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1 Derivation of the core control system (miR-451-AMPK-mTOR)

In this section, we develop a simple mathematical model for the regulation of the core miR-451-AMPK-
mTOR system shown in Figure A. In order to incorporate the signaling network shown in Figure B(A) into
our model, we simplified the network as shown in Figure B(B). By convention, the kinetic interpretation
of arrows and hammerheads in the network represents induction (arrow) and inhibition (hammerhead).
Previously, we developed a mathematical model of the miR-451-AMPK core control system based on
the simplified network [18]. In this study, we extend our previous work to the miR-451-AMPK-mTOR
system. We merged the entire regulatory network between CAB39/LKB1/STRAD and AMPK/MARK
into one component (AMPK complex; blue dotted box in Figure B(A)) while we kept miR-451 in one
module (brown dotted box in Figure B(A)). We also take into account the regulation of mTOR, which
will play a significant role in linking miR-451-AMPK network to the cell cycle network. Let the variables
m, a and r be activities of miR-451, AMPK complex, and mTOR, respectively. The scheme includes
autocatalytic activities of miR-451 (m), AMPK complex (a), and mTOR (r) as reported in [19], mi-
croRNA/protein degradation of those key molecules, mutual inhibition between miR-451 and AMPK
complex and inhibition of mTOR activity by AMPK complex.

Based on these observations, we write the phenomenological equations for the rate change of those
key modules (m, a, r) as follows:
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where g represents the signaling pathways from glucose to miR-451, s1, s2 are the signalling pathways
to AMPK complex and mTOR, respectively. Λ1,Λ3,Λ7 are the autocatalytic enhancement parameters
for miR-451, AMPK complex, mTOR, respectively. Λ2,Λ4,Λ8 are the Hill-type inhibition saturation
parameters from the counterpart of miR-451, AMPK complex, mTOR, respectively. Λ5 is the inhibition
strength of miR-451 by the AMPK complex, Λ6 is the inhibition strength of the AMPK complex by
miR-451, Λ9 is the inhibition strength of the mTOR by the AMPK complex. Finally µ1, µ2, µ3 are
microRNA/protein degradation rates of miR-451, AMPK complex, and mTOR, respectively.

As indicated in equation (1), the signal g increases the rate of miR-451 activation through the function
f(g), while AMPK-dependent inhibition of miR-451 is through the function F (a) in the denominator. A
requirement of these functions is that ∂f

∂g > 0 for all non-negative g, and ∂F
∂a > 0 for all non-negative a.

Similarly, the first term h1(s1) on the right-hand side of equation (2) represents an increase in AMPK
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Figure A. Proposed role of miR-451 in the regulation of LKB1/AMPK-mTOR signaling
in response to high and low glucose levels [18]. miR-451 levels determine cell migration or
proliferation in response to glucose (red triangle on the left) via the AMPK-mTOR network [19]. (A)
Normal glucose levels up-regulate miR-451, which leads to down-regulation of the AMPK complex
(CAB39/LKB1/AMPK). In turn, up-regulated AMPK levels induce up-regulation of mTOR, which
leads to increased proliferation and decreased cell migration. (B) Low glucose levels reduce miR-451
levels, resulting in up-regulation of AMPK activity and down-regulation of mTOR. This leads to
reduced cell proliferation and enhanced cell motility. Schematic components of miR-451,
CAB39/LKB1/AMPK complex, and mTOR are represented by modules ‘M ’ (box with brown dotted
line), ‘A’ (box with blue dotted line), and ‘R’ (box with brown dotted line on the right) in our
theoretical framework.
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activity induced by the signal s, and miR-451-dependent suppression of AMPK activity through the
function H1(m) in the denominator. In the same manner, the first term h2(s2) on the right-hand side of
equation (3) represents an increase in mTOR activity induced by the signal s2, and AMPK-dependent
suppression of mTOR activity through the function H2(a) in the denominator. One must also have
∂h1

∂s1
> 0, ∂h2

∂s2
> 0, ∂H1

∂m > 0, ∂H2

∂a > 0 for all non-negative s1, s2,m, a. Based on biological observations
(Figure A), we assume that

f(g) = Λgg, F (a) = a2, h1(s1) = s1, H1(m) = m2, h2(s2) = s2, H2(a) = a2. (4)

The governing equations (1)-(3) with the simple assumption (4) in a dimensional form become
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where all parameters (ΛG, g, s1, s2,Λi (i = 1, . . . , 9), µi (i = 1, 2, 3)) are non-negative constants.

2 Detailed Mechanics Scheme
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Figure B. A schematic of the core control model. (A) Conceptual model of regulation of
miR451, AMPK complex, and mTOR in GBM cell migration and proliferation [19]. (B) Cartoon model
(extended from [18]): miR-451 level and activity of its target complex (CAB39/LKB1/AMPK), and
mTOR levels were represented by ‘m’, ‘a’, and ‘r’, respectively.

2.1 Mechanical effects on tumor growth: The cell-based component

Cell-mechanics is believed to play a large role in tumor growth and invasion. Mechanical stresses and the
signaling pathways influence growth in a phenomenologically-specified manner in our model. We begin
in the next section with a description of the cell-based component of the hybrid model.
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2.1.1 The forces acting on individual cells

The mechanical behavior of individual cells is based on the model developed by Dallon and Othmer [1]
(hereafter the paper and model is denoted DO) and Kim et al. [2] (hereafter the paper and model is
denoted KSO). The new aspect that is needed in the present context is the core control system (miR-
451-AMPK-mTOR) for cell proliferation and migration. The forces on a cell in the DO model include
(i) the active forces exerted on neighboring cells or the substrate, (ii) the dynamic drag forces that arise
as a moving cell forms and breaks adhesive bonds with neighboring cells, (iii) a static frictional force
that exists when cells are rigidly attached to each other or to the substrate, and (iv) a reactive force due
to forces exerted by other cells on it. The active force on cell i is denoted Ti,j , wherein j = 0 denotes
the substrate, and the reaction force to this is denoted Mj,i. In the context of glioma migration via
miR-451-AMPK-mTOR regulation, the specific form of active forces will be introduced in Section 2.1.3.
The static force, which is denoted Sj,i, is the binding force on the ith cell when bound to the jth. Since
Si,j = −Sj,i, the cell-cell forces cancel on all but those cells attached to the substrate. A more detailed
discussion of all forces involved can be found in [1,2]. The total force on the ith cell is then summarized
by

Fi =
∑
j∈Na

i

Mj,i +
∑
j∈Na

i

Tj,i +
∑
j∈Nd

i

µij(vj − vi) +
∑
j∈N s

i

Sj,i (8)

where N a
i denotes the neighbors of i, including the substrate, upon which it can exert traction, N d

i is the
set of cells (which includes substrate and extracellular matrix) that interact with i via a frictional force,
and N s

i denotes the set of cells that statically bind to cell i.

2.1.2 Cell growth and the rheology of the cytoplasm

There are two different kinds of cells involved in the system: proliferative cells and motile cells. Prolif-
erative cells are modeled as in the KSO model [2] with intracellular dynamics (miR-451-AMPK-mTOR
module) and an algorithm for migratory cells is introduced as in [1, 3]. The KSO model, which is based
on an earlier model for the mechanical behavior of cells and tissues under stress [1], addresses four major
aspects (i) how an individual cell reacts to forces on it, (ii) how stress affects growth and inhibits growth,
(iii) how cells interact mechanically with their surrounding microenvironment, and (iv) how growth and
division can be described.

The cells are treated as oriented ellipsoids and their cytoplasm considered as an incompressible,
viscoelastic solid. In the absence of growth their volume is preserved (constant under all deformations),
and growth is included in series with the active response and the passive forces. Changes in the length of
an axis a of a cell consist of the passive change due to the length of the viscoelastic component (spring-
dashpot module; u0

a) and the change due to the growth (uga) in response to given mechanical forces
and biochemical signals (oxygen and glucose). The governing equations of the length of the i-th axis,
i = a,b, c, of a cell are

ui = u0
i + ugi , (9)

du0
i

dt
=

(
ki
µi

[fi(t) + p̄− f2(u0
i )] +

dfi
dt

)
×
(
f ′2(u0

i ) + ki

)−1

, (10)

where ui is the change in the length of the ith axis, u0
i and ugi are the changes in the length of the ith

axis due to a change in the passive and growth element, respectively, fi is the magnitude of the force
applied at each end, f2 is the nonlinear spring force from the spring in parallel, ki is the spring constant
for the spring in the Maxwell element, µi is the viscous coefficient of the dashpot, p̄ is the force due to
pressure. See [1] for specific form of the function f2 and details of how these equations are established. It
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is assumed that the passive response is incompressible [2, 4], leading to the volume constraint for u0
a, u

0
b ,

and u0
c :(
du0
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dt
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)
= 0, (11)

where a∗0, b
∗
0 and c∗0 are the lengths of three axes a,b, c after growth (a∗0 = a0+uga, b

∗
0 = b0+ugb , c

∗
0 = c0+ugc

where a0, b0 and c0 are the initial lengths of three axes). Specific form of the growth term u̇gi is introduced
below. In the KSO model [2] a cell can grow and divide into two daughter cells following the developed
algorithm. This schematic algorithm incorporates the following major aspects (i) how to define an intrinsic
cell-cycle time τc; (ii) how to define an intrinsic cell volume V0 that cells attain immediately after division;
(iii) how a cell divides under a given stress; (iv) how mechanical stress can inhibit cell growth. A cell
relaxes to a spherical shape, whatever their initial shape, in the absence of external forces. In the present
work we need to refine our assumptions on growth. In a previous work, Kim et al. [2, 4] assumed that,
in the absence of nutrient limitation, mechanical stress limitations [2, 4], or other anti-growth signaling
factors [4] cells grow to the volume 2V0 and then instantly divide into equal two daughter cells. The
orientation of cell division is determined by the direction of the net force exerted on the cell as in [2].
Several control mechanisms may delay or inhibit growth or cell cycle. Many different biomechanical and
biochemical factors may affect the growth of normal cells and its regulation in cancerous cells may be
very complex. (See the detailed discussion for regulation of cell growth below.)

In the current model, we assume that the control mechanism of growth inhibition has three compo-
nents. The first component controls the growth along each axis, which is zero when the force acting
on the cell in that direction is too compressive or tensile. The second one is switch-like component,
which is specific to the model used here, miR-451-AMPK-mTOR-dependent module. Finally, the third
control component consists in cell cycle arrest and apoptosis due to chemotherapeutic that target either
G1- or S-G2-M -phase in a cell cycle. We assume that the growth rate of proliferative cells depends
on biomechanical signals (the mechanical stress acting on the cells) and biochemical signals (the up- or
down-regulation of miR-451, AMPK, mTOR in the core control system in response to glucose) indepen-
dently, and relate the growth of the axes of the cell to the tensions along major three axes. Thus we use
the multiplicative form [3–5] of the growth rate function for the i-th axis given by

dugi
dt

= f(σ) · P (M,A,R, [G0]) (12)

where σ is the force acting on the cell and P is a function of the levels of miR-451 (M), AMPK complex
(A), and mTOR (R), and quiescent status ([G0]) in the cell cycle. See Figure C. The growth function
f(σ) is defined so that cells do not grow if forces are too large, but can grow under sufficiently small
tensile and compressive forces. We also assume that the growth rate due to stress decays linearly with
increasing compressive or tensile stress. Thus we define f(·) as follows (same as KSO with α = 0 there):

f(σ) =


c−(σ − σ−) if σ− ≤ σ < 0,

−c+(σ − σ+) if 0 ≤ σ ≤ σ+,

0 if σ > σ+, σ < σ−,

(13)

where c+, c− are positive constants, σ+ > 0, σ− < 0, [σ−, σ+] is the interval of positive growth, c+σ+ =
−c−σ−. As a result growth is either on or off in the context of mechanical stress acting on the cell.
See Figure 4 in [2] for more detail. Cell proliferation depends on levels of many intracellular variables
that control internal biological clocks of cell proliferation and migration. In the present work, we assume
that the core control system and conditions of G0 phase ([G0] = 0 or 1) in the cell cycle module also
determine cell proliferation, i.e., when the cell i is getting the right proliferation signal from the core
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control system (miR-451-AMPK-mTOR) and the cell is in the regular cell-cycle ([G0] = 0). Thus, the
function P (M,A,R, [G0]) in the equation (12) is defined as

P (M,A,R, [G0]) =

{
1 if M > thM , A < thA, R > thR, [G0] = 0

0 otherwise
(14)

where M,A,R is the levels of miR-451, AMPK complex, and mTOR, respectively, at the cell site and
thM , thA, thR are the threshold values of M,A,R, respectively. See Figure C(B).

Many factors including temporal changes [6] in chemicals or signaling levels, spatial differences [6,7],
growth factors [8], or mechanical stress [8] can affect cell growth even in a simple system such as that
in flies. Mechanical stresses can be processed through integrins-cytoskeleton and affect biochemical
interactions [8–13], gene expression and overall growth [14, 15]. Both compression and tension [8, 13–15]
may promote cell division through the formation of mitotic spindles along the main axis of tension. This
phenomenon of growth inhibition under mechanical constraints was also modeled with a simplification
of those complicated relationships between growth and stresses in the context of growth of multilayer
spheroids [2, 4, 16] and compared to experiments [14, 15]. Mechanical interaction between a cell and
substrate was also shown to govern growth behavior in epithelial cell growth [17]. The same hybrid
model approach was proven to be useful in reproducing growth patterns of tumor epithelial cells under
mechanical stresses in ductal carcinoma DCIS in situ [4, 5].

2.1.3 Active force and equations of motion

For the force balance equations for each cell we take into consideration all the forces acting on the
cell: the active forces, adhesion forces, internal pressure, and other forces as discussed in Section 2.1.1.
We first describe the active force here. In DO model, the active force is generated by pulling on the
neighboring cell whose center is closest to the line in the direction of desired motion when the cell is not
in contact with the substrate. In the current model, we assume that migratory cells transmit the active
force directly to the substrate and generate the active force by pulling the substrate. The model can
easily be extended to incorporate active forces generated by all cells, but the cells in the interior of an
aggregate need to connect to the surrounding tissue in order to do meaningful work toward moving the
aggregate [1]. Furthermore, as we mentioned earlier, glioma cells in the interior of the growing tumor
mass may grow but do not migrate. We assume that a glioma cell becomes motile (which is the case
when the AMPK level stays above the threshold value (A > thA)), this generates an active force in the
direction of a gradient consisting of a combination of glucose and chemoattractants, with a probability
as well as in the direction from random motion as long as it is not surrounded by neighboring cells. The
active force Ti for migratory cell i is given by

Ti = φ(A)

(
ψ1dr + ψ2

∇G√
KG + |∇G|2

+ ψ3
∇C√

KC + |∇C|2

)
(15)

where dr is a unit vector of the moving direction from random motion, G,C are the concentrations of
glucose and a chemoattractant, respectively (described in Materials and Methods Section in the main
text), ψ1, ψ2, ψ3 are scaling factors of weight distribution favoring random motion, glucose and other
chemoattractants, respectively (ψ1, ψ2, ψ3 ∈ [0, 1]; ψ1 + ψ2 + ψ3 = 1), A is the level of AMPK complex
at the ith cell site. We allow a small randomness in the magnitude of active force. Then, the indicator
function φ(A) is given by

φ(A) =

{
F0φr if Ai > thA and the cell does not have physical constraints

0 otherwise,
(16)

where F0 is the basal magnitude of the active force (0 ≤ |Ti| ≤ F0) and φr is a random number
(φr ∈ [0.8, 1.2]). Therefore, the active force is completely turned off for cells in the proliferative phase
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(M > thA, A < thA, R > thR) or cells under physical constraints. For example, when a cell is completely
surrounded by neighboring cells, the active force is also turned off. From the formulation in the equation
(15), it would be turned off when gradients of glucose (∇G) and chemoattractants (∇C) are zero in the
absence of random motility (ψ1 = 0), i.e., no active force is generated in the absence of chemotactic
signals.

In summary, Newton’s law for the ith cell reduces to

Aifµfvi +Aisµsvi + µcell
∑
j∈Ni

Aij(vi − vj) +

+
A

6πrib

(
Ti + R∗0,i +

∑
j∈Ni

Ai,j +
∑
j∈Ni

Rj,i +
∑
j∈Ni

R∗j,i

)
= 0, (17)

where vi is the velocity of cell i, Ni is the neighborhood of cell i, µcell (resp., µs, µf ) is the degree of
adhesiveness between the cells (resp., between the substrate and the cells, and the fluid viscosity), and
rib = ub + b0. Aij = Aij(t), Aif = Aif (t), Ais are the areas of contact regions between cell i and cell j,
cell i and the interstitial fluid or matrix, and cell i and the substrate at time t respectively. A = A(t) is
the total area of an undeformed cell. The solution of this equation (17) provides a trajectory of cell i.
For more details see DO. Parameters in the cell-based component are listed in Table 2 in the main text.

These mechanical components of the cell-based model, equations (9)-(17), are integrated with the
reaction diffusion equations and the core control system in the hybrid framework in the main text.
Figure D shows the overall interactions and flow of three major model components: miR-451-AMPK-
mTOR system at the intracellular level, cell mechanics at the cellular level and microenvironmental
factors such as glucose and oxygen.

3 Parameter estimation

(A) f (! )

!ui
g = f (! ) !P(R,[G0 ])  Growth rate 

Force(! )! +
! ! 0

(B) P(R)

mTOR(R)thR0

1 
[G0 ]= 0

[G0 ]=1

Figure C. Growth rate
dug

i

dt = f(σ)P (R, [G0]) as a function of force along the i-th axis (σ), mTOR
level (R) and [G0] at the cell site.

3.1 Tumor module

We estimate some of parameters and reference values in the following.

Parameters:
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(i)DK (Diffusion coefficient of oxygen): 2.15×10−5 cm2/s [2,20], 1.82×10−5 cm2/s [2,21] 2.0×10−5 cm2/s
[22, 23]. We take DK = 2.0× 10−5 cm2/s as in [22,23].

(ii) DG (Diffusion coefficients of glucose): Diffusion coefficients of glucose were measured to be 6.7 ×
10−7 cm2/s in the brain [24], 1.3× 10−6 cm2/s in collagen gel [25], and 1.1× 10−6 cm2/s in multi-cellur
tumor spheroids [2,26]. Effective diffusion coefficient of glucose in artificial biofilm was 6.46×10−6 cm2/s
[2, 27]. In order to simulate the tumor growth in the brain, we take DG = 6.7× 10−7 cm2/s as in [24].

(iv) DC (Diffusion coefficient of chemoattractant): The diffusion coefficient of chemoattractant was taken
from one of EGF [28], DC = 1.66× 10−6 cm2/s.

(iii) DP (Diffusion coefficient of MMPs): In experiments of the movement of MMP-1in the collagen fibril,
Saffarian et al. (2004) [29] estimated the diffusion coefficient of MMPs as (8.0 ± 1.5) × 10−9 cm2/s for
inactive mutant and (8.0 ± 1.5) × 10−9 cm2/s for wild-type activated MMP-1, respectively. For our
simulation, we take DP = 8.0× 10−9 cm2/s.

(iii) DD (Diffusion coefficient of chemo-drugs): In a study [23] of effects of cell-cycle heterogeneity on the
response of a tumour to chemotherapy, various diffusion coefficients of chemo-drugs were used from [30]:
6.9×10−6 cm2/s (CYC202), 7.6×10−6 cm2/s (Cisplatin), 2.0×10−6 cm2/s (Taxotere), 1.3×10−6 cm2/s
(Taxol). We take the diffusion coefficient of CYC202, DD = 6.9× 10−6 cm2/s in this work.

(v) lKc (oxygen consumption rate) and µK : Powanthil et al. [31] took the oxygen consumption rate of
0.2 s−1 based on the relation L =

√
DK/φ where φ is rate of oxygen consumption by a cell at a cell site in

the exponential decay term. In a similar fashion, we find µK = DK/L
2 = 2.0×10−5 s−1 = 7.2×10−2 h−1

based on the relationship L =
√
DK/µK = 1cm.

(v) lGc (glucose consumption rate) : The measured level α = 1.6 pg/cell/min for piecewise increasing
linear consumption term α(G)n was used in a glioma cell migration study [32] with a threshold value
Gth1 = 2.0× 10−4 g/cm3, taken from the work of Li et al. [33]. We take lGc = 0.8 pg/cell/min and use a
sphere with a radius r = 8− 20 µm for estimation of cell volume.

(v) l1 (ECM degradation rate by MMPs): It is hard to measure the decay rate of MMPs due to it’s fast
decay. Eisenberg et al. used the ECM degradation rate, 1.17×104 cm3g−1s−1 in a myoferlin-mediated
invasion model in breast cancer. We take the adjusted value l1=3.0×104 cm3g−1s−1 from [34].

(vi) : µG (overall glucose consumption rate in brain tissue) : Insulin-independent rate constant of tissue
glucose uptake was measured to be 0.0226 min−1 = 1.356 h−1 in healthy individuals [35]. We take
µG = 0.0034 min−1.

(vi) : µC (Decay rate of chemoattractant): There exist several factors that may contribute to cell invasion
in the brain tissue: Extra cellular matrix (ECM) and MMPs [36–38], chemotactic attractants (EGF
family [39]; the TGF-β family [40]; scatter factor/hepatocyte growth factor (SF/HGF) [41]; SDF-1 [42];
certain lipids [43]), even other cell types such as microglia through indirect stimulation [44] . It is not
clear which combination of those would generate the best outcomes. Here we take the decay rate of EGF
for decay rate of chemoattractants: µC = 8.02× 10−6 s−1 [45].

(iii) µD (Decay rate of chemo-drugs): In a study [23] of effects of cell-cycle heterogeneity on the re-
sponse of a tumour to chemotherapy, various decay rates of chemo-drugs were used from [30]: 1.849 h−1

(CYC202), 1.316 h−1 (Cisplatin), 0.05634 h−1 (Taxotere), 0.05776 h−1 (Taxol). We take the diffusion
coefficient of CYC202, muD = 1.849 h−1 in this work.

Reference values:

(i) G∗: Sander and Deisboeck [32] used the characteristic concentration 2× 10−4 g/cm3 of glucose with
high values 6×10−4 g/cm3 in the far field (see also [46,47]). In in vitro experimental study by Godlewski
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et al. [19], low (0.3 g/l) and high (4.5 g/l) levels of glucose induced the up- and down-regulated expressions
of miR-451 and mTOR (down- and up-regulation of AMPK complex), respectively. We take the high
glucose level, G∗ = 4.5× 10−3 g/cm3, as a reference value.

(ii) C∗: EGF is known to be chemoattractants in glioma cell lines [39]. We take the reference value
C∗ = 1.0×10−8 g/cm3 from experimental studies of the role of EGF in the regulation of cancer progression
[48,49].

(iii) ρ∗: ECM concentration was estimated to be 0.5-2.0mg/ml in an experimental study of growth/invasion
patterns of glioma spheroids. Stein et al. [50] studied growth patterns of glioma cell lines, U87 (wild type)
and U87∆EGFR (its mutant), embedded in collagen I (major ECM component) of concentration of 2.6
mg/ml. We take ρ∗ = 1.0× 10−3 g/cm3.

(iv) P ∗: MMP concentrations were measured to be 1.6 × 10−9 g/cm3 in a breast cancer cell invasion
study [51]. On the other hand, it was observed that PCK3145 may down-regulate MMP-9 expression in
prostate cancer patients with up-regulated MMP-9 level of > 1.0× 10−7g/cm3 [52]. We take the bit high
levels of MMPs: P ∗ = 1.0× 10−7 g/cm3.

Table 3 in the main text lists reference values and all parameter values above.

3.2 Core control system (miR-451, AMPK, mTOR)

miRNAs are typically more stable than their targets [53,54] and the typical half-life of a miRNA is much
larger than one of AMPK [55,56] and mTOR, leading to the small values of the fractions ε1 = µ1

µ2
= 0.02,

ε2 = µ1

µ3
= 0.02 [3, 18, 57]. From the estimated concentrations of miRNAs (80 pM − 2.2 µM) in an

animal cell (assuming 1,000-25,000 µm3 volume) [58], we take m∗ = 1.0 µM . The normal (high; 4.5 g/l)
and low (0.3 g/l) glucose levels were used in [19] in order to test the effect of glucose on the miR451
expression and AMPK activities, and proliferation/migration patterns of glioma cells. Using this range
of glucose levels (0.3− 4.5 g/l) in [19] and the miR-451 reference value (m∗), we determined the glucose
signaling strength, (2.4 × 10−5 − 2.4 × 10−3) µM/h, resulting in a range of dimensionless glucose input

level λgG =
Λgg
µ1m∗ = 0.01 − 1.0. Using the reference value of AMPK, a∗ = 100nM taken from the

measured values (35-150 nM) in rat liver [59], and taking the signal source of the AMPK complex,
s1 = 2.4 nM/h, we estimate the dimensionless value of signaling strength to the AMPK complex to be
S1 = s1

µ2a∗
= 0.2 [3,18]. By observing the same patterns of up- and down-regulation of mTOR as ones of

miR-451 in response to various glucose levels, we take slightly larger values of S2 = s2
µ3r∗

= 1.2 in the work.

We take the dimensionless parameter value λ1 = Λ1

µ1m∗ = 4.0 by assuming that the autocatalytic rate (Λ1)

of miR-451 is at least 4-fold larger than its negative contribution (µ1m
∗) from its decay/consumption in

the absence of the inhibitory pathway from the AMPK complex [3, 18]. Relying on the observed mutual
antagonism between miR-451 and AMPK complex, we also take λ3 = Λ3

µ2a∗
= 4.0 in a similar fashion. The

Hill-type coefficients Λ2,Λ4,Λ6 (and their corresponding dimensionless parameters λ2, λ4, λ6) are fixed to
be unity [3,18]. Once the parameters above determined, we fitted the data in the level of LKB1/AMPK
activity in [19] in response to negative control and over expressed levels of miR-451 (Fig 5B in [19]) in
the following way: The steady state of AMPK complex (As) in terms of miR-451 level (Ms) and other
parameters in the miR-451-AMPK model can be rewritten by

As = S1 +
λ3λ

2
4

λ2
4 + β(Ms)2

= 0.2 +
4

1 + β(Ms)2
. (18)

The up-regulated AMPK complex level (∼500 pmol of phosphate incorporated in a dimensional form) for
negative control of miR-451 was down-regulated (∼100 pmol of phosphate incorporated in a dimensional
form). Using equation (18) above, we estimated the parameter value of β to be 1.0 which gives the low
AMPK complex activity (∼ As = 0.9) in response to a high dimensionless miR-451 level (Ms = 4.2)
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and the high AMPK complex activity (As = 4.2) in response to negative control of the miR-451 level
(Ms = 0.0), resulting in a reasonable ∼4.7-fold difference in the AMPK complex activities as in the
experiments in [19]. Finally, by observing the behavior of the system and experimental data, we assume
that the inhibition strength (α = 1.6) of miR-451 by the AMPK complex is bit larger than the inhibition
strength (β = 1.0) of the AMPK complex by miR-451 [3, 18] while keeping the same value for the
inhibition strength (γ = 1.0) of mTOR by the AMPK complex.

4 Nondimensionalization

Microenviron
ment 

Cell level 

Glucose/oxygen  
Supply Vessel distribution 

Injection of  
chemoattractants/drug

s 

Diffusion of  
glucose/oxygen  

(represented by PDEs) 

Spatial distribution 
of glucose/oxygen 

Low/high levels of glucose ac
tivate/inhibit miR-451 

miR451-AMPK-mTOR  
dynamics 

(represented by a system of ODEs) 

Evolution of cells with  
intracellular dynamics 

Diffusion of  
chemoattractants/drugs 
(represented by PDEs) 

Spatial distribution 
of chemoattractants/

drugs 

Localization of tumor cells/ 
Cell killing by drugs near BVs 

Cell growth dynamics 
(represented by ODEs) 

Intracellular 
dynamics 

Vessel distribution 

Figure D. Schematic diagram of the model showing the appropriate scales involved.

The characteristic distance is the 1 cm, L = 1 cm, and we use T = 1 h to get dimensionless variables
and parameters:

t̄ =
t

T
, x̄ =

x

L
, K̄ =

K

K∗
, Ḡ =

G

G∗
, C̄ =

C

C∗
, ρ̄ =

ρ

ρ∗
, P̄ =

P

P ∗
, D̄ =

D

D∗
, D̄K =

T

L2
DK ,

D̄G =
T

L2
DG, D̄C =

T

L2
DC , D̄P =

T

L2
DP , D̄D =

T

L2
DD, r̄K =

T

K∗
rK ,

l̄Kc =
T

K∗
lKc , r̄G =

T

G∗
rG, l̄

G
c =

T

G∗
lGc , l̄

C
in =

T

C∗
lCin, l̄1 = T l1P

∗, l̄2 = T l2, (19)

ρ̄∗ =
ρ∗
ρ∗
, l̄3 = T l3, µ̄G = TµG, µ̄C = TµC , µ̄P = TµP .
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The following dimensionalization was performed to get the dimensionless key control equations in the
main section

T = µ1t, M =
m

m∗
, A =

a

a∗
, G =

g

m∗
, λg =

Λg
µ1
, S1 =

s1

µ2a∗
, S2 =

s2

µ3r∗
,

λ1 =
Λ1

µ1m∗
, λ2 = Λ2, λ3 =

Λ3

µ2a∗
, λ4 = Λ4, λ5 =

Λ7

µ3r∗
, λ6 = Λ8, α = Λ5(a∗)2, (20)

β = Λ6(m∗)2, γ = Λ9(a∗)2, ε1 =
µ1

µ2
, ε2 =

µ1

µ3
.

5 Dynamics of the system

Figure E shows spatial profiles of concentrations of oxygen (K(x, t) in (A)), glucose (G(x, t) in (B)),
ECM (ρ(x, t) in (C)), and MMP (P (x, t) in (D)) at corresponding times (t = 0, 80, 160, 240 h) as that of
the spatial patterns of the tumour cells that are given in Figures 5A-5D in the main text. While invasive
glioma cells after surgery undergo random motion (ψ1 = 0.6) in the brain tissue, they are also attracted
to BV sites via biochemical signals, in this case glucose and oxygen levels, which have highest values at
fixed source points (BV sites; Figure E(A),E(B)). Active force is generated by the migratory cells when
the cell receives migratory signals and these motile cells move forward by secreting MMPs (Figure E(D)),
thus degrading ECM (Figure E(C)).
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