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Supplementary Figure 1| Out-of-plane upper critical fields at (001) and (110)
LaAlO3/SrTiO; interfaces.

Sheet resistance of (a) the (110)-interface with t = 14 MLs and (b) the (001)-interface

with t = 10 MLs, under magnetic fields applied normal to the interface. The field values
are indicated in the panels of Supplementary Figure 1.
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Supplementary Figure 2| Superconductive transitions at the (110) LaAlOs/SrTiOs
interface.

We defined the onset of the transition as the temperature where the resistance falls to
90% of its normal state value (measured at T = 400 mK). We observed that the
superconductive transition temperature T¢ of (110)-oriented interfaces was strongly
dependent on the sample, being the highest for t = 14 MLs (T¢ = 195 mK), whereas
lower values were observed for t = 10 MLs (T = 166.5 mK), t = 8 MLs (T = 115 mK)
and t =7 MLs (T¢ = 45 mK) (Supplementary Figure 1). Samples with t =14 MLs and t = 8
MLs exhibited the narrowest transition widths AT = 40 mK (defined between 20% and
80% of the normal state resistance), comparable to the AT; observed in
superconductive (001)-LaAlOs/SrTiO; as well as (001)-LaTiOs/SrTiOs 2 interfaces The
other samples exhibited significantly broader transitions, indicating more
inhomogeneous electronic states. This observation is more perceptible in sample t = 10
MLs that exhibits a complex transition to superconductivity with two kinks.
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Supplementary Figure 3| Analysis of the 2D-superconductivity transition: the
Berezinskii-Kosterlitz-Thouless (BKT) model.

In the 2D limit, it is well established that superconductivity is suppressed by vortex-
antivortex pair unbinding by thermal fluctuations, so that the transition to the 2D
superconductive state belongs to the Berezinskii-Kosterlitz-Thouless (BKT) universality
class. In this scenario, above the transition temperature Tggr the free motion of
vortices triggers the transition from the 2D superconductive towards the normal state.
Within a narrow region around Tgxr the BKT theory predicts specific laws for the
temperature dependence of the resistance R, giving a quantifiable criterion to assess
the dimensional character of the superconductive state. In particular, it is expected

_2/
that [E)lnR/aT] ® should scale linearly with (T — Tggr) for a certain region around

_2/
Texr *[As seen in panels a-c, similarly to (001)- LAO/STO interfaces, the [alnR/aT] 3

data corresponding to (110) interfaces fall approximately on a straight line above a
certain temperature that —following the same protocol as described in the analogous
analysis of (001)-interfaces’ — we identify as the Tzgr transition temperature.

Therefore, the temperature Tgir is at the boundary between the two regimes
2

/
(superconductive/normal) giving rise to a prominent kink in the [6lnR/aT] 3 plot. We

note that the values of Tzx thus obtained are in the same range as those found in
(001)-LaAlO3/SrTiO3. We find that the Tggr values correlate with T (panel d), both
being strongly dependent on the sheet carrier density ng,..; in the normal state, a
feature that is reminiscent of the strong dependence of the bulk superconductive
transition on carrier density.
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