Supplemental Figure Legends

Supplemental Figure 1. Activated CD47 does not regulate other HDAC family members. Western immunoblot analysis of HDAC1,-2, and -4 protein expression levels in LV tissue samples from wild type (CD47^{+/+}) (WT) and CD47 (^{-/-}) null animals 4 weeks post-TAC or control. Densitometry is presented as the mean (\pm S.E.M.) of n = 4 animals/group.

Supplemental Figure 2. CD47 promotes PE-stimulated upregulation of cardiac HDAC3. Rat neonatal cardiac myocytes RNCM were treated with phenylephrine (PE, 10 mM) \pm a CD47 antagonist antibody (Ab) (clone OX101, 1 µg/ml) and Western immunoblot analysis of HDAC3 protein expression performed on cell lysates. A representative blot is shown. Densitometry is presented as the mean (\pm S.E.M.) of n = 4 experiments. * = statistically significant difference (p < 0.05) compared to untreated; # = statistically significant difference (p < 0.05) compared to PE treated.

Supplemental Figure 3. Oligonucleotide morpholino treatment effectively suppresses HDAC3 protein expression in cardiac myocytes. (A) RNCM were treated with a morpholino oligonucleotide to HDAC3 at the indicated concentrations or vehicle (CTRL) for 48 h, lysates prepared and protein expression determined via Western immunoblot. Densitometry is presented as the mean (\pm S.E.M.) of 4 separate experiments. * = statistically significant difference (p < 0.05) compared to CTRL. (B) Rat neonatal cardiac myocytes were treated with BAY58-2667 (1 μ M) for 3 h, lysates prepared and protein expression of total and phosphorylated HDAC3 (p-HDAC3) determined via Western immunoblots. Densitometry is presented as the mean (\pm S.E.M.) of 3 separate experiments.

Supplemental Figure 4. Activated CD47 regulates CaMKII downstream targets. RT-PCR analysis of mRNA transcript expression levels of (A) beta myosin heavy chain (β -MHC), (B) atrial

natriuretic peptide (ANP), (C) alpha skeletal actin (α -SKA) and (D) brain natriuretic peptide (BNP) from LV tissue samples from age matched male wild type (WT) and CD47 (^{-/-}) null mice 4 weeks post-TAC or control. Data are presented as the mean (\pm S.E.M.). (n = 4 animals/group). Rat neonatal cardiac myocytes were treated with 7N3 (10 μ M) for 3 h, lysates prepared and RT-PCR analysis of mRNA transcript expression levels of (E) β -MHC and (F) BNP performed. Data are presented as the mean (\pm S.E.M.) of 3 separate experiments.

Supplemental Figure 5. Activated CD47 regulates cardiac myocyte Ca²⁺ to control CaMKII expression. (A) Western immunoblot analysis of phosphorylated CaMKII (p-CaMKII) and total CaMKII protein expression levels in LV samples from wild type (WT) mice \pm an HDAC3 morpholino 4 weeks post-TAC or control. Densitometry is presented as the mean (\pm S.E.M.) of n = 7 animals/group. * = statistically significant difference (p < 0.05) compared to control; # = statistically significant difference (p < 0.05) compared to WT TAC. (B) Rat neonatal cardiac myocytes were treated with a amiloride (5 mM, 30 min) (B, C) or nifedipine (10 mM, 30 min) (D) \pm peptide 7N3 or a control (CTRL) peptide (10 μ M), lysates prepared and protein expression of CaMKII, phosphorylated CaMKII (p-CaMKII) (A, C), HDAC3 and phosphorylated HDAC3 (p-HDAC3, B) determined via Western immunoblot. Densitometry is presented as the mean (\pm S.E.M.) of 4 separate experiments. * = statistically significant difference (p < 0.05) compared to 7N3 + amiloride and 7N3 + nifedipine.

Supplemental Figure 6. Activated CD47, in a Ca²⁺ dependent manner, promotes autophagy marker accumulation. (A) Rat neonatal cardiac myocytes were treated with amiloride (5 mM, 30 min, A) or nifedipine (10 mM, 30 min, B) \pm peptide 7N3, a control peptide (CTRL) (10 μ M) or vehicle (control), lysates prepared and protein expression determined via Western

immunoblot. Densitometry is presented as the mean (\pm S.E.M.) of 4 separate experiments. * = statistically significant difference (p < 0.05) compared to 7N3 + amiloride.

Supplemental Figure 7. CD47 is expressed in LV biopsies from healthy subjects and dysregulated in end-stage LV HF. (A) Western immunoblot analysis of CD47 protein expression in left ventricular tissue samples from patients with non-ischemic LV HF (n = 4) and normal controls (n = 5) and mRNA levels of CD47 (B) and TSP1 (C) from the same. Data are presented as the mean of all samples (\pm S.E.M.). * = statistically significant difference (p < 0.05) compared to control.

Supplemental Figure 1

 $\frac{control}{PE} PE + CD47 Ab$ HDAC3 β -actin $\frac{1.5}{0.0}$ $\frac{1.5}{0.0}$

Supplemental Figure 2

Supplemental Figure 3

Α

Supplemental Figure 6

Supplemental Movie Legend.

Activation of CD47 results in a rapid increase in cytosolic calcium in cardiac myocytes.

Real-time live cell imaging of RNCM shows a rapid increase in calcium-driven fluorescence following treatment with the CD47 specific activating peptide 7N3. RNCM were cultured on glass bottom dishes, loaded with the calcium sensitive dye Fluo-4 AM (5 μ M), for 20 minutes, followed by treatment with peptide 7N3 (10 μ M). Following the addition of peptide 7N3 to the culture medium data were collected every 3 minutes over a 30 minute period employing an inverted Nikon TiE fluorescent microscope.