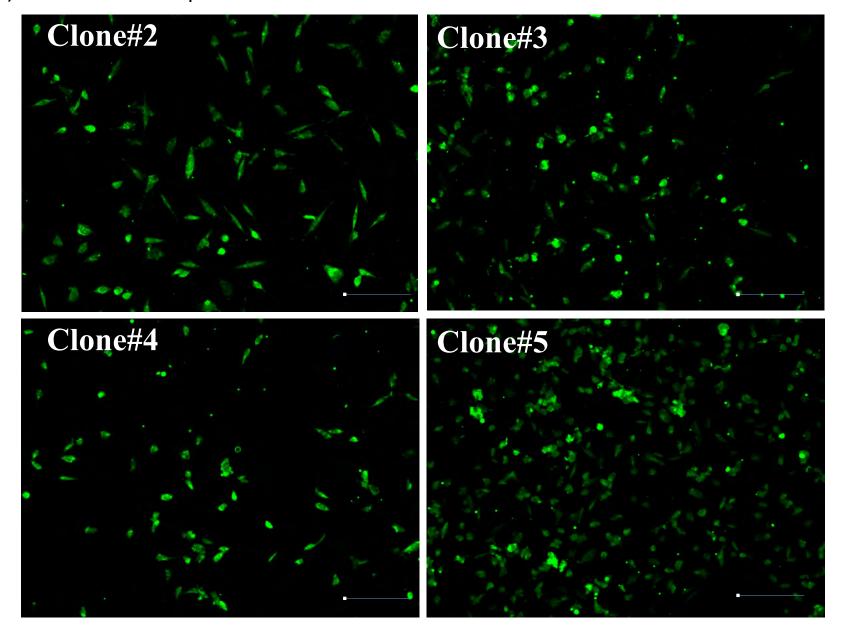
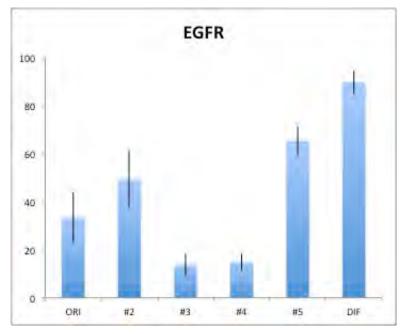
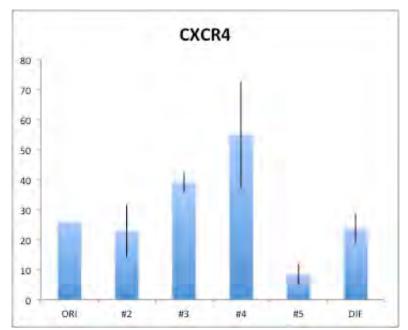

Title:

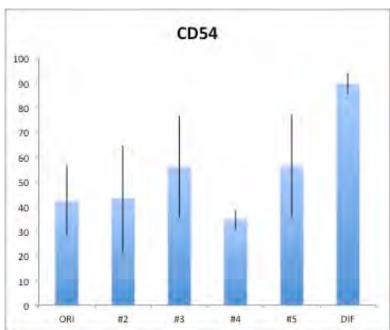
The Evidence of Glioblastoma Heterogeneity

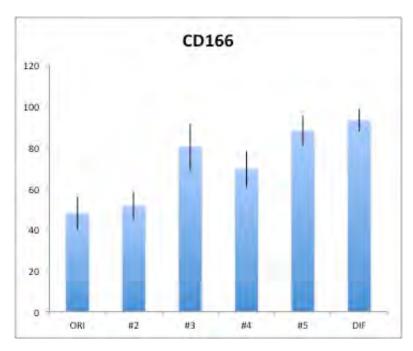

Authors:

Akio Soeda, Akira Hara, Takahiro Kunisada, Shin-ichi Yoshimura, Toru Iwama, Deric M. Park

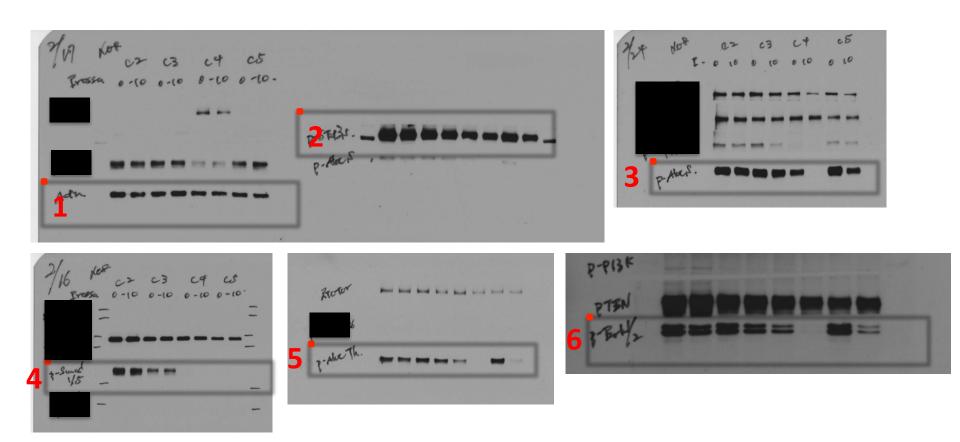

Supplementary Figure 1a. The 4 clones expressed the stem cell marker Sox2 (red). Scale bars = 100 μm .




Supplementary Figure 1b. The 4 clones expressed the stem cell marker Musashi (green). Scale bars = 100 μm .



Supplementary Figure 2. FACS analysis of EGFR, CXCR4, CD54 and CD166.



Supplementary Figure 3. Full length of blots seen in Figure 3b.

1)Actin, 2)p-Stat3S, 3)p-AktS, 4)p-Smad1/5, 5)p-AktT, 6)p-Erk1/2

Supplementary Table1. Fold-changes in the values for genes were calculated as the ratio of the signal values of the bulk-sphere cells (original cells before cloning) to the values of each clone of cells. Only gene expression changes with 2-fold significance are shown.

GeneSymbol	GenbankAccession	DIF	Clone#2	Clone#3	Clone#4	Clone#5	X01GB
AKR1B10	NM_020299	1.84	-1.11	-1.73	-1.73	-1.02	4.03
AKR1B10	NM_020299	1.87	-1.38	-1.84	-2.10	-1.19	3.95
AKR1B15	NM_001080538	1.81	-1.08	-1.68	-2.19	-1.15	3.98
ANGPTL1	NM_004673	-5.66	2.29	2.11	1.30	2.24	-6.41
ANGPTL1	NM_004673	-3.66	2.47	2.09	1,18	2.39	-6.05
ANGPTL4	NM_139314	5.15	-2.00	-1.73	-2.70	-3.37	-5.05
ANGPTL4	NM_139314	5.27	-2.01	-1.95	-2.89	-3.16	-4.24
ANKRD20A5P	BC022023	-3.48	-1.74	-1.93	-2.00	-1.30	-3.20
ANKRD20A9P	NR_027995	-2.76	-1.13	-1.18	-1.72	-1.38	-4.47
ATXN7L1	BC003517	-5.05	-2.82	-2.71	-2.51	-1.21	-1.08
BST2	NM_004335	-3.57	-1.22	-1.55	-1.51	-2.12	1.05
C21orf122	NR_027292	5.10	2.83	3.76	2.75	3.82	2.56
C21orf37	NR_037585	-5.70	-2.21	-2.69	-1.59	-1.87	-2.51
C3	NM_000064	1.56	-1,34	-3.43	-3.36	-2.64	4.30
CABLES1	NM_138375	1.41	-1.04	-1.23	-1.20	-1.23	-5.79
CCDC165	NM_015210	3.83	1.49	1.33	1.60	1.81	1.03
CCND1	NM_053056	2.89	1.22	1.02	1.31	1.35	1.01
CCND1	NM_053056	2.90	1,18	1.01	1,30	1.49	1.02
CCND1	NM_053056	2.95	1.31	1.07	1.44	1.51	1.07
COL1A1	NM_000088	10.60	-1.35	5.86	-3,40	5.08	-3.73
COL8A2	NM_005202	1.06	-2.72	-1.98	-4.40	-1.38	-3.24
COX8C	NM_182971	-4.75	-2.00	-1.65	-1.94	-1.25	-3.01
CRYAB	NM_001885	3.41	-2.39	-2.71	-2.58	-2.50	-2.31
CRYAB	NM_001885	3.42	-2.40	-2.58	-2.58	-2.46	-2.29
CTGF	NM_001901	6.09	2.42	3.18	1.72	1.80	-4.15
CTGF	NM_001901	6.16	2.53	3.29	1.75	1.72	-4.71

Supplementary Table1. (Continued)

DPF3	AK024141	-2.44	1.19	3.12	1.40	1.13	2.25
DPF3	AK024141	-1.36	1.07	3.07	1.61	1.09	2.66
EBI3	NM_005755	1.84	-1.10	-1.23	-1.15	-2.03	-2.68
EDIL3	NM_005711	1.33	-4.32	-2.54	-5.20	-4.63	-3.19
EFNA1	NM_004428	-3.30	-1.06	-1.25	-1.20	-2.13	-3.00
ESR2	NM_001437	-3.86	1.59	1.08	1.38	3.33	1.41
ESR2	NM_001437	-3.82	1.29	1.03	1.34	3.33	1.30
ESR2	NM_001437	-3.79	1.67	1.12	1.54	3.47	1.57
ESR2	NM_001437	-3.57	2,04	1.66	2.08	3.85	1.98
ESR2	NM_001437	-3,56	1.86	1.22	1.73	3.69	1.80
ESR2	NM_001437	-3.44	1.93	1.51	1.87	3.73	1.77
ESR2	NM_001437	-2.52	2.20	1.34	2.00	3.89	1.95
ESR2	NM_001437	-2,10	1.80	1.21	1.60	3.56	1.76
FAM134B	NM_001034850	-3.83	-1.79	-1.55	-1.05	-1.99	-2.08
FBRSL1	BC013284	3.22	1.32	1.70	1.37	1.97	1.86
FHL2	NM_001039492	5.79	1.21	1.04	2.39	-1.27	-4.17
FLJ45684	AK127589	5.35	2.49	2.40	1.84	2.47	2.71
FZR1	NM_016263	3.15	1.19	1.56	1.06	1.54	1.52
GBP2	NM_004120	-1.04	-3.24	-2.47	-2,30	-2.99	-2.44
GRPR	NM_005314	5.72	2.32	2.49	1.83	3.64	4.83
HBEGF	NM_001945	3.83	1.60	1.40	1.81	1.39	4.38
HDAC9	NM_058176	4.41	1.88	1.98	2.04	3.12	2.31
HES7	NM_001165967	-4,00	-1.29	-1.77	-1,59	-1.62	-3.64
HSPB2	NM_001541	1.22	-1.49	-1.61	-1.47	-1.95	-1.59
ID1	NM_002165	2.56	-2.02	-2.06	-1.96	-4.68	-2.01
ID1	NM_002165	2.60	-2.03	-2.16	-1.99	-4.64	-2.08
IGFBP7	NM_001553	4.08	-1.81	1.32	-5.61	1.92	-1.66
IGFBP7	NM_001553	4.14	-1.85	1.36	-5.64	1.93	-1.70
KYNU	NM_001032998	-1.99	-4.10	-4.51	-3.19	-4.86	-7.04
LOC100131262	AK092421	4.72	1.84	2.84	1.65	2.26	2.93
LOC339929	NR_036497	4.75	2.61	3.35	2.74	3.23	2.07
LOC389332	NR 024418	3.94	-1.12	1.32	-1.89	1.56	-4.31
MSMP	NM_001044264	-4.31	1.50	5.61	4.13	5.30	9.01
NDNF	NM_024574	1.58	-1.13	-1.80	-1.75	-1.11	-2.86

Supplementary Table1. (Continued)

NFIA	NM_001134673	-2.07	1.31	1.41	1.03	1.58	5.40
NPAS1	NM_002517	1.05	-1.55	-1.47	-1.23	-1.35	-1.81
PACS2	NM_001100913	2.61	1.16	1.55	1.20	1.10	1.44
PRINS	NR_023388	-1.60	2.00	2.09	1.39	1.88	2.29
S1PR5	NM_030760	-2.67	-1.14	-1.06	-1.62	-1.10	-5.62
SEMA3F	NM_004186	2.81	-1.44	-1.44	-1.15	-1.71	-1.41
SERPINB8	NM_001031848	4.09	2.18	2.83	2.22	2.35	1.00
SEZ6L2	NM_201575	1.42	-1.61	2.95	-2.70	-2.74	2.06
SLC2A3	NM_006931	-2.73	-1.23	-1.14	-1.07	-1.06	-3.36
SLC37A2	NM_198277	7.28	2.61	2.27	1.87	4.38	2.77
SLC6A15	NM_018057	-2.32	-1.12	-4.88	-1.13	-4.90	-1.07
SLCO4A1	NM_016354	-2.32	1.83	1.27	2.15	2.47	1.35
SLN	NM_003063	2.12	-2.73	-3.94	-4.06	-2.63	-6.85
SMAD9	NM_005905	1.49	-1.36	-1,59	-1.79	-2,50	-1.32
SMAD9	NM_001127217	1.52	-1.55	-1.72	-1.99	-3.68	-1.30
SMAD9	NM_001127217	1.76	-1.41	-1.66	-2.28	-2.92	-1.17
SOHLH2	NM_017826	-4.21	-1.01	-2.54	-2.71	-1.40	-2.05
SP2	NM_003110	2.25	1.11	1.10	1.05	1.03	1.54
ST6GALNAC2	NM_006456	2.48	-1.62	-2.68	-1.02	-1.80	-1.99
TNNT1	NM_003283	1.59	-2.06	-1.83	-2.33	-3.66	-3.40
TNNT1	NM_003283	1.66	-2.15	-1.87	-2.29	-3.60	-3.36
TPMT	NM_000367	2.69	1.19	1.11	1.08	1.47	1.82