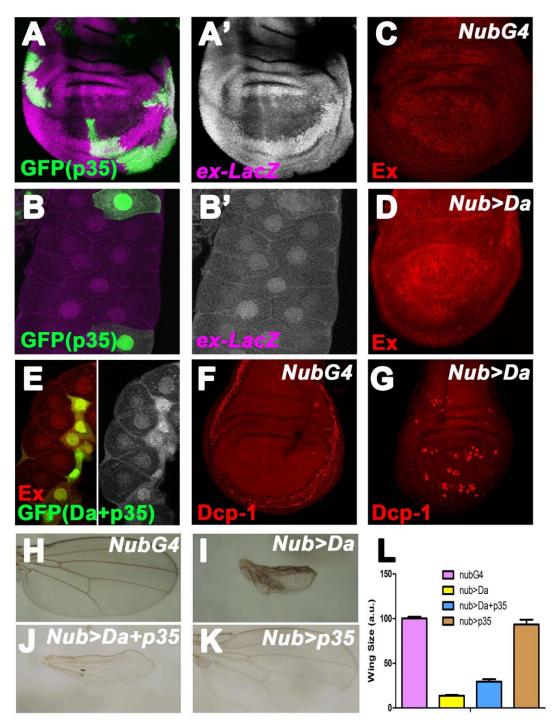

Supplemental Inventory

Figure S1 Figure S2 Figure S3 Figure S4 Figure S5 Figure S6 Table S1 Table S2 Supplemental Experimental Procedures References


Figure S1. Related to Figure 1

(A-B) UAS-GFP expressed under the control of eyg-GAL4 in third instar eye imaginal discs (A) and salivary glands (B). (C) An adult eye of wild-type. (D) An adult eye of *eyg>Da* flies. Note the reduced size. (E) An adult eye of *eyg>emc dsRNA* flies. Note the reduction of eye size and ectopic bristles. The phenotype is more variable than for *eyg>da*. (F) *eyg*^{CD}>Da, heterozygous for *emc*^{AP6}. The small eye is further reduced and sometimes absent. (G) Adult eye of GMR>Da (H) Adult eye of GMR>Da, *wts*^{X1}/+ . (I) *eyg*^{CD}>Da, heterozygous for *H99* deficiency. (J) Overexpression of *diap1* in *eyg*^{CD}>Da, heterozygous for *dark*^{K11502} *dark*⁸². (M) *eyg*^{CD}>Da, heterozygous for *E2f1*⁰⁷¹⁷². This 'headless' phenotype is the most extreme observed. (N) *eyg*^{CD}>Da, heterozygous for *CycE*^{AR95}. (O) *eyg*^{CD}>Da, heterozygous for *stg*⁴. (P) *eyg*^{CD}>Da, heterozygous for *wee1*^{ES1}.

Figure S2. Related to Figure 2

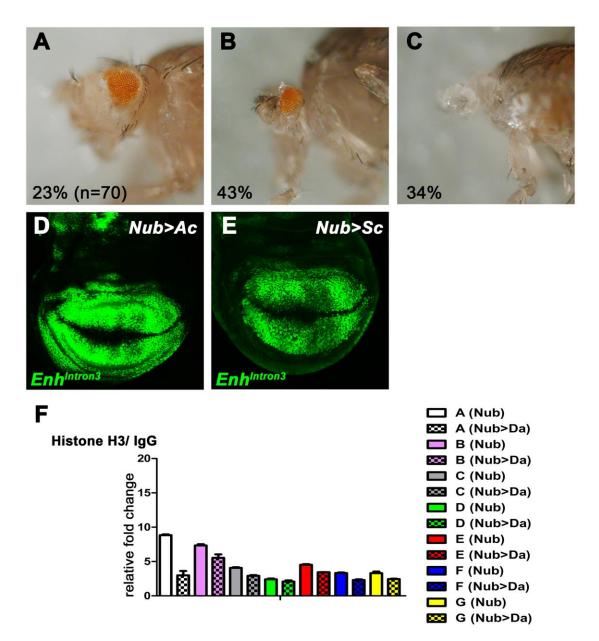

(A-H) Third instar wing imaginal discs with GFP-expressing MARCM clones. (A) control (B) wts^{X1} homozygous (C) wts^{X1} homozygous, act>Da (D) act>Da. Clones of wts^{X1} or wts^{X1} , act>Da grow well, whereas act>Da clones were rarely recovered. (E) control (F), ft^{NY1} homozygous (G), ft^{NY1} homozygous, tub>Da (H) tub>Da. Clones of ft^{NY1} or ft^{NY1} , tub>Da grew well throughout the discs, whereas tub>Da clones were rarely recovered. (I) Quantification of results. 10 discs of each genotype were analyzed. Area of clones was normalized to the total wing disc area. Data are represented as mean±SEM. NS, not significant. (J) Eye disc with wts homozygous clones stained for GFP (green) and Da (magenta). (J', J'') separate GFP and Da channels.

Figure S3. Related to Figure 3

(A-B) Wing imaginal discs (A) or salivary glands (B) containing control clones (*ActGal4>GFP+P35*, GFP positive, green) and stained for *ex-LacZ* reporter expression (magenta). Unlike Da-overexpressing clones (Figure 3), no elevation is observed in *ActGal4>GFP+P35* clones. (C-D) Wing imaginal discs of *NubGAL4* (C) and *Nub>Da* (D), staining for Ex antibody (red). (E) Salivary glands containing Da-overexpressing clones staining for Ex antibody (same specimen as Figure 3D). Note the elevation of Ex protein levels in Da-

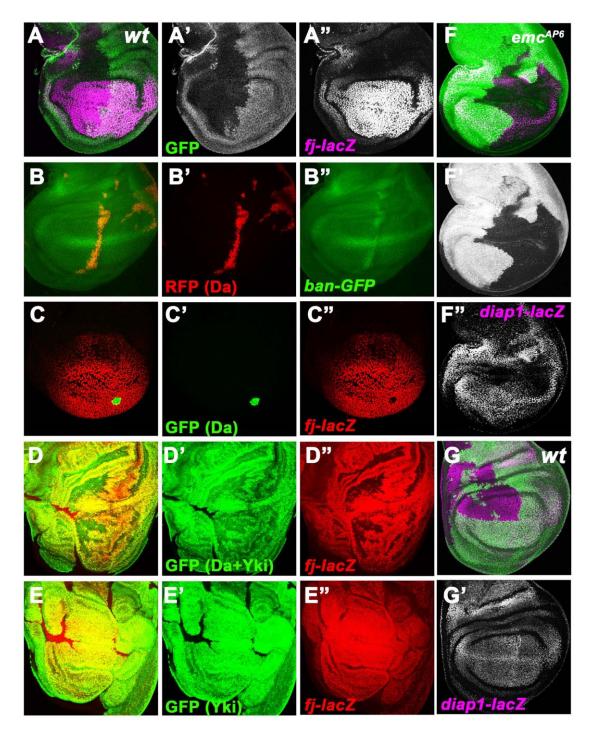
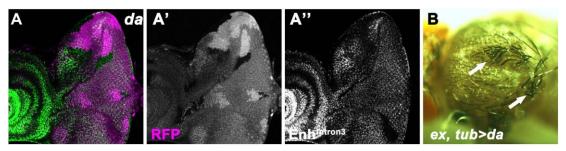

overexpressing cells (D and E). (F-G) Wing imaginal discs of *NubGAL4* (F) and *Nub>Da* (G), staining for Dcp-1 antibody to identify dying cells (red). (H-K) Adult wing size after Da and p35 over-expression. (H) Control *NubGAL4* wing. (I) *Nub>Da* reduces wing size. (J) Expression of p35 partially restores *Nub>Da* wing size. (K) *Nub>p35* wing. (L) Quantification of the wing size after Da and p35 over-expression.

Figure S4. Related to Figure 4

(A-C) Adult eyes of *eyg>Da-Da* flies. The size reduction is greater than for Da and can be extreme (B) or remove the head (C). (D-E) Wing discs of *Nub>Ac*(D) and *Nub>Sc* (E), staining for Enh^{intron3}-GFP reporter expression. Enh
^{intron3}-GFP is upregulated. (F) ChIP analysis of the Enh^{Intron3} enhancer. Anti-


histone H3 (HA IP) or IgG antibodies wer used to precipitate chromatin from wing discs of *NubGAL4* and *Nub>UAS-HA-Da*. Quantitative PCR was done on regions A-G (see panel 4A). Graph shows the relative fold changes of antihistone H3 compared to IgG. Results represent mean±SEM (n=3).

(A) Third instar wing disc containing wild-type clones in a Minute background (GFP negative, A'). Note similar *fj-lacZ* expression levels between wild-type

cells (GFP negative) and *Minute* cells (GFP positive)(magenta; A"). (B) Wing imaginal disc containing Da-overexpressing clones (*ActGal4>Da*, RFP positive, red). Note *ban-GFP* sensor is elevated in Da-overexpressing clones (green, B"). (C) Wing imaginal disc containing Da-overexpressing clones (*ActGal4>Da*, GFP positive, green). Note the decrease levels of *fj-lacZ* in Daoverexpressing clones (red, C"). (D) Wing imaginal disc containing Yki^{S168A}overexpressing clones (*ActGal4>Yki*^{S168A}, GFP positive, green). Note that *fjlacZ* is elevated by active Yki (red, D"). (E) Wing imaginal disc containing clones coexpressing Da and Yki^{S168A} (*ActGal4>Da+Yki*^{S168A}, GFP positive, green). Note *fj-lacZ* (red, E") and large clones. All crosses in B-E maintained at 18. (F) Wing imaginal disc containing *emc* mutant cells (GFP negative, F'). *diap1-lacZ* reporter expression (F", magenta) reduction in *emc* mutant clones. (G) Third instar wing disc containing wild-type control clones (GFP negative). Note that there is no difference of *diap1-lacZ* expression (magenta, G').

Figure S6. Related to Figure 6

(A) Third instar eye imaginal discs containing da^3 mutant cells (RFP negative) visualized for Enh^{intron3}-GFP reporter expression (green). (B) Ectopic bristles (white arrows) in adult thorax containing ex^{e1} , *tub>Da* clones.

cytology	Deficiency	Effect on eyg>da	
1B5-1B8	Df(1)Exel6221 Df(1)ED6396	Mild suppression suppression	
2C7-2F5	Df(1)ED6565 Df(1)ED409	Moderate suppression suppression	
5C7-5E4	Df(1)ED6802 Df(1)ED418 Df(1)ED6829	Mild suppression Suppression Mild suppression	
8F9-9B1	Df(1)ED6991 Df(1)ED6989	Suppression Mild suppression	
12E5-12E8	Df(1)ED7225 Df(1)ED7229	Suppression Suppression	
21B3-21B7	Df(2L)ED19 Df(2L)ED21	Suppression Mild suppression	
21E2	Df(2L)ED87 Df(2L)ED105 Df(2L)ED94	Suppression No effect Suppression	
23B8-23C5	Df(2L)ED206 Df(2L)ED4651	Suppression Mild suppression	
25F2-26B2	Df(2L)ED334 Df(2L)ED320 Df(2L)ED334	Mild suppression Suppression Suppression	
26B2-26B5	Df(2L)ED299 Df(2L)ED354 Df(2L)ED385 Df(2L)ED343 Df(2L)ED343 Df(2L)ED353	No effect Suppression Suppression No effect Suppression	
27A1-27C4	Df(2L)ED441 Df(2L)ED6569 Df(2L)ED7007	Suppression Suppression Mild suppression	
27F7-28B1	Df(2L)ED479 Df(2L)ED475 Df(2L)ED499 Df(2L)ED501 Df(2L)ED508	Suppression Suppression Suppression Mils suppression No effect	
35B10-35D4	Df(2L)ED1050 Df(2L)ED1054	Enhancement Enhancement	
36A10-36C7	Df(2L)ED1109 Df(2L)ED1161 Df(2L)Exel7068	Mild suppression Suppression No effect	
36F7-37B1	Df(2L)ED1196 Df(2L)ED1203	Enhancement Enhancement	
37B1-37B5	Df(2L)ED1203 Df(2L)ED1202	Enhancement Enhancement	
39B4-39D2	Df(2L)ED1378 Df(2L)ED1473	Suppression Suppression	
43A4-43D3	Df(2L)ED1673 Df(2L)ED1715	Suppression Suppression	
44D4-44E3	Df(2R)ED1735 Df(2R)ED1742	No effect Suppression	

cytology	Deficiency	Effect on eyg>da	
53E4-53F8	Df(2R)ED2747 Df(2R)ED2751 Df(2R)ED1 Df(2R)Exel6066	Suppression Suppression No effect	
56D10-56E2	Df(2R)ED3728	Suppression	
61C7-61E2	Df(3L)ED4177 Df(3L)ED4191 Df(3L)ED4196	Enhancement Enhancement Mild enhancement	
61C9-61F7	Df(3L)ED202 Df(3L)ED4238 Df(3L)ED207	Enhancement Enhancement Enhancement	
68C13-69B4	Df(3L)ED4475	Enhancement	
69C4-69F6	Df(3L)ED4486	Suppression	
73D5-73E5	Df(3L)ED4674 Df(3L)ED4685	Suppression Suppression	
75B1-75B11	Df(3L)ED4710 Df(3L)ED224	Suppression Suppression	
75C6-75D4	Df(3L)ED224 Df(3L)ED225	Suppression Suppression	
82A1-82D2	Df(3R)ED5046 Df(3R)ED5071 Df(3R)ED5100 Df(3R)ED5092	Suppression Suppression Suppression	
82D5-82E4	Df(3R)ED5142 Df(3R)ED5066 Df(3R)ED5095 Df(3R)ED5138	Suppression Suppression Suppression Suppression	
83B4-83B6	Df(3R)Exel6144 Df(3R)ED5177	Suppression Suppression	
85C3	Df(3R)ED5301 Df(3R)ED5331	Suppression Suppression	
85E5-85F8	Df(3R)ED5428 Df(3R)ED5438 Df(3R)ED5454	Suppression No effect Suppression	
95A4	Df(3R)Exel6194 Df(3R)Exel6195	Moderate suppression Suppression	
95B1-95B5	Df(3R)Exel9013 Df(3R)Exel9014	Moderate suppression Suppression	
99B2-99C1	Df(3R)ED6310 Df(3R)ED6316	Enhancement Mild enhancement	
99F8-100A5	Df(3R)Exel6215 Df(3R)Exel7378 Df(3R)Exel6346	No effect Suppression No effect	

Table S1. Summary of deficiency screen for dominant modifiers.Related to Figure 1.

414 deficiency stocks from the DrosDel and Exelixis collections were

screened to identify genomic regions that exhibited a modifying effect on *eyg>Da* phenotype. From this screen, a total of 38 genomic regions were identified based on their modifier capability. 30 genomic regions showed suppression and 8 genomic regions showed enhancement on *eyg>Da* phenotype.

Effected genes	Alleles tested	Type of allele	eyg>Da modification
p35	UAS-p35	Over-expression	
hid, grim, rpr	Df(3L)ED224/+ Df(3L)H99/+	deficiency deficiency	
grim, rpr, skl	Df(3L)ED225/+	deficiency	
Diap1	Diap1 ⁴ /+ UAS-Diap1,UAS-Diap1	amorph Over-expression	(+)
drice, stg	Df(3R)ED6316/+	deficiency	+
dronc	Df(3L)Exel9048/+ UAS-dronc ^{DN/+}	Deficiency Dominant negative	no effect
dark	dark ^{CD8} /+ dark ^{K11502} dark ⁸² /+	hypomorph Loss of function	no effect
СусЕ	Df(2L)ED1050/+ Df(2L)ED1054/+ CycE ^{AR95} /+	deficiency deficiency amorph	++ ++ +++
E2f1	E2f1 ⁰⁷¹⁷² /+	Loss of function	++++
Rbf	Rbf ¹⁴ /+	amorph	
СусВЗ	Df(3R)ED6220/+ CycB3 ² /+	deficiency Loss of function	no effect +
СусА	Df(3L)ED4475/+ CycA ^{C8LR1} /+	deficiency amorph	+++ ++
stg	Df(3R)ED6310/+ Stg ⁴ /+	deficiency amorph	+++ +++
wee1	Df(2L)ED441/+ wee1 ^{ES1} /+	deficiency amorph	
СусВ	CycB²/+	Loss of function	+
cdc2c	Cdc2c ² /+		+
cdc2	cdc2 ^{E1-23} /+	amorph	+
dap	Df(2R)Exel901/+ Dap ⁴ /+	deficiency amorph	no effect

Table S2. A subset of cell cycle/ cell death genes genetically interact with *eyg>da*. Related to Figure 1.

Key: +++, strong enhancement; ++ moderate enhancement; + mild enhancement; --- strong suppression; -- moderate suppression; - mild

suppression.

Supplemental Experimental Procedures Mutants and Transgenes

ex^{e1} (Boedigheimer and Laughon, 1993); emc^{AP6} (Ellis, 1994); hpo^{MGH4} (Emoto et al., 2006); *ft*^{NY1}(Tyler et al., 2007); yki^{B5} (Huang et al., 2005); wts^{MGH1} , sav^2 (Tapon et al., 2002); wts^{X1} (Xu et al., 1995); crb^{11A22} (Tepass et al., 1990); *crb*⁸²⁻⁰⁴ (Ling et al., 2010); Pten^{MGH1} (from I. Hariharan); *Diap*1⁴ (Hay et al., 1995); *dark*^{CD8} (Rodriguez et al., 1999); *dark*^{K11502} (Zhou et al., 1999); dark⁸² (Akdemir et al., 2006); Df(3L)H99 FRT80B (Cullen and McCall, 2004), CycE^{AR95} (Knoblich et al., 1994); E2f1⁰⁷¹⁷² (Duronio et al., 1995); Rbf¹⁴ (Du and Dyson, 1999); *stg*⁴ (Edgar and O'Farrell, 1989); *CycA*^{C8LR1} (Knoblich) and Lehner, 1993); $CycB3^2$; $CycB^2$ (Jacobs et al., 1998); $cdc2c^2$ (Lane et al., 2000), *cdc2^{E1-23}* (Clegg et al., 1993); *wee1^{ES1}* (Price et al., 2000); *dap*⁴ (Lane et al., 1996) are strong or null alleles. Act5C>CD2> GAL4 UAS-RFP, and deficiency strains (Ryder et al., 2007) are described in Flybase (Marygold et al., 2013). Other transgenic lines used in this study included the *bantam* sensor (Brennecke et al., 2003), ex-lacZ (Blaumueller and Mlodzik, 2000), fjlacZ (Villano and Katz, 1995), Diap-lacZ (Wu et al., 2008), eyg^{CD}-GAL4 (Wang et al., 2008), UAS-DroncDN (Meier et al., 2000).

To construct GFP reporter transgenes, genomic fragments covering the transcription start site (Proximal promoter region, 430000-432000 according to *R5.5* of *D. melanogaster* genome) or part of the third intron of *ex* (Enh^{Intron3}, 441500-443000) were PCR amplified and cloned into the PH-Stinger vectors (Barolo et al., 2000). Subfragments derived from Enh^{Intron3} were obtained by PCR amplification and cloned between BamHI and XhoI sites in the PH-Stinger vectors. Constructs carrying mutated E-box binding sites were

generated by PCR mutagenesis by the QuikChange Site-Directed Mutagenesis kit (Stratagene). The Da homodimer expression transgene was constructed to mimic a previously-reported construct (Castanon et al., 2001), which was in turn based on a tethered E47-MyoD protein shown to be insensitive to Id proteins (Neuhold and Wold, 1993). Two Da monomer open reading frames (710 aa and 709 aa) were joined in frame via a flexible Gly/Ser rich linker and cloned into the pUAST vector. To generate HA tagged Da transgene, Da cDNA was cloned into the pUAST vector by PCR amplification using primers with HA epitope YPYDVPDYA sequences.

Clonal Induction

Flp-out expression clones were generated by crossing *UAS*-lines to hs-FLP¹²²; Act5C>CD2> GAL4 UAS-RFP. Without co-expressing with p35, flies of Da flpout clones were crossed and incubated at 18° C to preserve the survival of Daoverexpressing clones. Heat shocks were performed at 36-48 hr AEL and animals were dissected at late third instar.

Immunohistochemistry and Scanning Electron Microscopy

Immunostaining and confocal image acquisition were performed as described previously (Firth et al., 2006). Antibodies recognizing the following epitopes were used: Expanded (guinea pig, provided by R. Fehon); Dcp-1 (rabbit, Cell Signaling #9578); beta-galactosidase (mouse, DSHB #40-1a); GFP (rat, NACALAI TESQUE# GF090R). Scanning electron microscopy (SEM) and photograph of adult flies were carried out using Zeiss Supra 40 microscope and Leica MZFLIII microscope (Baker et al., 2014).

References

Akdemir,F., Farkas,R., Chen,P., Juhasz,G., Medved'ova,L., Sass,M., Wang,L., Wang,X., Chittaranjan,S., Gorski,S.M., Rodriguez,A., and Abrams,J.M. (2006). Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death. Development *133*, 1457-1465.

Baker, N.E., Li, K., Quiquand, M., Ruggiero, R., and Wang, L.H. (2014). Eye development. Methods *68*, 252-259.

Barolo,S., Carver,L.A., and Posakony,J.W. (2000). GFP and betagalactosidase transformation vectors for promoter/enhancer analysis in Drosophila. Biotechniques *29*, *726*, *728*, *730*, *732*.

Blaumueller, C.M. and Mlodzik, M. (2000). The Drosophila tumor suppressor expanded regulates growth, apoptosis, and patterning during development. Mech. Dev. *92*, 251-262.

Boedigheimer, M. and Laughon, A. (1993). Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development *118*, 1291-1301.

Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell *113*, 25-36.

Castanon,I., Von,S.S., Kass,J., and Baylies,M.K. (2001). Dimerization partners determine the activity of the Twist bHLH protein during Drosophila

mesoderm development. Development 128, 3145-3159.

Clegg,N.J., Whitehead,I.P., Williams,J.A., Spiegelman,G.B., and Grigliatti,T.A. (1993). A developmental and molecular analysis of Cdc2 mutations in Drosophila melanogaster. Genome *36*, 676-685.

Cullen,K. and McCall,K. (2004). Role of programmed cell death in patterning the Drosophila antennal arista. Dev. Biol. *275*, 82-92.

Du,W. and Dyson,N. (1999). The role of RBF in the introduction of G1 regulation during Drosophila embryogenesis. EMBO J. *18*, 916-925.

Duronio,R.J., O'Farrell,P.H., Xie,J.E., Brook,A., and Dyson,N. (1995). The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. *9*, 1445-1455.

Edgar, B.A. and O'Farrell, P.H. (1989). Genetic control of cell division patterns in the Drosophila embryo. Cell *57*, 177-187.

Ellis,H.M. (1994). Embryonic expression and function of the Drosophila helixloop-helix gene, extramacrochaetae. Mech. Dev. *47*, 65-72.

Emoto,K., Parrish,J.Z., Jan,L.Y., and Jan,Y.N. (2006). The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature 443, 210-213.

Firth,L.C., Li,W., Zhang,H., and Baker,N.E. (2006). Analyses of RAS regulation of eye development in Drosophila melanogaster. Methods Enzymol. *407*, 711-721.

Hay, B.A., Wassarman, D.A., and Rubin, G.M. (1995). Drosophila homologs of

baculovirus inhibitor of apoptosis proteins function to block cell death. Cell *83*, 1253-1262.

Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell *122*, 421-434.

Jacobs,H.W., Knoblich,J.A., and Lehner,C.F. (1998). Drosophila Cyclin B3 is required for female fertility and is dispensable for mitosis like Cyclin B. Genes Dev. *12*, 3741-3751.

Knoblich, J.A. and Lehner, C.F. (1993). Synergistic action of Drosophila cyclins A and B during the G2-M transition. EMBO J. *12*, 65-74.

Knoblich, J.A., Sauer, K., Jones, L., Richardson, H., Saint, R., and Lehner, C.F. (1994). Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell *77*, 107-120.

Lane, M.E., Elend, M., Heidmann, D., Herr, A., Marzodko, S., Herzig, A., and Lehner, C.F. (2000). A screen for modifiers of cyclin E function in Drosophila melanogaster identifies Cdk2 mutations, revealing the insignificance of putative phosphorylation sites in Cdk2. Genetics *155*, 233-244.

Lane,M.E., Sauer,K., Wallace,K., Jan,Y.N., Lehner,C.F., and Vaessin,H. (1996). Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell *87*, 1225-1235.

Ling, C., Zheng, Y., Yin, F., Yu, J., Huang, J., Hong, Y., Wu, S., and Pan, D. (2010).

The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl. Acad. Sci. U. S. A *107*, 10532-10537.

Marygold,S.J., Leyland,P.C., Seal,R.L., Goodman,J.L., Thurmond,J., Strelets,V.B., and Wilson,R.J. (2013). FlyBase: improvements to the bibliography. Nucleic Acids Res. *41*, D751-D757.

Meier, P., Silke, J., Leevers, S.J., and Evan, G.I. (2000). The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. *19*, 598-611.

Neuhold,L.A. and Wold,B. (1993). HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell *74*, 1033-1042.

Price, D., Rabinovitch, S., O'Farrell, P.H., and Campbell, S.D. (2000). Drosophila wee1 has an essential role in the nuclear divisions of early embryogenesis. Genetics *155*, 159-166.

Rodriguez, A., Oliver, H., Zou, H., Chen, P., Wang, X., and Abrams, J.M. (1999). Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat. Cell Biol. *1*, 272-279.

Ryder, E., Ashburner, M., Bautista-Llacer, R., Drummond, J., Webster, J., Johnson, G., Morley, T., Chan, Y.S., Blows, F., Coulson, D., Reuter, G., Baisch, H., Apelt, C., Kauk, A., Rudolph, T., Kube, M., Klimm, M., Nickel, C., Szidonya, J., Maroy, P., Pal, M., Rasmuson-Lestander, A., Ekstrom, K., Stocker, H., Hugentobler, C., Hafen, E., Gubb, D., Pflugfelder, G., Dorner, C., Mechler, B., Schenkel, H., Marhold, J., Serras, F., Corominas, M., Punset, A., Roote, J., and Russell,S. (2007). The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics *177*, 615-629.

Tapon,N., Harvey,K.F., Bell,D.W., Wahrer,D.C., Schiripo,T.A., Haber,D., and Hariharan,I.K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell *110*, 467-478.

Tepass,U., Theres,C., and Knust,E. (1990). crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell *61*, 787-799.

Tyler, D.M. and Baker, N.E. (2007). Expanded and fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev. Biol. *305*, 187-201.

Villano, J.L. and Katz, F.N. (1995). four-jointed is required for intermediate growth in the proximal-distal axis in Drosophila. Development *121*, 2767-2777.

Wang,L.H., Chiu,S.J., and Sun,Y.H. (2008). Temporal switching of regulation and function of eye gone (eyg) in Drosophila eye development. Dev. Biol. *321*, 515-527.

Wu,S., Liu,Y., Zheng,Y., Dong,J., and Pan,D. (2008). The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell *14*, 388-398.

Xu,T., Wang,W., Zhang,S., Stewart,R.A., and Yu,W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development *121*, 1053-1063.

Zhou,L., Song,Z., Tittel,J., and Steller,H. (1999). HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiationinduced apoptosis. Mol. Cell *4*, 745-755.