp[−βV (x)] dx.

Concerning the adaptive biasing force dynamics, one expects an exponential convergence to

the equilibrium density ψ∞ = Z̃−1 exp[−β(V − A ◦ ξ)]. The following can be proven.2 Let us

make the following assumptions,

(1) Bounded coupling: ∀j ∈ {2, . . . , N}, ‖∂1,jV ‖L∞(TN ) <∞.

(2) LSI for the conditional measures: there exists ρ > 0 such that for all x1 ∈ T, the condi-

tional probability densities (x2, . . . , xN) 7→ exp[−βV (x1, x2, . . . xN)]∫
dx2 . . . dxN exp[−βV (x1, x2, . . . xN)]

sat-

isfy LSI(ρ).

Then,
√
H(ψ(t, ·)|ψ∞) and ‖A′t − A′‖L2(T) converge exponentially fast to zero with rate (at

least) β−1 min(4π2, ρ). The upper bound 4π2 to the rate of convergence corresponds to the rate of

convergence of a diffusion to equilibrium on the torus T. Typically, one expects ρ < 4π2.

In summary, going from the standard overdamped Langevin dynamics (S5) to the adaptive

biasing force dynamics (S6), the rate of convergence is changed from β−1R to β−1ρ, where R

denotes the LSI constant associated with the canonical measure Z−1 exp(−βV (x)) dx and ρ the

LSI constant associated with the conditioned canonical measures

(x2, . . . , xN) 7→ exp[−βV (x1, x2, . . . xN)]∫
exp[−βV (x1, x2, . . . xN)]dx2 . . . dxN

dx2, . . . , dxN .

If ξ is well chosen, one typically expects ρ to be much larger than R. This is typically the case for

the simple illustrative two-dimensional potentials in Figures 1 and 2 of the article, if ξ(x1, x2) = x1.

This gives actually a way to measure the quality of the transition coordinate: The transition

coordinate, ξ, is good if the ratio ρ/R of the LSI constants of the conditioned canonical measures

µ(·|ξ(x)) = z over the LSI constant of the canonical measure µ, is large.

The proof of the longtime convergence of the adaptive biasing force dynamics mentioned above

is based on two ingredients. The first one is that the law of ξ(xt) follows a simple diffusion
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dynamics if xt is solution of the adaptive biasing force dynamics (S6). Indeed, if one considers

ψξ(t, x1) =
∫
ψ(t, x1, x2, . . . , xN) dx2 . . . dxN where ψ satisfies (S8), it is easy to check that,

∂tψ
ξ = β−1∂x1,x1ψ

ξ. (S9)

This rigorously justifies the intuition that the adaptive bias flattens the potential energy land-

scape in the ξ direction. The second ingredient is a two-scale analysis of entropy following ideas

introduced by F. Otto and co-workers, see references 5, 6 and 7.

To conclude this section, let us emphasize that the above analysis assumes that the conditional

expectation appearing in the adaptive biasing force dynamics is exactly computed. This analysis

is therefore well adapted to discretizations using many replicas in parallel, which indeed converge

to the adaptive biasing force dynamics with the exact conditional expectation, see.8 The analysis

of the adaptive algorithms (adaptive biasing force or adaptive biasing potential) with estimates

of the conditional expectations based on trajectory averages along a single path are much more

complicated. See references 9 and 10 for preliminary results for the Wang-Landau algorithm.

In practice, in order to check convergence, the following technique can be used — The biasing

force is fixed, and from the biased trajectory, the mean force is evaluated (see equation (7) of the

article), which shows that the conditional expectation of the local mean force, indeed, yields the

mean force, even on the biased potential. If the obtained mean force is similar to the fixed biasing

force, this indicates with good confidence that the computed free-energy changes are converged.

Measure of the stastical error

Statistical error of the mean force According to the adaptive biasing force protocol, the mean

force is calculated by accumulating the instantaneous force in bins along the transition coordinate.

At each simulation step t, the system takes on a configuration xt, which determines the instanta-

neous force of the system on the transition coordinate, denoted Fξ(xt). Choosing small bins of
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size δξ defined by the bin edges {Zi}Mi=0, the mean force in bin i is estimated by

〈Fξ〉i =
1

ni

∑
Zi≤ξ<Zi+1

Fξ(xt), (S10)

where the sum runs over all simulation steps in which ξ(xt) lies in the ith bin and ni is the total

number of such simulation steps. Note that 〈Fξ〉i and Fξ(xt) represent intrinsic system forces,

and therefore do not include contributions from the biasing force. Let ∆Fξ(xt) be the random

component of the instantaneous force — namely, ∆Fξ(xt) = Fξ(xt) − 〈Fξ〉i with the bin index i

defined by Zi ≤ ξ(xt) < Zi+1. Using this definition, the error of the mean force can be identified

with the standard error of the mean,11

Err
[
〈Fξ〉i

]
=

√〈
∆F 2

ξ

〉
i

mi

, (S11)

where mi is the number of independent samples obtained in bin i and
〈
∆F 2

ξ

〉
i

is the variance of

the random force pertaining to bin i. The number of independent samples is generally not equal to

ni since the instantaneous forces are, in practice, correlated over many time steps. An estimate of

the number of independent samples is obtained by dividing the simulated time spent in the bin by

the autocorrelation time of the random force, mi = ni∆t/τi, where ∆t is the simulation time step.

We then obtain the following estimate for the statistical error of the mean force,

Err
[
〈Fξ〉i

]
=

√
τi

ni∆t

〈
∆F 2

ξ

〉
i
. (S12)

Obtaining convergence of the autocorrelation function requires a large number of samples; thus, in

practice we compute it over several neighboring bins by,

Φi,i+j(t
′) =

〈∆Fξ(x0) ∆Fξ(xt′)〉i,i+j〈
∆F 2

ξ

〉
i,i+j

, (S13)
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where the averages are taken over subtrajectories for which Zi ≤ ξ(xt) < Zi+j and i, i + j

represents the chosen range of j bins. Another option to obtain Err
[
〈Fξ〉i

]
is to apply the approach

of Flyvbjerg and Petersen12 to the time series of random forces, which yields the statistical error

of the mean force without explicit computation of the correlation time.

The equation given in the main text for the error of a free-energy difference,

Err[∆Aa→b] = δξ

(
ib∑
i=ia

τi
ni∆t

〈
∆F 2

ξ

〉
i

)1/2

. (S14)

has similar properties to the formula derived in the appendix of Rodriguez-Gomez et al.;13 however,

we do not make the approximation that the number of samples in each bin is uniform (ni = 〈n〉).

Although the adaptive biasing force method yields uniform sampling in the long-time limit, signif-

icant nonuniform sampling is sometimes observed in practice, as demonstrated below. However,

the form given by Rodriguez-Gomez et al., Err[∆Aa→b] ∝ zb − za, is instructive in that the de-

pendence on the size of the interval can be clearly seen. Thus, free-energy differences over small

intervals in ξ are more reliable than free-energy differences over larger intervals. This effect is also

apparent in equation S14 — more positive terms are included in the sum as the size of the interval

is increased.

Calculating the standard deviation and autocorrelation time of the random force. Our re-

sults for reversible folding of deca-alanine as well as for other systems, including passive perme-

ation of water through lipid bilayers, suggest that the standard deviation and the autocorrelation

time of the instantaneous system force often vary little in the transition coordinate. It, therefore,

may be unnecessary to carefully compute the ξ dependence of these quantities, However, it is

advisable to check that a few different regions of the transition coordinate yield similar values

for
√〈

∆F 2
ξ

〉
i

and τi. Substantial ξ dependence is likely in heterogeneous systems (e.g. liquid-

gas interfaces), in the vicinity of phase transitions, and for transition coordinates with intrinsic

nonuniformity (e.g. ξ equal to the root-mean-square deviation of a large molecule from a reference
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structure).

As a word of caution, we note that solutes in vacuum (or in implicit solvent) may show un-

usual behavior with respect to the correlation time of the system force that is not representative of

explicitly solvated systems. For instance, using a Langevin thermostat with a damping constant

of 0.2 ps−1, we found appreciable oscillations in autocorrelation function persisting beyond 2 ps.

These oscillations complicated the calculation of the correlation time and led to implausibly large

values for the error of the system force, especially given that the Langevin damping constant has

a negligible effect on the resulting mean force profile. For this reason, the graphs in figure 8 are

derived from a simulation employing a damping constant of 5 ps−1.

Reconciling thermodynamics and kinetics: Precision and relia-

bility

Statistical error. Here we briefly address the question as to how to estimate the statistical error

of the results of the Bayesian scheme. One method that has been used in the past14,15 is to partition

the trajectory into multiple subsets and perform the analysis on each of the subsets individually.

The deviation of the results for these subsets from the results for the entire trajectory yields the

error estimate.

Consistency of the diffusive model. One might ask why we use the Bayesian scheme to de-

termine the mean system force F (z), or equivalently, the free energy A(z), when it is already

available within the adaptive biasing framework. First, keeping F (z) as a free parameter allows

some validation Bayesian inference scheme. For example, disagreement between the system force

derived from adaptive biasing, FABF(z), and that predicted by the Bayesian scheme, FBayes(z),

can indicate that the Metropolis-Hastings algorithm used in the latter has not converged. Choos-

ing too large a value for ∆t or using an inappropriate diffusive model can also be manifested

as a difference between FABF(z) and FBayes(z). Indeed, we have observed that leaving out the
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∇D(ztα)∆t term in equation 39 of the main text can result in noticeable distortions in FBayes(z).14

Finally, FABF(z) is not exact, and it may be possible to construct a more robust diffusive model by

allowing FBayes(z) to deviate slightly, especially in undersampled regions. Figure 13A shows that

for reversible unfolding of deca-alanine, the mean force yielded by the adaptive biasing force algo-

rithm and the Bayesian scheme are quite similar. If desired, the correspondence between FABF(z)

and FBayes(z) can be enforced through the appropriate prior distribution.14

It is furthermore important to verify the self-consistency of the diffusive model. In overdamped

Langevin dynamics, consecutive displacements are uncorrelated; thus, one should check that sig-

nificant correlation is absent from the simulation trajectory on the observation time interval ∆t.

Values of ∆t must be chosen to be both sufficiently large that consecutive displacements are un-

correlated and sufficiently small that discretization error is negligible.15 Another major sign that

Langevin dynamics is not an appropriate model is if the results of the Bayesian scheme show a sig-

nificant dependence on ∆t (in the absence of large discretization error), implying non-Markovian

behavior.16 Indeed, figure 13B of the main text reveals just such a strong dependence for reversible

folding of deca-alanine in vacuum. Many systems with non-Markovian dynamics have been identi-

fied,17–19 and developing more sophisticated models to study such systems is an ongoing challenge.

References
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(17) Flenner, E.; Das, J.; Rheinstädter, M. C.; Kosztin, I. Subdiffusion and Lateral Diffusion Co-

efficient of Lipid Atoms and Molecules in Phospholipid Bilayers. Phys. Rev. E 2009, 79,

011907.

(18) Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T. Anomalous Subdiffusion Is a Measure for

Cytoplasmic Crowding in Living Cells. Biophys. J. 2004, 87, 3518–3524.

(19) Kou, S.; Xie, X. Generalized Langevin Equation with Fractional Gaussian Noise: Subdiffu-

sion within a Single Protein Molecule. Phys. Rev. Lett. 2004, 93, 180603.

S13


