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S1. PREPARATION OF SPURR’S RESIN-EMBEDDED SECTIONS

Inner and outer stem sections were fixed in 3% glutaraldehyde in 0.1M PO4 buffer (pH

7.0) for 16 hours at 4◦C on a nutator. Samples were then washed 3× 10 minutes in 0.05M

PO4 buffer. Samples were post-fixed in a 1% OsO4 solution (in 0.05M PO4 buffer) for 2

hours at room temperature. Samples were rinsed in deionised water and subjected to an

ethanol series (10 minutes in 30% ethanol, 1 hour each in 50%, 70% and 85%, 95% and 2x

100% ethanol) at room temperature. Samples were washed in 100% propylene oxide for 30

minutes, after which they were changed into a mixture of propylene oxide and Spurr’s resin

(2 hours each of 3:1 PO:Spurr’s, 1:1 PO:Spurr’s, and 1:3 PO:Spurr’s). Samples were left

in 100% Spurr’s overnight at room temperature. The next day, samples were changed into

fresh Spurr’s twice and left overnight. Samples were changed into fresh Spurr’s the next day

and were polymerized in open tubes at 60◦C for 48 hours. Samples were sectioned using a

Leica EM UC6 Ultramicrotome and were mounted on regular glass slides.

S2. PREPARATION OF PARAFFIN-EMBEDDED SECTIONS

Inner and outer stem sections were fixed in FAA (4% paraformaldehyde, 5% acetic acid

and 50% ethanol) for seven days at 4◦C on a nutator. The FAA solution was changed for fresh

FAA on day 3 of fixation. Stems were then washed twice for 30 minutes each in 50% ethanol

4◦C and left overnight in 70% ethanol at 4◦C on a nutator. Samples were dehydrated through

an ethanol series (1hr each 85%, 95%, 2× 100%) at room temperature. After dehydration,

samples were transferred to a mixture of xylene and ethanol (1hr each: 75% ethanol:25%

xylene, 50% ethanol:50% xylene, 25% ethanol:75% xylene, 2× 100% xylene). Samples were

placed in fresh xylene in scintillation vials and paraplast chips were added (1/4 volume of

xylene) overnight at room temperature. The next day, the vials were placed at 42◦C for 30

minutes. Another 1/4 volume of paraplast chips was added and samples were incubated at

60◦C for 6 hours. Paraplast:xylene solution was discarded and replaced by molten paraplast

(i.e. paraplast chips that had been melted at 60◦C for 24 hours). Samples were then left

at 60◦C for one week and the molten paraplast was changed for fresh solution twice a day.

Samples were embedded in fresh paraplast in small Petri dishes and the paraplast was allowed

to harden at room temperature overnight. Samples were sectioned using a Leica RM2245
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Microtome and were mounted on positively charged slides. Samples were deparaffinised prior

to staining with 2x 100% xylene (15 minutes each).

S3. DISCRETE CURVATURE CHARACTERIZATION

The curvature of the stems of S. lepidophylla (Fig. 2a and b) are characterized by

accurate estimations of the curvature of a smooth curve from its discrete approximation.

Fig. S1 shows a segment of a smooth curve which is represented by a polyline with five points

P1 to P5, with the corresponding edges
−−−−→
PiPi+1 (i = 1, 2, 3, 4) denoted by c, d, e and f , and

their lengths are c, d, e and f . The curve can be represented by a Taylor series expansion [1].

A linear approximation for the true curvature vector κ can be obtained by finite difference

approach and if all edges have equal length, the convergence is even quadratic.

κ =
2

d+ e

(
e

e
− d
d

)
(S1)

FIG. S1: Discrete representation of a smooth curve.

S4. GEOMETRICAL MODEL BASED ON EULER SPIRAL

Towards rationalizing the spiralling behaviour of the living stems, we adopt a geometrical

model based on the definition of the normalized Euler (Cornu) spiral. By definition, an Euler

spiral is a curve whose curvature κ changes linearly with its curve length s, i.e. κ = a2s

where a is a constant. This definition can be generalized to consider the role of material

variation along the stem length. For a general class of power-law curvature (e.g. induced

by the functionally graded hydro-actuation capacity of the tissue) defined by the Cesàro
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equation κ = −ar+1sr, the parametric equations for the spiral profile read:

x(s̃) =
s̃2+r
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where s̃ ∈ [0, a], a ∈ [0, η] and pFq(ap; bq; z) is the generalized hypergeometric function [2].

These equations were evaluated in the computational software Mathematica (Wolfram) using

the built-in function HypergeometricPFQ. The above simplified model is used to investigate

the role of material variation along the stem length as illustrated in Fig. 3a in the article.

S5. FINITE ELEMENT MODEL FOR BILAYER STEMS

Finite element (FE) simulations of bilayer stem models performed using the commercial

package ABAQUS 6.11 (SIMULIA, Rising Sun Mills, Providence, RI, USA). A Python

script is written to systematically create stem models. The bilayer is composed of a soft

active (a) and a stiff passive (p) elastic layer, which have respectively the elastic moduli

of Ea and Ep and the actuations strains of εa and εp. The Poisson’s ratio for both layers

is νa = νp = 0.3. The hydro-actuated strain is modelled with thermal expansion, where

temperature represents moisture content. The stem is clamped at its base. Geometric

nonlinearities are taken into account by activating NLGEOM option in ABAQUS which allows

for large-deformation analysis. A mesh size sensitivity analysis is performed and based on

that a mesh with about 7 elements along the stem thickness (∼ 5000 triangular plane stress

quadratic elements, CPS6) gives consistent results in the range of the parameters considered

in this work. Fig. S2 shows the mesh for a bilayer stem in its deformed state. This mesh

resolution allows us to characterize curvature smoothly along the stems centreline following

the procedure introduced in S3.

In Fig. S3, the FE predictions of the normalized curvature of bilayer models for constant

and varying thickness ratios are compared to those obtained by the Timoshenko bimetallic

theory [3] at different actuation strains. For both cases, at small actuation strains, FE

results are in very good agreement with theory; however, as the actuation strain increases

the FE results deviates from the Timoshenko bi-metallic model which is derived based on
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FIG. S2: Finite element mesh for a bilayer stem. A bilayer stem (h/l = 0.02, ha/h = 0.1 at base and

hp/h = 0.5 at tip) is meshed with 4857 triangular plane stress quadratic elements (CPS6) in ABAQUS.

small deformation assumption. In FE simulations, we have taken into account geometric

nonlinearities which allows nonlinear analysis of stems under large deformation, as observed

in this work. Therefore, while Timoshenko model is still a fairly good model, it is not

accurate for large actuation strains. According to Eq. (2) in the article, the predicted

curvature of Timoshenko bi-metal model scales linearly with actuation strain. In contrast,

FE results suggest that curvature does not magnify linearly with actuation strain and the

location of maximum curvature shifts as the actuation strain increases. To summarize, to
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FIG. S3: Comparison between FE simulations and theoretical Timoshenko bimetallic model

for normalized curvature of bilayer stems. (a) constant thickness and (b) variable thickness.
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model the large deformation induced by stem curling upon hydration, we perform multiple

simulations that account for geometric non-linearities. The bimetallic Timoshenko model

was introduced as a limiting case, which - exact and sufficient for small deformation - still

provides quite reasonable predictions for large strains.
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