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Supplementary Figure 1: The distribution of counts of splice junctions in mouse samples. The color

at the point (z, y) represents the number of splice junctions that have log, count of at least x in at least
y samples. The z-axis is log, counts; the y-axis is the number of samples.
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Supplementary Figure 2: Expression of sense/antisense gene pairs. (A,B) Heatmaps showing the
scaled RPKM of the 16 sense/antisense gene pairs across human (A) and mouse (B) samples. (C) The
UCSC genome browser screenshot of HNF1A and its antisense in human, showing the tissue-specific
expression of this pair in HepG2.
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Supplementary Figure 3: (A) Average nuclear versus cytosolic ratio across 7 human cell lines of two
sets of 1-to-1 orthologous RNA genes: all (left, median=0) and ones that are expressed in more than
50% of the mouse and 50% of the human samples (right, median=2). (B) Average gene expression
level (RPKM, across mouse tissues) of mouse 1-to-1 orthologous INcRNAs categorized by the number
of species (Mouse, Cow, Pig, Rat, and Dog) in which IncRNA orthologs were detected (threshold for
detectionis RPK M > 0.1).
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Supplementary Figure 4: (A) Nucleotide coverage statistics were averaged over 100-nt bins spaced
equally along each genome. The midpoint of each 100-nt bin in human genome was mapped to the
mouse genome based on whole genome alignments, inducing the correspondence between bins. (B)
The flowchart of genome-wide nucleotide coverage processing. (C,D) The joint distribution of log;,
average read density in orthologous exonic (C, cc = 0.62) and intronic (D, cc = 0.47) 100-nt bins
in human (z-axis) and in mouse (y-axis). Exonic/intronic segmentation is with respect to the human
genome.
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Supplementary Figure 5: The distribution of log,, average read density in 100-nt bins in the human
genome as a function of distance from the bin to the nearest gene.
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Supplementary Figure 6: The joint distribution of log,, standard deviation (SD) of antisense-to-total
ratio in pairs of orthologous genes (cc = 0.52). Observations with constant as/total ratio (i.e., with
SD = 0) were not included.
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Supplementary Figure 7: (A) Contour plots of the joint distribution of average SJ processivity (AVG
0, completeness of splicing index) in pairs of orthologous SJs. “Alternative” denotes SJs that are
annotated as alternative in both species. The logistic transformation (logit) was applied to AVG 6
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shown. (B) The joint distribution of standard deviation of SJ processivity.
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Supplementary Figure 8: Sample dynamic range (i.e., the dynamic range of gene expression within
each sample) in human and mouse. The sample dynamic range is computed as log,, of the RPKM of
the gene with the largest RPKM minus log;,, of the RPKM of the gene with the lowest RPKM. Each dot
represents one sample.
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Supplementary Figure 10: (A) The joint probability distribution of the dynamic range (DNR, z-axis)
and log,, average gene expression level (y-axis) in protein-coding ortholog genes. The contour plot is
in the units of probability density. The joint distribution is approximated by a mixture of two 2D Gaussian
components shown in red and blue (see Supplementary Methods). (B) The probability distribution of
the dynamic range (the marginal distribution) approximated by the sum of the two marginal distributions
of the respective components in panel A. The weighted sum is shown by the dashed line.
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Supplementary Figure 11: (A) The distribution of the number of (human and mouse) samples, in
which a gene is expressed, for constrained and unconstrained genes. (B) The distribution of log,,
average gene expression levels (across human and mouse samples) in constrained genes as opposed
to that in the rest of orthologous genes. (C) The distribution of log,, average gene expression levels
in the set of constrained genes and in the set of unconstrained genes with matched expression (see
Supplementary Methods).
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Supplementary Figure 12: The joint distribution of the dynamic range (DNR) vs. log,, of minimum
gene expression for 1-to-1 orthologous genes across human and mouse samples.
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Supplementary Figure 13: (A,B) Histone marking for constrained and unconstrained genes in hu-
man HelLa-S3 cell line (A) and adult mouse kidney (B). Shown are the normalized read densities of
H3K4me3 and H3K27ac at TSS and the normalized read density of H3K36me3 at TTS, plotted sep-
arately for the set of constrained genes (red) and for the set of unconstrained genes with matched
expression levels (blue).
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Supplementary Figure 14: Scatterplot of mean vs. fraction of variance of splice junction (SJ) inclusion
rate, U, (relative to the maximum possible variance for the Bernoulli distribution with the given mean)
for orthologous splice junctions. SJ that belong to constrained (unconstrained) genes are shown in red
(blue). Sds with (0.15< mean(¥) < 0.85) and with relative variance below 20% are delimited by the
dashed lines, and are considered SJs with constrained expression at intermediate levels of inclusion.
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strained expression derived here.
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Supplementary Figure 16: The distribution of the coefficient of variation in gene expression in 766
human European samples®? in constrained and unconstrained genes (see Supplementary Methods for
details).



Supplementary Table 1: Summary of RNA-seq experiments. Experiments were performed on
whole cell polyA+ RNA samples in 18 human cell lines and in 30 mouse samples (25 tissues and
5 developmental stages); two bio-replicates per experiment. In total, there were 8,367,769,624 and
15,059,232,696 mapped reads, with an average of 236 million and 186 million reads per bio-replicate
in human and mouse, respectively. (*) Reference for the RNA-seq data files (FASTQ and BAM).

Human Mouse
Sample Cell Line Tissue GEO Accession* Sample Tissue GEO Accession*

Adipose : Genital FatPad : 8 Weeks Adipose GSM900190
Adipose : Subcutaneous FatPad : 8 Weeks Adipose GSM900191
Adrenal : 8 Weeks Adrenal GSM900188
Bladder : 8 Weeks Bladder GSM1000564

Blood: Early Myeloid Progenitor K562 Blood GSM765405

Blood: B lymphocyte GM12878 Blood GSM758559

Blood: Monocyte CD14+ Monocytes GSM984609

Blood: B Cells CD20+ B Cells GSM981256

Brain: Epithelial: neuroblastoma SK-N-SH Brain GSM981253  [Brain : Cortex : 8 Weeks Brain GSM1000563

Brain: Epithelial: neuroblastoma SK-N-SH-RA Brain GSM765395  [Brain : Frontal Lobe : 8 Weeks Brain GSM1000562
Brain : Cerebellum : 8 Weeks Brain GSM1000567
Brain : Central Nervous System : E11.5 Brain GSM1000573
Brain : Central Nervous System : E14 Brain GSM1000569
Brain : Central Nervous System : E18 Brain GSM1000570
Brain : Whole Brain : E14.5 Brain GSM1000572

Breast: Epithelial: adenocarcinoma MCF7 Breast GSM765388

Cervix: Cervical Carcinoma HelLa-S3 Cervix GSM765402

H1 Embryonic Stem Cells H1-hESC All GSM758566
Heart : 8 Weeks Heart GSM900199
Kidney : 8 Weeks Kidney GSM900194
Large Intestine : Colon : 8 Weeks Large Intestine GSM900198
Large Intestine : 8 Weeks Large Intestine GSM900189
Limb : E14.5 Limb GSM1000568

Liver: Epithalial: Hepatocellular Carcinoma HepG2 Liver GSM758575  |Liver: E14 Liver GSM1000574
Liver : E14.5 Liver GSM1000571
Liver : E18 Liver GSM1000566
Liver : 8 Weeks Liver GSM900195

Lung: Fibroblast IMR90 Lung GSM981249  |Lung : 8 Weeks Lung GSM900196

Lung: Fibroblast Cells NHLF Lung GSM765394

Lung: Epithelial: Carcinoma A549 Lung GSM758564

Lung: Fibroblast AG04450 Lung GSM758561
Mammary Gland : 8 Weeks MammaryGland GSM900184

Muscle: Skeletal Muscle: Myoblasts HSMM Muscle GSM758578
Ovary : 8 Weeks Ovary GSM900183
Placenta : 8 Weeks Placenta GSM1000565

Skin: Fibroblast BJ Skin GSM758562

Skin: Epidermal Keratinocytes NHEK Skin GSM765401
Small Intestine : Duodenum : 8 Weeks Small Intestine GSM900187
Small Intestine : 8 Weeks Small Intestine GSM900186
Spleen : 8 Weeks Spleen GSM900197
Stomach : 8 Weeks Stomach GSM900185
Testis : 8 Weeks Testis GSM900193
Thymus : 8 Weeks Thymus GSM900192

Umbilical Cord HUVEC Umbilical Cord GSM758563




Supplementary Table 2: The list of transcript types corresponding to long transcripts.

Human Mouse
3prime_overlapping_ncrna IG_C_gene
IG_C_gene IG_D_gene
IG_C_pseudogene IG_J gene
IG_D_gene IG_V_gene
IG_J gene TEC
IG_J_pseudogene ambiguous_orf
IG_V_gene antisense
IG_V_pseudogene disrupted_domain
TEC lincRNA
TR_C_gene ncrna_host
TR_D_gene non_coding
TR_J gene nonsense_mediated_decay
TR_J_pseudogene polymorphic_pseudogene
TR_V_gene processed_pseudogene

TR_V_pseudogene

processed_transcript

ambiguous_orf

protein_coding

antisense pseudogene

disrupted_domain retained_intron

lincRNA retrotransposed

ncrna_host sense_intronic

non_coding transcribed_processed_pseudogene

non_stop_decay

transcribed_unprocessed_pseudogene

nonsense_mediated_decay

unitary_pseudogene

polymorphic_pseudogene

unprocessed_pseudogene

processed_pseudogene

processed_transcript

protein_coding

pseudogene

retained_intron

retrotransposed

sense_intronic

sense_overlapping

transcribed_processed_pseudogene

transcribed_unprocessed_pseudogene

unitary_pseudogene

unprocessed_pseudogene




Supplementary Table 3: Annotated and CAGE supported novel elements detected by RNA-seq
in mouse (A), human (B) and both (C). Elements are distinct exons, transcripts and genes. Annotated
elements and novel transcripts are called detected if their IDR is smaller or equal to 0.1. Detected novel

exons are distinct exons of detected novel transcripts, which do not overlap annotated exons on the
same strand.

(A) Mouse
Exons Transcripts Genes
Gene category detected detected detected
Total Total Total
Number | % of Total Number | % of Total Number | % of Total
All long 345,616 327,381 94.7 90,100 75,967 84.3 31,915 27,184 85.2
Protein-coding 320,024 309,131 96.6 78,261 69,364 88.6 22,380 20,494 91.6
Annotated
LncRNAs 16,107 12,964 80.5 5,669 3,742 66.0 3,845 3,207 834
Other 9,599 5,390 56.2 6,170 2,861 46.4 5,690 3,483 61.2
Fold vs Fold vs
e Annotated Dlizsizd Annotated
Novel NA
201,388 0.58 200,032 2.22
(B) Human
Exons Transcripts Genes
Gene category Detected Detected Detected
Total Total Total
Number | % of Total Number | % of Total Number | % of Total
All long 509,579 406,630 79.8 164,174 106,572 64.9 43,575 29,279 67.2
Protein-coding 432,261 375,287 86.8 131,409 97,121 73.9 20,007 18,341 91.7
Annotated
LncRNAs 49,513 20,839 42.1 17,547 5,386 30.7 10,840 5,451 50.3
Other 29,635 12,183 41.1 15,218 4,065 26.7 12,728 5,487 43.1
Fold vs Fold vs
Detected Annotated Detected Annotated
Novel NA
75,118 0.15 151,761 0.92
(C) Both
Species Annotated transcripts Novel transcripts Total transcripts
Mouse 90,100 200,032 290,132
Human 164,174 151,761 315,935




Supplementary Table 4: Splice Junctions. (A) Splice junctions by gene type. (B) Cross-classification

of orthologous splice junctions.

(A) All detected SJ

%

Human Mouse
Protein-coding 277,953 289,405
LncRNA 13,281 11,133
Pseudogene 6,651 813
Novel splice sites 78,165 97,442
Total 376,050 398,793
(B) Orthologous SJ
Mouse
Protein coding LncRNA Pseudogene Unassigned Total %
Protein coding 200,249 490 142 3 200,884 98.05%
H LncRNA 1,064 1,312 1 5 2,382 1.16%
uman Pseudogene 1,212 9 18 0 1,239 0.60%
Unassigned 68 251 6 57 382 0.19%
Total 202,593 2,062 167 65 204,887
98.88% 1.01% 0.08% 0.03%




Supplementary Table 5: Conservation of antisense transcription. (A) Contingency table of the
number of genes with annotated antisense transcription in one-to-one orthologous gene pairs or with
the antisense/total ratio greater than 30% in at least 70% of samples. Numbers in parentheses are
the expected counts. Shown in boldface are the observed counts that are greater than the expected
counts. (B) List of orthologous human and mouse protein-coding genes and their antisense, sharing a
configuration similar to that described in?S.

(A)
Mouse

AS no AS Total

AS 1,889 (1,098) | 2,856 (3,647) | 4,745

Human| noAS |1,752(2,543)|9,239 (8,448)| 10,991

Total 3,641 12,095 15,736
(B)

Human Mouse
Sense geneid  [S°N°¢ 9°M¢ antisense geneid | ANIsense gene Sense gene id E}E Antisense geneid  |Antisense gene

ENSG00000175745 |NR2F1 ENSG00000237187 |[RP11-65F13.2 |ENSMUSGO00000069171 |Nr2fl ENSMUSG00000087143 |A830082K12Rik
ENSG00000108175 |ZMIZ1 ENSG00000224596 |[RP11-202P11.1 |ENSMUSGO00000007817 |Zmizl ENSMUSG00000087535 |D930049A15Rik
ENSG00000197635 |DPP4 ENSG00000230918 |AC008063.2 ENSMUSG00000035000 |Dpp4 ENSMUSG00000087518 |Gm13561
ENSG00000168958 |MFF ENSG00000236432 |AC097662.2 ENSMUSG00000026150 |Mff ENSMUSG00000085879 |C430014B12Rik
ENSG00000052841 |TTC17 ENSG00000254907 |RP11-484D2.2 |[ENSMUSG00000027194 [Ttcl7 ENSMUSG00000045464 [2810002D19Rik
ENSG00000178307 |[TMEM11 |[ENSG00000235530 |[AC087294.2 ENSMUSG00000043284 [Tmeml1l [ENSMUSG00000091753 \Gm17432
ENSG00000128585 |MKLN1 ENSG00000231721 |AC058791.2 ENSMUSG00000025609 |[Mkinl ENSMUSG00000086212 |Gm13845
ENSG00000154277 |UCHL1 ENSG00000251173 |RP11-124A7.2 |[ENSMUSG00000029223 |Uchll ENSMUSG00000087601 |Gm16832
ENSG00000111961 |SASH1 ENSG00000224658 |[RP11-631F7.1 |ENSMUSG00000015305 |Sashl ENSMUSG00000091633 |Gm17280
ENSG00000135100 |HNF1A ENSG00000241388 |HNF1A-AS1 ENSMUSG00000029556 |Hnfla ENSMUSG00000086054 |Gm13824
ENSG00000120896 |[SORBS3 |ENSG00000251034 |[RP11-582J16.4 |ENSMUSG00000022091 |Sorbs3 |[ENSMUSG00000085557 |Gm16600
ENSG00000107758 |[PPP3CB |ENSG00000221817 [RP11-137L10.6 |ENSMUSG00000021816 |Ppp3ch |[ENSMUSG00000084925 [1810062018Rik
ENSG00000123562 |MORF4L2 |[ENSG00000231154 |[RP5-1055C14.7 |ENSMUSG00000031422 |Morf4l2 |ENSMUSGO00000087368 |BC065397
ENSG00000163638 |[ADAMTS9 |[ENSG00000241684 /ADAMTS9-AS2 |ENSMUSG00000030022 |Adamts9 [ENSMUSG00000087573 |9530026P05Rik
ENSG00000118197 |DDX59 ENSG00000232257 |[RP11-92G12.3 |ENSMUSG00000026404 |Ddx59 ENSMUSG00000086553 [9230116N13Rik
ENSG00000134107 |BHLHE40 |[ENSG00000235831 |[AC018816.4 ENSMUSG00000030103 |Bhlhe40 |[ENSMUSGO00000087341 |0610040F04Rik




Supplementary Table 6: Classification of SINE elements in the 16 sense-antisense gene pairs
with an inverted SINE in both human and mouse.

Human PC gene Human AS Mouse PC gene Mouse AS Human SINE | Mouse SINE
AluSx
ENSG00000232257 | ENSG00000118197 | ENSMUSG00000026404 | ENSMUSG00000086553 B3
AluSg2
AluSc
ENSG00000221817 | ENSG00000107758 | ENSMUSG00000021816 | ENSMUSG00000084925 MIRc
AluJo
ENSG00000224658 | ENSG00000111961 | ENSMUSG00000015305 | ENSMUSG00000091633 MIRb MIR
ENSG00000230918 | ENSG00000197635 | ENSMUSG00000035000 | ENSMUSG00000087518 MIR PB1D9
ENSG00000235530 | ENSG00000178307 | ENSMUSG00000043284 | ENSMUSG00000091753 AluSz6 B3
AluSx1
ENSG00000236432 | ENSG00000168958 | ENSMUSG00000026150 | ENSMUSG00000085879 ID_B1
MIR
AluJb
ENSG00000241388 | ENSG00000135100 | ENSMUSG00000029556 | ENSMUSG00000086054 AluSx B4A
MIRb
ENSG00000251034 | ENSG00000120896 | ENSMUSG00000022091 | ENSMUSG00000085557 AluSc5 B1_Mus2
ENSG00000251173 | ENSG00000154277 | ENSMUSG00000029223 | ENSMUSG00000087601 MIRb B3
ENSG00000254907 | ENSG00000052841 | ENSMUSG00000027194 | ENSMUSG00000045464 AluJr B1F1
MIRc
ENSG00000224596 | ENSG00000108175 | ENSMUSG00000007817 | ENSMUSG00000087535 MIR3 RSINE1
MIR
ENSG00000231154 | ENSG00000123562 | ENSMUSG00000031422 | ENSMUSG00000087368 MIRb B3A
ENSG00000231721 | ENSG00000128585 | ENSMUSG00000025609 | ENSMUSG00000086212 AluSx ID4_
AluSg4
ENSG00000235831 | ENSG00000134107 | ENSMUSG00000030103 | ENSMUSG00000087341 PB1D10
AluSx3
ENSG00000237187 | ENSG00000175745 | ENSMUSG00000069171 | ENSMUSG00000087143 AluSc B1_Mus2
ENSG00000241684 | ENSG00000163638 | ENSMUSG00000030022 | ENSMUSG00000087573 Aludr B1_Mm




Supplementary Table 7: Summary table of histone modification data. GEO accession numbers
of ChlP-seq profiles used to compute the average histone modification levels in promoter regions in
human (A) and in mouse (B). When multiple GEO accessions are listed, the bigwig tracks were pooled
together for each combination of the antibody and cell line or tissue.

(A)
H3K27ac H3K36me3 H3K4me3
A549 GSM945244
AG04450 GSM1010912 GSM945177
BJ GSM945207 GSM945178
GM12878 GSM733771 GSM733679,GSM945212 GSM733708,GSM945188
H1HESC GSM733718 GSM733725 GSM733657
HELAS3 GSM733684 GSM733711,GSM945230 GSM733682,GSM945201
HEPG2 GSM733743 GSM733685,GSM945211 GSM733737,GSM945182
HSMM GSM733755 GSM733702 GSM733637
HUVEC GSM733691 GSM733757,GSM945233 GSM733673,GSM945181
K562 GSM733656 GSM733714,GSM945302 GSM733680,GSM945165
MCF7 GSM945854 GSM945269
NHEK GSM733674 GSM733726,GSM945174 GSM733720,GSM945175
NHLF GSM733646 GSM733699 GSM733723,GSM945262
SKNSH_RA GSM945209 GSM945202
(B)
H3K27ac H3K36me3 H3K4me3
CEREBELLUM_ADULT8WKS GSM1000097 GSM769027
CORTEX_ADULT8WKS GSM1000100 GSM769026
HEART_ADULT8WKS GSM1000093 GSM1000130 GSM769017
HEART_E14.5 GSM1000137 GSM1000135
KIDNEY_ADULT8WKS GSM1000092 GSM1000063 GSM769016
LIMB_E14.5 GSM1000107 GSM1000086
LIVER_ADULT8WKS GSM1000140 GSM1000151 GSM769014
LIVER_E14.5 GSM1000113 GSM1000110
LUNG_ADULT8WKS GSM769012
PLACENTA_ADULT8WKS GSM1000134 GSM1000132
SMINTESTINE_ADULT8WKS GSM1000084 GSM1000069 GSM1000083
SPLEEN_ADULT8WKS GSM1000138 GSM1000070 GSM769036
TESTIS_ADULT8WKS GSM1000081 GSM1000067 GSM1000079
THYMUS_ADULT8WKS GSM1000103 GSM1000068 GSM1000101
WHOLEBRAIN_E14.5 GSM1000094 GSM1000072 GSM1000095




Supplementary Table 8: Published housekeeping gene sets and their intersection. Only genes
with a Gencode v10 id are considered.

Number of

HK gene set identifier Technique used genes in
Gencode v10
Fantom5, Nature, 2014 F5 CDNA 5' end sequencing 6,560
Eisenberg et al., Trends in Genetics, 2013 E-L RNA-seq 3,664
Chang et al., PLoS One, 2011 Chang microarray 1,989
She et al., BMC Genomics, 2009 She microarray 1,382
Intersection 429




Supplementary Methods

Genomes and annotation sets

Throughout this work we used Feb. 2009 assembly of the human genome (hg19,
GRCh37) and Jul. 2007 assembly of the mouse genome (mm9, GRCm37) 1. Human Gencode
v10 and mouse ENSEMBL v65 databases were used for transcript annotations. Additionally,
we considered a category of long transcripts composed of transcript types listed in
Supplementary Table 2. Summary statistics on the annotated elements such as transcripts,
genes and exons are listed in Supplementary Table 3A,B. In addition, genomes were
partitioned into a disjoint union of exonic, intronic, and intergenic regions and, apart from
it, into a disjoint union of genic and intergenic regions based on the annotated transcript
sets 2. Exonic regions were given priority over intronic regions; exonic, intronic, and genic

regions were given priority over intergenic regions.
RNA-seq data processing

Mapping

RNA-seq reads were aligned to the human (hg19) and mouse (mm9) genomes using
the STAR 1.9 software 3. Up to 10 mismatches per paired alignment were allowed. Only
alignments for reads mapping to 10 or fewer loci were reported. Annotations were not
utilized for mapping the data. Mapped reads were used to generate contigs, splice junctions,
de-novo transcript models and quantification of the annotation as described in 2 (see also
below). Uniquely mapped reads were selected by bamflag software

(http://github.com/pervouchine/bamflag). The Human Body Map (HBM) unstranded

paired-end RNA-seq dataset (16 tissues, 50-nt reads) was also processed in the same way
and used to complement human ENCODE in summary statistics section. Since HBM data
was generated by a different protocol with shorter reads, not stranded, and without bio-
replicates, we decided not to include it in any further analysis together with ENCODE cell

line data.



Ascertainment of reproducibility

Non-parametric IDR (npIDR) ascertains reproducibility of the detection of genomic
elements (such as splice junctions, exons, transcripts, etc) in RNA-seq experiments with
biological replicates, referred to as 1 and 2 below. The elements in each bio-replicate are
binned according to their signal, and for all bins the npIDR1in2 is calculated as the
proportion of elements in each bin in replicate 1 that have exactly zero signal (i.e. not
detected) in replicate 2. Similarly, the npIDR2in1 is calculated as the proportion of
elements in each bin in replicate 2 that have exactly zero signal (i.e. not detected) in
replicate 1. The final npIDR value for each bin is defined as the mean of npIDR1in2 and
npIDR2in1. In the main manuscript and in this supplementary information, we will use IDR

instead of npIDR.

Contig generation

Contigs represent regions of directional RNA-seq coverage. They are called from
merged biological replicates but each contig is scored against individual replicates to
facilitate IDR analysis. Contigs are required to have non-zero signal in both replicates. Only
uniquely mapping reads are used for building and quantifying contigs. Neighboring contigs
are merged if the gap between them is smaller than 25 bases. Contigs are strand-specific,
but contigs with more than 9 times more antisense than sense signal are filtered as
possible artifacts of strand-specific library construction. Each contig is associated with the
following values: (1) BPKM, "Bases per Kilobase per Million mapped bases", averaged
between the replicates; (2) a non-parametric irreproducible discovery score (npIDR); (3)
the total number of mapped bases in the contig in both replicates (sum of wiggle track

signal). Generation of contigs is independent of annotations.

TSS and CAGE support

Since de novo transcript models are less reliable than annotated transcripts, we only
consider the ones whose TSS (most 5’ bp) is supported by CAGE data from the most recent
and diverse FANTOM study *. For this we used the 217,572 human and the 129,466 mouse
TSS-like classified CAGE peaks identifies by FANTOMS (http://fantom.gsc.riken.jp/5 /tet).




More precisely de-novo transcript models’ TSS is extended by 50 bp in both the 5’ and the
3’ directions, and the resulting 101bp segment is intersected with the TSS-like CAGE peaks.
When an intersection in found, the de novo transcript model is considered supported by

CAGE.

De novo transcript models

Cufflinks 1.0.3 > was used to assemble the transcripts from STAR alignments. Only
uniquely mapping non-duplicated alignments crossing GU/AG junctions were utilized. The
alignments from the two bio-replicates were merged before Cufflinks assembly. The
Cufflinks gene, transcript and exon RPKM were quantified using Flux Capacitor ¢ in each
bio-replicate, and the resulting RPKM were assessed for reproducibility using npIDR 2.
Cufflinks models with an IDR value lesser or equal to 0.1 were further merged using

compmerge (http://big.crg.cat/services/compmerge). The resulting merged cufflinks

model intron chains were further compared to the annotated spliced transcript intron

chains (using comptr available here: http://genome.crg.es/~sdjebali/Programs/comptr),
and the spliced cufflinks models whose intron chain was neither equal nor included in the
intron chain of an annotated transcript were kept. To obtain an even more complete and
reliable set of novel transcripts, we further required the TSS of these transcripts to be
supported by CAGE (see above). This resulted in sets of 200,032 novel transcripts in mouse
and of 151,761 novel transcripts in human. Their exons were called novel if they did not
overlap any annotated exon on the same strand (Supplementary Table 3).

The complete set of merged cufflinks models for each species is available in

Supplementary data archive 1.

Average read density

Genome-wide read density was computed by genomeCoverageBed utility with -split
and -bg options using only uniquely-mapped reads, separately for each bio-replicate and
for each strand 7. The outputs were combined into a single bedgraph file by
unionBedGraphs utility separately for each strand 7. Next, read density statistics were

averaged genome-wide over consecutive 100-nt bins in each bio-replicate resulting in



20,580,077 and 20,623,806 such bins with at least one non-zero value in human and mouse,
respectively (Supplementary Fig. 4A). The combined 100-nt averages from the plus and
from the minus strand were normalized to have the same total read density and assessed
for reproducibility between bio-replicates at IDR<0.1 (Supplementary Fig. 4B). The average
read density (i.e., average height of the pile of aligned reads, per 100 nt) was computed for
each sample as the mean between bio-replicates or set to zero for bins, which did not pass
the reproducibility filter. The average and the standard deviation of read density, taken
across samples, were used as measures of center and spread of transcriptional activity,
respectively; all probability distributions were computed for their base-10 logarithm

transformations.

Common RNA

The amount of common RNA of a gene was defined to be the smallest of its RPKM
values in a given set of samples. The amount of common RNA in a pair of samples was
defined to be the sum of the amounts of common RNA of each gene as a fraction of the

average (between samples) sum of gene RPKM values.

Quantification of histone modification levels

The bigWig whole-genome human and mouse ChIP-seq profiles were obtained from

the Encode DCC portal (http://hgdownload.soe.ucsc.edu/goldenPath/, folders hg19/ and

mm9/, respectively) by GEO accession numbers that are listed in Supplementary Table 7.

We considered only data without additional chemical treatment.

Conservation of histone marks

The ChIP-seq profiles were processed by using bigWigAverageOverBed utility over
+500 nt windows centred at TSS (for H3K4me3 and H3K27ac) or at TTS (for H3K36me3) of
annotated human and mouse protein-coding genes. Multiple bigWigs were pooled for each

histone mark and condition. For each combination of ChIP-seq antibody and cell



line/tissue, the histone modification signals were normalized to have the same area under
the curve (i.e., the signal in each TSS was divided by the sum of signals in all TSS for each
given experiment). Next, the normalized densities were averaged across conditions for
each TSS or TSS and ChIP-seq antibody and the corresponding gene expression values were
also averaged over the same set of conditions. The results were matched between human
and mouse according to the gene ortholog list. As before, zero values were replaced by the

effective value of 10-3.

Splicing quantification and analysis

The quantitative assessment of splicing at the level of splice junctions (S]) was done
by using intron-centric metrics as they allow to interrogate a broad range of splicing events,
not only single-cassette exons 8. The percent-spliced-in index Y5 ({3) estimates the
conditional probability of a §], i.e., the number of transcripts spliced from the donor site D
to the acceptor site A relative to the number of transcripts in which D (respectively, A) was
used as a splice site. The completeness of splicing index 65 (03) estimates the respective

absolute probability, i.e., the likelihood that splicing at D (respectively, A) has occurred.

Splice junction counts were quantified directly from short read alignments (see

Mapping section) by using sjcount software (https://github.com/pervouchine/sjcount) as a

part of the ipsa package (https://github.com/pervouchine/ipsa). The intron-centric

metrics were computed by

considering only uniquely-mapped reads;
requiring the margin of 10 nt for every exon-exon as well as exon-intron junction;
requiring the minimum entropy of 3 bits for the offset distribution;

requiring agreement on S] counts between bioreplicates (IDR<0.1);

v > W e

requiring the minimum count of 10 in the denominator of the fraction defining s,

3, 85 and 63 (see 8).



Splice junctions were classified into the following four categories (increasing

confidence) according to their annotation status:

1. Novel (both splice sites unannotated);

2. One of the two splice sites is annotated;

3. Both splice sites are annotated but the intron between them is not;

4. Both splice sites and the intron between them are annotated.
The abundance of splice junctions in each category, expressed as the number of splice
junctions with count of at least x in at least y samples, is shown in Supplementary Fig. 1
(mouse). Each splice junction from categories 2-4 (see above) was assigned gene type
(protein-coding, IncRNA, or pseudogene) according to the gene type of the annotated splice
site. In cases when one splice site corresponded to several gene types or the two splice
sites were assigned different gene types, protein-coding type was preferentially used over
IncRNA, and IncRNA over pseudogene. The rest of splice junctions (category 1) correspond
to unannotated splice sites. The categorization of human and mouse splice junctions is

shown in Supplementary Table 4A.

Pooled values of ys; and 6; (i=5,3), denoted by y and 6, respectively, were used to
compute sample statistics. At that,  and 6 samples with more than 25% missing values
were excluded from the analysis. The average and the standard deviation of {s and 6 across
samples were chosen to be the measures of center and spread of S]’s usage and processivity,
respectively; all probability distributions were computed after applying the logistic

transformation logit(x)=log1o(x/(1-x)).

An annotated splice site (respectively, S]) is classified as constitutive if it appeared as
a splice site (respectively, S]) in all annotated transcripts overlapping the corresponding
nucleotide range; otherwise it is classified as alternative. Approximately 40% of human and
20% of mouse SJ are alternative, likely due to the difference in the annotation depth.
However, the fraction of human alternative SJ rises to 65% given that the mouse ortholog is
alternative, revealing strong association between human and mouse annotations (p<10-1¢).

In contrast with the alternative usage, which by definition refers to the annotated SJ status,



in Figure 3B we refer to the variability of splicing metrics that was quantified from the

RNA-seq data.

Non-coding genes

Long non-coding RNAs

Long non-coding RNAs (IncRNAs) are an emerging family of RNAs that have been
shown to have a diverse spectrum of functionality °10. As a general property, IncRNAs are
highly lineage-specific and appear to have a rapid evolutionary turnover 1112, The
GENCODE consortium has recently annotated a large collection of IncRNAs in the human
genome 11. There are 10,840 annotated human IncRNAs listed in Gencode v10. This
compares to only 3,854 mouse IncRNAs annotated in ENSEMBL v65. Of these, we have
detected 3,297 human and 3,207 mouse IncRNAs to be transcribed in the samples analyzed
here. The larger detection rate for mouse IncRNAs is likely to be due to the broader
biological spectrum of mouse samples. While the functionality of many IncRNAs is
currently under discussion, it is generally accepted that IncRNAs conserved over large

evolutionary distances are likely to play an important biological role.

Pseudogenes

Pseudogenes are a distinct class of long non-coding genes whose expression is
encountered in selective cell types. Pseudogenes are distinguished from other non-coding
genes because their parent protein-coding gene is found in the genome. A total of 12,358
human pseudogenes (from Gencode v10) and 15,887 mouse pseudogenes (identified in
silico using Pseudopipe 13 based on ENSEMBL v65) have been identified. We have detected
expression in 1,441 human and 878 mouse pseudogenes in the samples analyzed here — a
proportion much lower than for IncRNAs. Of the several thousand pseudogenes, only 129
pseudogenes were found to be orthologs between human and mouse. The low percentage
of orthologs in pseudogenes compared to that in protein-coding genes and IncRNAs is
consistent with the retro-transposition burst events that happened after the speciation of
human and mouse, which gave rise to a large number of pseudogenes independently in the

two species 1*. We found that the parents of the orthologous pseudogenes are enriched for



housekeeping genes whose functions are related to cellular respiration and metabolism. Of
the 129 orthologous pseudogenes, 27 mouse pseudogenes and 19 human pseudogenes are
transcribed, where only 5 of the orthologs are transcribed in both species — a

transcriptional behavior quite contrasting with that of IncRNAs.

Ortholog lists

Homology-based pipeline for IncRNAs

PipeR is a pipeline developed to profile IncRNAs applying an homology strategy that
combines a set of similarity and aligning methods to detect the presence of the queries in a
set of target genomes, as previously described in 1115, We further require the IncRNA
transcript predicted in the target genome to cover at least 70% of the original query
sequence, and to contain less than 20% of ancestral repeats in order to avoid the inclusion
of non-related sequences that could lead to spurious mapping and predictions. The

genomes are masked using RepeatMasker (http://www.repeatmasker.org) for low

complexity and interspersed repeats.

Orthologs of protein-coding genes

Orthologs of protein-coding genes between human and mouse was obtained as
described in 16 and 17. This ortholog set includes 15,736 one-to-one orthologs, 1,527 one-
to-many orthologs and 2,593 many-to-many orthologs. Throughout this paper, the analyses
in matched gene pairs were made for one-to-one orthologs with long transcripts

(Supplementary Table 2), representing a total of 15,722 genes.

Orthologs of novel transcripts

We used the novel mouse cufflinks models (see de-novo transcript model section) to
discover novel 1-to-1 orthologous transcripts between mouse and human. Since novel
transcripts strandedly overlapping the annotation are more complicated to deal with, novel
mouse cufflinks models that were either intergenic or antisense (IA) to the annotation
(using a 1bp overlap), were used. To discover orthology relationship they were first given

as input to pipeR to find human orthologous transcripts, and those were further fed back to



pipeR to find 1-to-1 orthology relationship (for more details on the method see LncRNA
ortholog supplementary section). Doing so we were able to identify 486 1-to-1 orthologs
from the initial 4,094 mouse IA transcripts with CAGE support. Since we wanted to identify
new transcripts in both species, we further discarded 155 transcripts with stranded exonic
overlap with the human annotation, and 192 transcripts with stranded exonic overlap with
the novel human cufflinks models. We also further required the transcripts to have CAGE
support at their 5’ end (see above) and ended up with a set of 38 novel 1-to-1 orthologous
transcripts between mouse and human.

The 38 1-to-1 novel orthologous transcripts can be found in Supplementary data

archive 1.

Orthologous genomic bins

The genomic sequences of human and mouse were subdivided into consecutive 100-
nt bins. The midpoint of each 100-nt bin in the human genome was mapped to the mouse
genome by a custom lift-over procedure 18 using filtered chain alignments 1°. The mapping
of midpoints induced the mapping of 100-nt bins, to which they belong. The corresponding
bins in the two species were declared as orthologous if they were mapped bijectively under
this procedure, i.e., if the human-to-mouse and mouse-to-human induced mappings were
mutually inverse as functions. Bins that were not identified as orthologous (i.e., ones that
were either not mapped or not mapped uniquely) were discarded from further analysis.
Although this procedure is biased towards considering genomic bins that are conserved, it
captures many bins with low and intermediate phastCons conservation scores

(median=2.0; IQR=9.1, min=0, max=100).

LncRNA orthologs

Human IncRNAs from Gencode v10 were mapped onto the mouse genome using the
PipeR pipeline described above. More precisely we first mapped the 17,547 transcripts
belonging to the 10,840 human Gencode IncRNA genes to the mouse genome, and obtained
2,327 transcripts (1,679 genes) in mouse, corresponding to 5,067 transcripts (3,887 genes)
in human. This represents a set of one-to-many IncRNA ortholog transcripts between

human and mouse, so we proceeded with further analysis of our predictions and used



pipeR to derive a subset of one-to-one orthologs by applying a reciprocal search to all of our
predictions. As a result we were able to obtain 1,719 transcripts (1,277 genes) in mouse
that were one-to-one orthologs. To have a comparison of ortholog conservation we also
applied our strategy to find Gencode v10 IncRNAs in 4 other mammalian species (cow, dog,
pig, rat). Similarity between the original human Gencode query and predictions in mouse
are evaluated and scored as the percent identity of the alignment. The latest version of the

pipeline can be found at http://github.com/cbcrg/piper-nf

The predicted LncRNAs from the mapping of Gencode V10 on mouse mm9 assembly
were clustered into genes by stranded overlap of at least 1bp. The new set of transcript
clusters was classified by taking the overlap with the set of en65 mouse long genes. If a
transcript cluster overlapped on the same strand with an annotated gene then we assigned
the annotated gene identifier to the transcript cluster. If there was no overlap we kept an
identifier generated by the clustering. In the case of a transcript cluster overlapping with
more than one annotated long gene the prefix "MO_" (multiple overlap) was added to the
gene identifier. This merged annotation was further submitted to the Flux Capacitor ©
program for quantification, and the resulting RPKM values in each bioreplicate of a sample
were submitted to npIDR.

To obtain a true 1-to-1 orthology at the gene level, we further filtered out all mouse
genes corresponding to more than one human gene, and all sets of mouse genes coming
from a single human gene. This lead to a set of 851 1-to-1 orthologous genes, including
1,083 transcripts in mouse, which can be found in Supplementary data archive 4.

To measure level of conservation of mouse IncRNA orthologs, the same homology
strategy was used to find orthologs in other species. Human Gencode V10 were therefore
mapped on 4 other mammalian species: rat (Rattus norvegicus, rn5), pig (Sus scrofa,
Sscrofal0), dog (Canis familiars, CanFam3) and cow (Bos taurus, UMD3.1), using the exact
same pipeline as for mouse. We then categorized the average gene expression in mouse
(computed on the samples for which RPKM was higher than 0.1) according to the number
of species in which an ortholog was found, and detected a weak correlation between both
(Supplementary Fig. 3A).

Using npIDR 0.1 as a maximum threshold to call expression and requiring the gene

to be expressed in at least 50% of the samples in mouse and 50% of the samples in human,



we found 12 genes, called ubiquitous. Compared to the set of 851 1-to-1 orthologous genes,
these 12 genes had a much higher average ratio of nuclear vs cytosolic expression across 7
human cell lines (Supplementary Fig. 3A). This ratio was computed in each cell line by only

considering the genes which had a non-zero RPKM after filtering by npIDR 0.1.

Pseudogene orthologs

To identify pseudogene orthologs, we started with 12,358 human pseudogenes from
Gencode v10 and 15,887 mouse pseudogenes based on ENSEMBL v65, generated by
Pseudopipe 13. Each human pseudogene was mapped to the mouse genome using the
filtered pairwise whole-genome human-mouse chain alignments 1%, and similarly, each
mouse pseudogene was mapped to the human genome. Orthologous human and mouse
pseudogenes that overlapped by a minimum of 1bp in the defined syntenic regions were
identified. From this set, we further filtered out those pseudogene pairs derived from non-
orthologous parents, or of different biotypes (e.g., one as duplicated pseudogene and one as
processed pseudogene), or of one-to-many mappings. This resulted in the identification of
129 one-to-one human-mouse pseudogene orthologs.

The resulting list of pseudogene orthologs can be found in supplementary data

archive 4.

Orthologous SJs

Genomic positions of annotated splice sites in human and mouse were extracted
from Gencode v10 and ENSEMBL65 annotations. Additionally, novel splice sites predicted
from RNA-seq data were included in the analysis if (i) they were supported by non-zero SJ
counts in at least 15% of samples and (ii) one of the boundaries of the S] was annotated as

splice site (i.e., the S] with two unannotated boundaries were not considered).

Human splice sites were projected to the mouse genome by a per-nucleotide lift-
over procedure 18 using filtered pairwise whole-genome chain alignments 1° and, similarly,
mouse splice sites were projected to the human genome. Splice sites that were mapped
uniquely and bijectively (i.e., the human-to-mouse and mouse-to-human projections were

mutually inverse as functions) were said to be one-to-one orthologs. A human segment



(exons or introns) was said to be one-to-one orthologous to a mouse segment if the
corresponding splice sites were orthologous (as defined above). In total, one-to-one
correspondence was established for 203,039 and 202,259 pairs of donor and acceptor sites,
respectively, and for 151,257 and 204,887 pairs of (internal) exons and introns,
respectively (here the terms ‘intron’ and splice junction, S, are used interchangeably). One-
to-one correspondence between splice sites induced an orthology relationship between
human and mouse protein-coding genes, to which they belong. The induced relationship
was identical to that of the human-mouse ortholog list in more than 93% of gene pairs 17,
thus demonstrating validity of the approach. The splicing analysis pipeline is available at

http://genome.crg.eu/~dmitri/splicing pipelines/

The list of ortholog segments (exons and introns) is available as Supplementary data

archive 2.

Constrained genes

DNR decomposition

The joint probability distribution of DNR and log-10 average gene expression was
decomposed into the sum of two 2-dimensional Gaussian distributions corresponding to
the two modes of the joint density (Supplementary Fig. 10A). Mean vectors and covariance
matrices were estimated by the method of moments separately for each of the two modes
[split by
the line log10(mean)=1.33(DNR-1)]. The weights of the two Gaussian components in the
sum were estimated by computing the projection (in L2 norm) of the observed density
onto a linear subspace generated by the two modes. The decomposition of DNR
distribution (Supplementary Fig. 10B) was computed as a marginal distribution of 2D

Gaussians.

Constrained gene tissue specificity



In each species, tissue specific genes are defined as genes in the top 20t percentile
of the tissue specificity measure distribution, for all three following tissue specificity
measures:

* Normalized entropy (nentropy)

* Coefficient of Variation (CV)

* Kendall tau index (tau).
Using this approach, we found 2,043 and 2,558 tissue specific genes in human and in
mouse respectively, of which 990 and 726 are in the list of one-to-one orthologs with a
DNR (see above), and of which 72 and 32 are constrained respectively. This means that
7.3% and 4.4% of human and mouse tissue specific genes that have a DNR, are constrained

(respectively).

Constrained gene differential expression

In order to know whether constrained genes are more or less differentially
expressed (DE) than the rest of the genes, we computed for each species and each pair of
experiment, differentially expressed genes (EdgeR?0 on the read counts of the genes in the
two pairs of bio-replicates, filtering by FDR <0.01 and by log1o fold-change 22). Since there
are 18 and 30 experiments in human and in mouse respectively, this approach yielded 153
and 435 sets of differential expressed genes in human and mouse respectively. In total,
13,042 human and 14,567 mouse genes were found DE in at least one comparison,,
representing 12,763 human and 13,550 mouse genes with DNR, and 5,467 human and
5,862 mouse constrained genes. This means that the percentage of genes with DNR that are
DE is 89% for human and 99% for mouse, and that the percentage of constrained genes
that are DE is 82% for human and 88% for mouse. This shows that constrained genes are

DE at a rate that is similar to the one of orthologous genes with DNR.

Sets of constrained and unconstrained genes matched by expression
Constrained genes are globally more highly expressed than unconstrained genes,
when considering all (Supplementary Fig. 11B), or only mouse or only human experiments

(data not shown). Since this could potentially bias some analyses that compare constrained



and unconstrained genes, we also define equal size control sets of constrained and
unconstrained genes with matched average expression (average expression being
computed on non-zero RPKM after applying npIDR), using all, only mouse and only human
experiments. This is done using an in-house tool which, given a set of elements associated
to classes and values, samples from each class an equal number of elements so that the final
distributions of values are similar between classes.

Applied to the sets of 6,636 constrained and 7,727 unconstrained genes, this
procedure resulted in the following number of constrained and constrained genes of
matched expression:

* 5,519, when the average is computed on all mouse and human experiments,
* 5,752, when the average is computed on human only experiments,
» 5,268, when the average is computed on human only experiments.
The set of 14,363 genes with DNR with information about constrained genes and gene sets

matched by expression can be found in Supplementary data archive 5.

Constrained genes in vertebrates
In order to know whether genes with constrained expression in mouse and human
were also constrained in other vertebrate species, we used gene expression data from two

recently published multiple vertebrate and tissue RNA-seq studies:

» Merkin et al.?!, Science, 2013, including RNA-seq from 9 tissues (brain, colon, heart,
kidney, liver, lung, skeletal muscle, spleen, testes) of 3 individuals from 5 vertebrate
species (rhesus, mouse, rat, cow, chicken), complemented by the Human Body Map
RNA-seq data from the same tissues. There were 6,002 orthologs across the 6
species, of which 5,971 had expression in both mouse and human using our data

(Figure 3B);

» Barbosa et al.??, Science, 2013, including RNA-seq from 7 tissues (brain, cerebellum,
heart, kidney, liver, skeletal muscle, testes) and 11 vertebrate species (human,

chimp, orangutan, macaque, mouse, opossum, platypus, chicken, frog, tetraodon).



Since there were an unequal number of tissues for each species, we chose 7 species
(human, chimp, macaque, mouse, opossum, platypus, chicken) for which there were
6 tissues (brain, cerebellum, heart, kidney, liver, testes) available. The number of

orthologs from those 7 species was 10,568.

Constrained splicing events

Following the same logic as for constrained genes, but instead of the dynamic range
we compute the mean and the variance of S] usage () for 204,887 orthologous SJs across
the pooled set of human and mouse experiments. Since s value is not always defined and
the value of variance is correctly defined only for large enough samples, we confine our
analysis to 139,935 SJs that have at least two defined s values in each species. If the
distribution of Y were the extreme case, in which s be equal only to 0 or 1 (Bernoulli
distribution), the variance of such distribution would have been equal to o?=p*(1-u), where
u is the proportion of ones among . The actual distribution of y across experiments is
continuous, in which the variable can also take intermediate values between 0 and 1. The
variance of such observed distribution is smaller or equal to p*(1-u), where p is the average
value of . We therefore represent the result on splicing constraint as absolute variance
(Figure 6D) and the fraction of variance in the maximum possible variance of Bernoulli

distribution with the same mean (Supplementary Fig. 14).

Nuclear versus cytosolic enrichment analysis

The analysis of nuclear vs. cytosolic enrichment was done using ENCODE cell line data 2 for
protein-coding genes with non-zero expression values in nuclear, cytosolic, and cell
compartments. The mean and standard deviation were computed on logio of the nuclear-
to-cytosolic concentration ratio for genes with observations in all seven ENCODE cell lines ?,

separately for constrained and unconstrained genes matched by expression level (Figure

6A).



Gene ontology enrichment analysis

In order to know whether constrained genes were enriched in any particular GO
term from any of the 3 main GO trees (biological process, molecular function, cellular
compartment), we did a GO term enrichment analysis for the set of 6,626 constrained
genes compared to the set of all 1-to-1 mouse/human orthologs using the GOstat R package
for the three GO trees.

Results are provided in Supplementary data archive 5.

Broad promoter usage

In order to get insight into the gene regulation of constrained and unconstrained
genes, we computed the number and percent of constrained and unconstrained genes with
broad TSS as defined by FANTOM#23. In order to eliminate the gene expression bias, this
computation was done for the 5,268 constrained and the 5,268 unconstrained genes with
matched expression in human. The percent was 67% for constrained genes and 52% for

unconstrained genes (p-val=0).

Transcription Factor peaks

The clustered peaks for ENCODE transcription factor binding were downloaded
from the UCSC ftp site
(http://hgdownload.cse.ucsc.edu/goldenpath /hg19/encodeDCC/wgEncodeRegTfbsCluster

ed/wgEncodeRegTfbsClusteredV3.bed.gz), as genomic regions. We only count peaks

overlapping by at least 1bp the TSS extended 2000 and 500 bp upstream and downstream,

respectively.

Repeat elements

Since transcription initiating in retrotransposons have been shown to be cell type
specific?4, we were interested in knowing whether promoters of unconstrained genes were
enriched for repeat elements with respect to constrained genes. Therefore we computed

the 1kb density of repeat elements (UCSC, 5,232, 244 repeats downloaded on Feb. 2013) at



the promoter of genes as well as in the gene body. The promoter of a gene was defined as
the 1001 bp window centered at the TSS of the gene, whereas the body of a gene was
defined as the segment between the two gene extremities extended by 500bp on each side.
We found that the mean-per-1kb repeat density at the promoter was 0.82 for the
constrained and 0.87 for the unconstrained genes with the standard deviations 1.15 and
1.19, respectively. The p-value for two-sample z-test (n=5519, normality not required) was

0.03, indicating a depletion of repeat elements in promoter regions of constrained genes.

Comparison to HK genes

Housekeeping (HK) genes are usually defined as genes with little expression
variation across many different cell types of an organism. Therefore our set of constrained
genes could be seen as a mouse-human HK gene collection. For this reason we were
interested in comparing it to several recently published sets of HK genes:

» 3,804 HK genes defined as genes with little expression variation across 16 human
tissues using Human Body Map RNA-seq 2>, called E-L HK genes here;

* 7,522 genes that we derived from the 10,787 HK TSS defined using single-molecule
cDNA sequencing (CAGE) across a great diversity of human primary cells, cell lines
and tissue 4, called F5 HK genes here;

+ 2,064 HK genes obtained using microarray in 43 human tissues 2, called Chang HK
genes here;

» 1,522 HK genes obtained using microarray in 42 normal human tissues 27, called She
HK genes here.

To be compared to our set of constrained genes, which were defined in Gencode
v10, the genes in each of those sets, first need to be mapped to Gencode v10 gene id list,
resulting in 3,664 E-L HK genes, 6,560 F5 HK genes, 1,989 Chang HK genes and 1,382 She
HK genes (Supplementary Table 8).

There were 2,487 genes in common between E-L, F5 and the constrained genes, and

only 335 between the 5 sets. Focusing on the 3 deep-sequencing derived sets, the set with



more unique genes was the constrained set, then F5 and finally E-L (Supplementary Fig.

15).

Relation to lethality

To help understand the properties of mouse/human constrained genes with respect
to rest of the mouse/human orthologous genes, we compared them to a public database of
mouse genes which mutation in homozygous mouse embryos have been proven to cause
lethality in vivo (Mouse embryonic lethal data from the Jax mice database?,

http://jaxmice.jax.org/list/ra50.html, called mouse lethal genes here). The July 3rd 2014

version of this database contained a total of 253 genes, of which 237 had a mouse ensembl
v65 gene identifier.

A hundred and fifteen constrained genes were mouse lethal out of 6,636 (1.73%),
while 101 unconstrained genes were mouse lethal out of 7,727 (1.31%). When focusing on
the 1000 top constrained and the 1000 top unconstrained genes (i.e. with 1000 highest and
lowest DNR), these numbers went to 24 (2.4%) and 9 (0.9%), therefore showing an even

larger difference (Figure 6D).

Relation to traits and disease
In order to understand whether constrained and unconstrained behave differently
with respect to certain traits/diseases, we compared them to data from the three following
public databases:
* The Online Mendelian Inheritance in Man (OMIM) disease database

(http://www.omim.org/downloads)??, downloaded on June 20th 2014 and

including 2,211 diseases, 3,090 genes and 4,820 associations;
+ The NHGRI Genome-Wide Association Study (GWAS) catalog

(www.genome.gov/gwastudies)3?, downloaded on June 20th 2014 and including

947 traits associated to known genes, 6,608 genes and 13,020 associations;
» The Catalog of Somatic Mutations in Cancer (COSMIC)

(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/download)?3?,

downloaded on June 24th 2014 and including 48 cancer primary sites, 177 primary



histologies, 20,917 genes, 311 (primary site, primary histology) pairs, 318,132
associations between a (primary site, primary histology) pair and a gene.
For each database, 2 different analyses were performed:

1. the percent of genes in all and in the top 1000 constrained and unconstrained genes
that were associated to a trait or disease were computed;

2. the number of traits or diseases that were significantly associated to the set of 6,636
constrained genes compared to the set of all 14,363 orthologous genes with DNR,
using a hyper-geometric test and a p-value threshold of 0.01, was computed.

The results are summarized in Figure 6D. They show that unconstrained genes are more
associated to postnatal diseases than constrained genes, consistent with the above lethality
analysis, and this trend was even more important when using the top 1000 constrained and
unconstrained gen. Although the number of significant OMIM diseases and GWAS traits
were higher for unconstrained genes than for constrained genes, the number of significant

cancer types was higher for constrained genes.

Relation to eQTL
In order to know whether mutations associated to expression change (eQTL) affect
constrained genes more often than unconstrained genes, we downloaded and used two
recently published sets of eQTLs:
+ The 10,914 cis-eQTLs from the Battle et al. study 32;
* The 4,010,238 cis-eQTLs from the Lappalainen et al. study 33 (European population,
FDR 5%).
Then we simply computed the percent of genes in all and in the top 1000 constrained and
unconstrained genes that had an eQTL in each set. The results are summarized in Figure

6D. They show that the constrained genes have more eQTL than unconstrained genes.

Variation across human individuals
Constrained genes are defined as genes with low variation of expression across a
diverse panel of mouse and human tissues and cell lines. It is therefore interesting to see

whether those genes also vary less than other genes across human individuals.



To answer this question we used the Geuvadis gene expression data in 667
individuals (RPKM, see 33) and computed the coefficient of variation of RPKM across the
667 individuals for both constrained and unconstrained genes (human matched expression
set, see above). The results are shown on Supplementary Fig. 16 and indicate that
constrained gene expression also varies less than unconstrained genes across human

individuals.

Sequence conservation

PhastCons scores for multiple alignments of 45 vertebrate genomes to the human
genome 34 were obtained from UCSC Genome browser database 1. PhastCons scores for
individual nucleotides were averaged over 100-nt windows and scaled to the range from 0

to 100.

The percent identity of promoter sequences was computed for the one-to-one
protein-coding gene orthologs. Sequences 200bp upstream of the annotated transcription
start site of the transcripts that define protein similarity were aligned using T-coffee
program with default options 35. The percent identity of promoter sequences was defined
as the ratio of matching nucleotides to nucleotides that were aligned. Similarly, the percent
identity of transcript sequences was computed by aligning transcripts that were used to
define protein similarity, also as the ratio of matching nucleotides to nucleotides that were
aligned. In most analyses, genes were categorized by their relative positions in the
distribution of percent identity (i.e., top 20% conserved, etc.) by using the respective

quantiles.

Antisense transcription

Antisense vs. total expression ratio

The antisense/total expression ratio was calculated for all genes in the long gene
type classification (Supplementary Table 2). Specifically, for each gene we counted the

number of reads mapping to the cognate strand (S), extended 1,000 nt upstream and



downstream, and the number of reads mapping to the opposite strand (AS). We retained
only those counts that passed reproducibility filter (IDR<0.01). Then the ratio was
computed as AS/(AS+S), for the genes with a total read count on both strands (AS+S) > 250.

The antisense/total expression ratio was averaged across all samples for each species, but
only the genes with a valid ratio in at least 70% of the samples were considered. The
correlation of the ratio between human and mouse was computed by taking the logit of the
average ratio across samples. As a measure of divergence of the antisense/total expression
ratio, we calculated the absolute difference between logit of the average ratio across

samples in human and mouse.

Identification of orthologous sense-antisense pairs

Starting from the list of 1 to 1 orthologous protein-coding genes, we extracted the
ones with an overlapping annotated long gene on the opposite strand, requiring at least 1
exonic nucleotide in common. For human and mouse, we found 4,286 and 3,181 protein-
coding genes with this criteria, respectively. These genes were pooled with the orthologous
protein-coding genes with an antisense vs total ratio > 30% in at least 70% of the
conditions. This led to a final set of 4,745 human genes and 3,641 mouse genes, 1,889 of
which have an orthologous relationship (Supplementary Table 5A).

Human and mouse genes with antisense transcription can be found in

Supplementary data archive 3.

Specific examples of orthologous sense-antisense pairs

A regulatory mechanism involving antisense IncRNAs that contains a SINE elements
and overlaps a protein-coding gene has been recently described 3¢. Here we found 15
additional cases in which orthologous human/mouse protein-coding genes overlap SINE-
containing IncRNA antisense transcripts (Supplementary Table 5B). Some of these cases
exhibit coordinated IncRNA-mRNA expression both in human and in mouse
(Supplementary Fig. 2A,B). Among these, we found HNF1A4, a transcriptional activator that
regulates the tissue-specific expression of multiple genes, specifically in pancreatic islet
and in liver cells. In human, the expression of HNF1A and its IncRNA counterpart, HNF1A-

AS1, is restricted to HepG2 and A549 (Supplementary Fig. 2A,C). In mouse, we also found



some potentially interesting cases such as the gene pair involving Bhlhe40, a gene encoding
a transcription factor for neuronal differentiation for which the antisense gene shows

neuronal tissue specificity (Supplementary Fig. 2B,D).

Intergenic transcription

Highly expressed intergenic bins

Intergenic bins are defined as mouse-human orthologous 100 bp bins with positive
expression in one of the two species (see section on orthologous lists above) that do not
overlap any Gencode v10 gene in human. Intergenic bins are considered as highly
expressed when their expression (measured as average mean expression in human and
mouse) is in the top 10 percentile of the intergenic bin expression distribution. Out of
6,610,763 orthologous 100bp bins with positive expression in human or mouse, 1,529, 377
are intergenic. Highly expressed intergenic bins were compared to GWAS hits3° and to cis-
eQTL32 in order to see if they were enriched for those with respect to intergenic bins in
general. Out of 152,937 highly expressed intergenic bins, 91 and 234 had at least one GWAS
hit and one cis e-QTL respectively, compared to 770 and and 715 for intergenic bins in

general, yielding p-values of 0.05 and nearly 0 respectively by Fisher test.

Supplementary Data
Supplementary data files and the supporting information can be found at the web site

http://public-docs.crg.es/rguigo/Papers/Pervouchine_Nature_2014/SupplDataFiles/
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