Supporting Information

Probing the Carboxyester Side Chain in Controlled Deactivation (-)- Δ^8 -Tetrahydrocannabinols

Spyros P. Nikas,^{†,§} Rishi Sharma,^{†§} Carol A. Paronis,[†] Shashank Kulkarni,[†] Ganesh A. Thakur,[†] Dow Hurst,[£] JodiAnne T. Wood,[†] Roger S. Gifford,[†] Girija Rajarshi,[†], Yingpeng Liu,[†] Jimit Girish Raghav,[†] Jason Jianxin Guo,[†] Torbjörn U.C. Järbe,[†] Patricia H. Reggio,[£] Jack Bergman,[‡] and Alexandros Makriyannis.^{*,†,#}

[†]Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States ^fCenter for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States

^{*}McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, United States [#]King Abdulaziz University, Jeddah, 22254, Saudi Arabia

*To whom correspondence should be addressed.

[§]These two authors contributed equally to this work.

List of Contents

•	Elemental analyses (Table S1).	age S3.

- Molecular modeling Supplemental Tables S2-7. Pages S4-9.

Compd.	Mol. Formula	Calcd.	Found
6b	$C_{24}H_{33}BrO_4$	C: 61.94; H: 7.15	С: 62.27; Н: 7.53
7c	C ₂₆ H ₃₃ NO ₄	C: 73.73; H: 7.85; N: 3.31	C: 73.47; H: 8.17; N: 3.66
9b	$C_{23}H_{31}BrO_4$	C: 61.20; H: 6.92	C: 60.95; H: 6.70
9d	$C_{27}H_{36}N_2O_4$	C: 71.65; H: 8.02; N: 6.19	C: 71.97; H: 8.31; N: 6.52
10a	$C_{24}H_{31}NO_4$	C: 72.52; H: 7.86; N: 3.52	C: 72.90; H: 8.08; N: 3.87
16	$C_{25}H_{36}O_4$	C: 74.96; H: 9.06	C: 75.28; H: 8.75

Table S1: Elemental analyses

Molecular Modeling Supplemental Tables

Table S2. Top 20 Glide scores for 10a*

Conformer	Glide XP Score	Conform Cost	Total E
	(kcal/mol)	(kcal/mol)	(kcal/mol)
M0191	-5.0	4.0	-1.0
M0069	-5.0	2.0	-3.0
M0114	-4.9	4.0	-1.0
M0187	-4.8	2.0	-2.9
M0186	-4.7	4.0	-0.8
M0086	-4.7	0.7	-4.0
M0023	-4.6	1.1	-3.5
M0027	-4.6	1.1	-3.5
M0009	-4.5	0.7	-3.9
M0017	-4.5	1.0	-3.4
M0057	-4.5	1.7	-2.8
M0132	-4.5	1.8	-2.7
M0091	-4.4	2.8	-1.7
M0009	-4.4	0.7	-3.8
M0180	-4.4	2.8	-1.7
M0086	-4.4	0.7	-3.8
M0001	-4.4	0.1	-4.3
M0051	-4.4	1.8	-2.6
M0070	-4.4	2.0	-2.4
M0191	-4.3	4.0	-0.4
M0016	-4.3	1.0	-3.3

* Conformer from the bolded row was taken forward with a post Glide minimization and ligand/receptor interaction energies.

Conformer	Glide XP Score	Conform Cost	Total E
	(kcal/mol)	(kcal/mol)	(kcal/mol)
M0044	-5.6	1.2	-4.4
M0007	-5.5	0.2	-5.4
M0456	-5.5	1.2	-4.3
M0007	-5.4	0.2	-5.2
M0435	-5.2	1.2	-4.1
M0047	-5.2	1.2	-4.1
M0355	-5.1	1.2	-3.9
M0055	-5.1	1.2	-3.9
M0150	-5.1	2.3	-2.7
M0196	-5.0	2.1	-2.9
M0696	-5.0	5.1	0.2
M0035	-4.9	1.0	-3.9
M0395	-4.9	4.0	-0.9
M0328	-4.9	3.9	-1.0
M0003	-4.8	0.0	-4.8
M0338	-4.8	4.1	-0.8
M0436	-4.8	4.1	-0.7
M0003	-4.8	0.0	-4.8
M0269	-4.8	3.1	-1.7
M0521	-4.7	4.8	0.1
M0177	-4.7	2.0	-2.8

Table S3. Top 20 Glide scores for (-)- Δ^8 -THC-DMH*

*Conformer from the bolded row was taken forward with a post Glide minimization and ligand/receptor interaction energies.

Conformer	Glide XP Score	Conform Cost	Total E	
	(kcal/mol)	(kcal/mol)	(kcal/mol)	
M0243	-5.9	1.6	-4.4	
M0122	-5.9	1.7	-4.2	
M0023	-5.8	1.5	-4.2	
M0080	-5.7	0.0	-5.7	
M0203	-5.6	1.5	-4.1	
M0901	-5.6	1.3	-4.3	
M0934	-5.5	1.0	-4.5	
M0391	-5.5	0.2	-5.3	
M0107	-5.4	2.1	-3.3	
M0134	-5.3	0.5	-4.7	
M0040	-5.3	1.9	-3.4	
M0198	-5.2	1.2	-4.0	
M0102	-5.2	0.6	-4.6	
M0268	-5.0	1.3	-3.7	
M1000	-4.9	1.6	-3.3	
M0351	-4.9	2.2	-2.7	
M0938	-4.8	1.9	-2.9	
M0127	-4.8	0.6	-4.2	
M0040	-4.8	1.9	-2.9	
M0060	-4.7	2.1	-2.7	
M1000	-4.7	1.6	-3.1	

Table S4. Top 20 Glide scores for (-)- Δ^8 -THC*

* Conformer from the bolded row was taken forward with a post Glide minimization and ligand/receptor interaction energies.

	Electrostatic	Van der Waals	Total Energy
Residues	(kcal/mol)	(kcal/mol)	(kcal/mol)
S1.39(123)	0.0	-0.1	-0.1
S2.60(173)	0.0	-0.1	-0.1
F2.64(177)	0.0	-0.6	-0.6
F2.67(180)	0.0	-0.1	-0.1
F3.25(189)	-0.1	-2.8	-2.9
K3.28(192)	-4.5	-1.0	-5.5
L3.29(193)	0.4	-3.5	-3.2
V3.32(196)	-0.1	-2.0	-2.0
T3.33(197)	-6.5	1.8	-4.7
F3.36(200)	-0.2	-1.6	-1.8
N(256)	-0.1	-0.5	-0.5
F(268)	-0.3	-3.1	-3.4
P(269)	-0.3	-0.7	-0.9
Y5.39(275)	-0.1	-0.2	-0.3
L5.40(276)	-0.1	-0.7	-0.8
W5.43(279)	-0.1	-0.9	-0.9
W6.48(356)	0.0	-0.1	-0.1
L6.51(359)	0.0	-1.1	-1.0
M6.55(363)	-0.2	-2.2	-2.3
D6.58(366)	1.4	-0.5	1.0
M(371)	-0.1	-2.4	-2.5
N(372)	-0.1	-0.8	-0.8
K(373)	0.0	-0.5	-0.5
I(375)	0.1	-0.8	-0.7
F7.35(379)	-0.1	-1.7	-1.9
A7.36(380)	0.0	-0.6	-0.6
C7.38(382)	0.0	-0.6	-0.6
\$7.39(383)	0.2	-3.2	-3.0
C7.42(386)	-0.1	-2.2	-2.4
	-10.6	-32.5	-43.1

Table S5. Ligand/Receptor Interaction Energies for 10a**

**Interaction energies equal to -2.0 kcal/mol or better are shown in bold

D 1	Electrostatic	Van der Waals	Total Energy	
Kesidues	(kcal/mol)	(kcal/mol)	(kcal/mol)	
F2.64(177)	0.0	-0.5	-0.5	
F2.67(180)	0.0	-0.1	-0.1	
F3.25(189)	0.0	-2.9	-2.9	
K3.28(192)	-5.6	-0.3	-5.8	
L3.29(193)	-0.1	-4.7	-4.7	
V3.32(196)	0.1	-1.8	-1.7	
T3.33(197)	-0.1	-2.8	-2.8	
F3.36(200)	0.0	-1.6	-1.6	
P4.60(251)	0.0	-0.3	-0.3	
N(256)	-0.1	-1.0	-1.2	
F(268)	0.0	-2.7	-2.7	
P(269)	0.0	-0.3	-0.3	
Y5.39(275)	0.0	-1.2	-1.1	
L5.40(276)	0.0	-1.1	-1.1	
W5.43(279)	0.0	-1.2	-1.2	
L6.51(359)	0.0	-0.9	-0.9	
I6.54(362)	0.0	-0.1	-0.1	
M6.55(363)	0.0	-3.1	-3.2	
M(371)	-0.1	-2.1	-2.2	
N(372)	-0.1	-0.6	-0.7	
K(373)	0.0	-0.4	-0.5	
I(375)	0.0	-0.5	-0.5	
F7.35(379)	-0.1	-2.0	-2.1	
A7.36(380)	0.0	-0.6	-0.6	
C7.38(382)	0.0	-0.7	-0.6	
\$7.39(383)	0.2	-3.3	-3.1	
C7.42(386)	-0.1	-2.1	-2.2	
	-5.8	-38.8	-44.6	

Table S6. Ligand/Receptor Interaction Energies for (-)-Δ⁸-THC-DMH**

**Interaction energies equal to -2.0 kcal/mol or better are shown in bold

	Electrostatic	Van der	Waals	Total	Energy
Residues	(kcal/mol)	(kcal/mol)		(kcal/n	nol)
I1.35(119)	0.0	-0.1		-0.1	
F2.64(177)	0.0	-0.7		-0.6	
F2.67(180)	0.0	-0.4		-0.3	
F3.25(189)	0.0	-2.6		-2.7	
K3.28(192)	-5.9	1.2		-4.7	
L3.29(193)	-0.1	-2.0		-2.1	
V3.32(196)	0.1	-1.7		-1.5	
T3.33(197)	0.0	-1.9		-1.9	
F3.36(200)	0.1	-1.5		-1.4	
T3.37(201)	0.0	-0.2		-0.1	
F(268)	0.0	-2.1		-2.1	
W5.43(279)	0.0	-1.1		-1.1	
W6.48(356)	0.0	-0.1		-0.1	
L6.51(359)	0.0	-0.5		-0.5	
M6.55(363)	0.1	-1.6		-1.5	
M(371)	0.0	-2.6		-2.6	
N(372)	-0.2	-1.8		-1.9	
K(373)	-0.1	-1.4		-1.5	
I(375)	0.1	-1.2		-1.1	
F7.35(379)	-0.1	-1.6		-1.7	
A7.36(380)	0.0	-0.8		-0.8	
C7.38(382)	-0.1	-0.5		-0.5	
\$7.39(383)	0.0	-3.0		-2.9	
C7.42(386)	-0.1	-1.6		-1.7	
	-6.2	-29.5		-35.7	

Table S7. Ligand/Receptor Interaction Energies for (-)- Δ^8 -THC**

**Interaction energies equal to -2.0 kcal/mol or better are shown in bold

Figure S1: Hypothermic effects of approximately equivalent doses of **10a**, **2b**, and Δ^8 -THC-DMH at different times after injection; the dotted line represents average temperature changes after vehicle injection. Abscissa: time (in minutes) after injection; ordinate; change in body temperature.

Figure S2: Tail-flick latencies in a hot water-bath (52°C) after administration of four doses of compound **10a** examined at four time-points (20, 60, 180, and 360 min post-administration) using male CD-1 mice. Abscissa: time (min) after injection; ordinate; tail-flick withdrawal latencies expressed as a percentage of maximum possible effect (% MPE; group mean \pm sem). A two-way repeated measures ANOVA indicated significance for Dose (D) [F_{3, 20} = 125.1], Time (T) [F_{3, 60} = 61.4] and the interaction D x T [F_{9, 60} = 10.8].