Activation of prostaglandin E₂-EP4 signaling reduces

chemokine production in adipose tissue

Eva HC Tang^{1,2}, Yin Cai¹, Chi Kin Wong¹, Viviane Z Rocha³, Galina K Sukhova⁴, Koichi Shimizu⁴, Ge Xuan⁵, Paul M Vanhoutte^{1,6}, Peter Libby⁴, Aimin Xu^{1,5}

¹Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong

²The Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong.

³ Lipid Clinic, Heart Institute (InCor), University of Sao Paulo, Sao Paulo – SP, Brazil.
⁴Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital,

Harvard Medical School, Boston, MA, USA.

⁵Department of Medicine, The University of Hong Kong, Hong Kong.

⁶Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia

ONLINE SUPPLEMENTAL MATERIAL

Gene	Forward sequence	Reverse sequence
IP-10	GCCGTCATTTTCTGCCTCA	CGTCCTTGCGAGAGGGATC
MIP1a	CAGCCAGGTGTCATTTTCCT	AGGCATTCAGTTCCAGGTCA
ΜΙΡ1β	TCT GCG TGT CTG CCC TCT C	TGC TGA GAA CCC TGG AGC A
MCP-1	GCTGGAGCATCCACGTGTT	ATCTTGCTGGTGAATGAGTAGCA
RANTES	GCAAGTCTCCAATCTTGCA	CTTCTCTGGGTTGGCACACA
EP1	CTGGGCCTAACCAAGAGTGC	CCGGGAACTACGCAGTGAAC
EP2	ATGCTCCTGCTGCTTATCGT	TAATGGCCAGGAGAATGAGG
EP3	ATGGGAAAGGAGAAGGAGTGC	AGCCAGGCGAACTGCAATTA
EP4	CCATCGCCACATACATGAAG	TGCATAGATGGCGAAGAGTG
mPGES-1	CTGCTGGTCATCAAGATGTACG	CCCAGGTAGGCCACGTGTGT
mPGES-2	AAGACATGTCCCTTCTGC	CCAAGATGGGCACTTTCC
cPGES	AGTCATGGCCTAGGTTAAC	TGTGAATCATCATCTGCTCC
β-actin	CCTGAGCGCAAGTACTCTGTGT	GCTGATCCACATCTGCTGGAA

Supplementary Table 1: Primer sequences used in quantitative real-time PCR.

Supplementary Figure 1: PGE₂ does not alter LPS-induced MCP-1 and RANTES expression. RNA was isolated from EP4^{+/+} adipose tissue explants pretreated with PGE₂ (50nM for 1.5 hours) before exposure to LPS (5ng/ml for nine hours). The mRNA expression of MCP-1 (*A*) and RANTES (*B*) are expressed as fold changes to control. N=5; p<0.05 vs. control. Data are expressed as means \pm SEM.

Supplementary Figure 2: PGE_2 lowers LPS-stimulated cytokine production (IL-6 and IL-8) in whole adipose tissue, adipocytes but not stromal vascular cells. Adipose tissue explants, adipocytes or stromal vascular cells were cultured in the presence or absence of PGE_2 (50 nM for 1.5 hours), and then stimulated with LPS (5 ng/ml for nine hours). Supernatant medium was collected for ELISA. TNF α and IL-10 production are undetectable in adipocytes and their production is unaffected by

Adipose tissue explants

PGE₂ in LPS-activated adipose tissue explants and stromal vascular cells. bN=6; *p<0.05 vs. LPS. Data are expressed as means \pm SEM.

Supplementary Figure 3: Effect of different EP4 agonists on LPS-stimulated IP-10 production in eWAT derived from C57BL/6 mice. Pre-treatment with CAY10580 and CAY10598 at various concentrations on LPS-stimulated IP-10 mRNA and protein levels. All mRNA data are expressed as fold changes from control. Protein changes are expressed as absolute amount produced (pg/ml). N=6; *p<0.05 vs. LPS. Data are expressed as means \pm SEM.

Supplementary Figure 4: PGE₂ lowers MIP-1 α mRNA in LPS-activated adipocytes but not in stromal vascular cells (SVC). Adipocytes and SVC separated by collagenase digestion of EP4^{+/+} adipose tissue were cultured in the presence or absence of PGE₂ (50 nM for 1.5 hours), and then stimulated with LPS (5 ng/ml for nine hours). RNA then was isolated and MIP-1 α mRNA was quantified. N=6; *p<0.05 vs. LPS. Data are expressed as means ± SEM.

Supplementary Figure 5: PGE₂ lowers IP-10 and MIP-1 α protein levels in LPSactivated adipocytes, but not in stromal vascular cells (SVC). Adipocytes and SVC separated by collagenase digestion of EP4^{+/+} adipose tissue were cultured in the presence or absence of PGE₂ (50 nM for 1.5 hours), and then stimulated with LPS (5 ng/ml for nine hours). For protein analysis, approximately, 10,000 cells were seeded into each well and treated accordingly. Supernatant medium was collected for ELISA. N=6; *p<0.05 vs. LPS. Data are expressed as means ± SEM.

Supplementary Figure 6: Expression of EP receptors and PGE₂ synthases in eWAT of EP4^{+/+} mice. Critical Threshold (CT) values for EP1, EP2, EP3, EP4 (*A*) and mPGES-1, mPGES-2, cPGES (*B*) expression. Values are obtained from the same eWAT sample run in the same PCR reaction. Lower CT values indicate higher abundance. N=6. Data are expressed as means + SEM.

Supplementary Figure 7: Expression of EP receptors and PGE₂ synthases during consumption of high-fat diet. mRNA expression of EP1, EP2, EP3, EP4, mPGES-1, mPGES-2, cPGES in eWAT of $EP4^{+/+}$ and $EP4^{-/-}$ mice. N=6; *p<0.05 vs. 0 weeks (mice of the same genotype). Data are expressed as means <u>+</u> SEM.

Supplementary Figure 8: PGE₂ does not reduce LPS-induced RANTES expression in adipose tissue derived from high-fat fed mice. RNA was isolated from eWAT of EP4^{+/+} mice fed a high-fat diet for 8- (*A*) or 16-(*B*) weeks. The eWAT was pretreated with PGE₂ (50nM for 1.5 hours) prior to exposure to LPS (5ng/ml for nine hours). N=5; p<0.05 vs. control. Data are expressed as means \pm SEM.

Supplementary Figure 9: EP4^{-/-} mice have reduced adipose tissue depots. Weight of epididymal (eWAT), subcutaneous (scWAT), peri-renal (rWAT) white adipose tissue and brown adipose tissue (BAT) in EP4^{+/+} and EP4^{-/-} after 16 weeks of high-fat diet. N=5; *p<0.05 EP4^{+/+} vs. EP4^{-/-}. Data are expressed as means \pm SEM.