
EUCALYPT: Efficient tree reconciliation enumerator

Beatrice Donati, Christian Baudet∗, Blerina Sinaimeri,
Pierluigi Crescenzi, and Marie-France Sagot∗

1 Supplementary Material

We provide below the details of the DTL-model and the pseudo-code for the two algorithms
presented in the paper.

The model

Henceforth, by a phylogenetic tree T , we thus mean a rooted tree with labelled leaves and
where the root has in-degree 0 and out-degree 2, the leaves have out-degree 0 and in-degree
1 and every other vertex has in-degree 1 and out-degree 2. For such a tree T , the set of
vertices is denoted by V (T), the set of arcs by A(T), and the set of leaves by L(T). The root
of T is denoted by r(T). Given an arc a = (v, w) ∈ A(T), going from v to w, we call its
head, denoted by h(a), the vertex w and its tail, denoted by t(a), the vertex v. For a vertex
v ∈ V (T), we define the set of descendants of v, denoted by Des(v), as the set of vertices in
the subtree of T rooted at v. Similarly, the set of ancestors of v, denoted by Anc(v), is the
set of vertices in the unique path from the root of T to v, including the root and v. For a
vertex v ∈ V (T) different from the root, we call its parent, denoted by par(v), the vertex x
for which there is the arc (x, v) ∈ A(T). We denote by lca(v, w) the least common ancestor
of v, w in T . Finally, we denote by ≥ the partial order induced by the ancerstorship relation
in the tree. Formally, for x, y ∈ V (T), we say that x ≥ y if x ∈ Anc(y). If neither x ∈ Anc(y)
nor y ∈ Anc(x), the vertices are said to be incomparable.

The model of host-parasite evolution we rely on in this paper is the event-based model
presented by Tofigh et al. [1], and later further analysed by Bansal et al. [2]. Let H,P be the
phylogenetic trees for the host and parasite species respectively. We define φ as a function
from the leaves of P to the leaves of H that represents the association between currently living
host species and parasites. Such association is an input of our algorithm, together with the
trees themselves. In our model, we allow each parasite to be related to one and only one host,
while a host can be related to zero, one, or more than one parasite. More formally, φ is thus
a function which may be neither surjective nor injective.

In studying the co-evolution of hosts and parasites, the following set of events are generally
allowed to take place: (a) co-speciation: the host and parasite speciate concurrently, (b)
duplication: the parasite speciates independently from the host and both new species of
parasites remain with the host, (c) loss: the host speciates but the parasite does not, and (d)
host-switch: the parasite speciates but one of the new parasite species switches (jumps) to
another host.

∗Corresponding authors: christian.baudet@inria.fr, marie-france.sagot@inria.fr

1

A reconciliation γ is a function γ : V (P)→ V (H) that is an extension of φ. In particular
γ partitions the set V (P) into three sets Σ, ∆, and Θ, and a subset Ξ of A(P), for which the
following hold [1]:

1. For any p ∈ L(P), γ(p) = φ(p) (γ extends φ).

2. For any internal vertex p ∈ V (P)− L(P) with children p1 and p2:

(a) lca(γ(p), γ(pi)) ≥ γ(pi), for i = 1, 2 (a child cannot be mapped in an ancestor of
the father).

(b) lca(γ(p), γ(p1)) = γ(p) or lca(γ(p), γ(p2))) = γ(p) (one of the two children is
mapped in the subtree rooted at the father).

3. For any (p1, p2) ∈ Ξ ⇔ lca(γ(p1), γ(p2)) 6∈ {γ(p1), γ(p2)} (the arc (p1, p2) is an arc
denoting a switch event).

4. For any p ∈ V (P)− L(P) with children p1 and p2:

(a) p ∈ Θ⇔ (p, p1) ∈ Ξ or (p, p2) ∈ Ξ (p is associated to a switch event.

(b) p ∈ ∆⇔ lca(γ(p1), γ(p2)) ∈ {γ(p1), γ(p2)} (the children are mapped to compara-
ble vertices and p is associated to a duplication event).

(c) p ∈ Σ ⇔ lca(γ(p1), γ(p2)) = γ(p) and γ(p1) and γ(p2) are incomparable and p is
associated to a co-speciation event.

The sets Σ, ∆, and Θ correspond to the vertices of P associated to, respectively, co-
speciations, duplications, and host-switches, while the set Ξ corresponds to the arcs associated
to host-switches. Finally, losses are identified by a multi-set Λ ⊆ V (H) containing all the
vertices h ∈ V (H) that are in the path from the image of a vertex in V (P) and the image of
one of its children.

The triple S = 〈H,P, γ〉 is said to be a scenario or simply a reconciliation. Given a vector
〈cc, cd, cs, cl〉 of non negative real values that correspond to the cost of each type of event, the
cost of a reconciliation is equal to cc|Σ|+ cd|∆|+ cs|Θ|+ cl|Λ|.

Finally, host switches can introduce an incompatibility due to the temporal constraints
imposed by the host and parasite trees, as well as by the reconciliation itself. Determining
whether a reconciliation is time-feasible can be done in polynomial time [3]. It is common to
refer to a time-feasible (unfeasible) solution as acyclic (cyclic).

Given a riconciliation γ : V (P) → V (H) we build the digraph G = (VG, EG) where:
VG = VH and the set of edges EG is defined as follows:

• EG = EH∪ for all the couples of transfer edges (u, v)(u′, v′) for which u ∈ Ancestors(u′):

– (p(γ(u)), γ(u′))

– (p(γ(u)), γ(v′))

– (p(γ(v)), γ(u′))

– (p(γ(v)), γ(v′))

Note that when (u, v) = (u′, v′) the edges to add are:

• (p(γ(u)), γ(u)) redundant

• (p(γ(u)), γ(v′)) (it creates a path from the ancestors of the donor to the recipient)

2

• (p(γ(v)), γ(u′)) (it creates a path from the ancestors of the recipient to the donor)

• (p(γ(v)), γ(v)) redundant

The reconciliation is time-feasible if the graph G does not contain any directed cycle.
Intuitively the constraints are given by the following facts:

• From the ancestry induced by the parasite tree we know that u′ happened strictly after
u.

• The contemporary of γ(u) and γ(v) is induced by the transfer (u, v)

• Everything that has happened before γ(u) has happened before γ(v).

Finding one optimal solution

As for Bansal et al. [2], we make use of some auxiliary structures apart from the dynamic
programming matrix D. We thus use another matrix of size m by n that will contain the
optimal solutions of the subtrees and that we denote by DST . Formally, DST (p, h) holds the
cost of an optimal solution in which p is mapped to some vertex i in the host subtree rooted
in h. We also use two vectors. One is denoted by Switchk gives, for each vertex h in H the
set of vertices that are incomparable with h and are at a distance at most k from it. Formally,
we have that Switchk(h) = {g ∈ V (H)|d(h, g) ≤ k ∧ lca(h, g) 6∈ {h, g}} where d(h, g) is the
distance of vertex h to vertex g in H. The second vector, denoted by costswitch, holds the
cost of a switch to a given vertex h in H.

Enumerating all solutions

A pseudo-code for enumerating all solutions is given in Algorithm 2. We use an additional
stack M in order to select which sub-solutions (local sub-trees) to add to the reconciliation
that is currently being built. This stack is filled with couples of the form 〈cell, index〉). The
function M(cell) returns, in constant time, the couple 〈cell, index〉 at the top of M , if M is
not empty.

Example of time-feasible optimal reconciliation not found by
CoRe-Pa.

Here we provide a time-feasible reconciliation for the dataset “Smut Fungi & Caryophillaceus
plants” [4] with cost vector 6 0, 1, 1, 1〉, that is not found by CoRe-Pa.

Statistics on the optimal reconciliations

Here we show for each dataset and for each cost vector 〈cc, cd, cs, cl〉 some statistics concerning
the optimal reconciliations.

3

Algorithm 1 Finding the cost of an optimal solution
Input: < H,T, φ > and a cost vector 〈cc, cd, cs, cl〉
Output: Optimal cost of the k-bounded-All-MPR problem

for p ∈ V (P) and h ∈ V (H) do
Initialise D(p, h), DST (p, h) to ∞
Compute Switchk(h)

end for
for l ∈ L(P) do

Initialise D(l, φ(l)) = 0
for a ∈ Anc(φ(l)) do

DST (l, a) = cl ∗ d(a, φ(l))
end for

end for
for p ∈ V (P)− L(P) in post-order with children p1, p2 do

for h ∈ V (H) in post-order with children h1, h2 do
if h ∈ L(H) then

δd ← cd + c(p1, h) + c(p2, h)
for g ∈ Switchk(h) do

costswitch(g) = cs +min{D(p1, g) +DST (p2, h), D(p2, g) +DST (p1, h)}
end for
δs ← min{costswitch(g)|g ∈ Switchk(h)}
D(p, h) = min{δd, δs}
DST (p, h) = D(p, h)

else
δc ← min{(cc +DST (p1, h1) +DST (p2, h2)), (cc +DST (p1, h2) +DST (p2, h1))}

δd ← min

D(p1, h) +D(p2, h)

D(p1, h) +DST (p2, h1) + cl
D(p1, h) +DST (p2, h2) + cl
D(p2, h) +DST (p1, h1) + cl
D(p2, h) +DST (p1, h2) + cl
DST (p1, h1) +DST (p2, h1) + 2cl
DST (p1, h2) +DST (p2, h2) + 2cl

for g ∈ Switchk(h) do
costswicth(g) = cs +min{D(p1, g) +DST (p2, h), D(p2, g) +DST (p1, h)}

end for
δs ← min{costswitch(g)|g ∈ Switchk(h)}
D(p, h) = min{δc, δd, δs}.
DST (p, h) = min{D(p, h), cl +DST (p, h1), cl +DST (p, h2)}

end if
end for

end for
return min{D(r(P), h)|h ∈ V (H)}

4

Algorithm 2 Enumerating all optimal solutions
Input: The dynamic programming matrix D
Output: All optimal solutions

for All cells root in D containing an optimal mapping of r(P) (or the unique cell mapping r(P) to r(H)) do
currentCell ← root
A stack M ← [∅] (to be filled with couples of the form 〈cell, index〉)
do

while currentCell != null do
if |List(current)| ≥ 1 then

//There are different sub-solutions for this mapping
if M(currentCell) is not in M then

Push(〈currentCell, 0〉) in M
currentSubsolution ← 0th-element of M(currentCell);

else if M(currentCell) is the last element of M then
//In the final part of the solution I pass to consider the next option
Pop(〈currentCell, i〉) from M
Push(〈currentCell, i+ 1〉;) in M
currentSubsolution ← (i+ 1)th-element of M(currentCell)

else
//In the first part of the current solution, the mappings are the same as for the previous one
〈cell, index〉 ←M(currentCell)
currentSubsolution ← indexth element of M(currentCell)

end if
else

//There is a unique possible sub-solution
Add to the solution the mapping relative to currentCell
currentSubsolution ← 0th-element of List(currentCell)
//currentSubsolution is unique (or null if the vertex is a leaf.)
currentCell = the next vertex following the pointers of currentSubsolution (in post-order)

end if
Output the solution
Pop from M until the first couple 〈s, i〉 is found for which i < |M(s)| − 1 and the stack is not empty

end while
while M is not empty

end for

5

Figure 1: Example of a time-feasible reconciliation not found by CoRe-Pa

References

[1] Tofigh A, Hallett M, Lagergren J: Simultaneous Identification of Duplications and Lateral Gene
Transfers. IEEE/ACM Trans. on Comput. Biol. Bioinf. 2011, 8(2):517–535.

[2] Bansal MS, Alm E, Kellis M: Efficient algorithms for the reconciliation problem with gene du-
plication, horizontal transfer and loss. Bioinformatics 2012, 28(12):i283–i291.

[3] Stolzer ML, Lai H, Xu M, Sathaye D, Vernot B, Durand D: Inferring duplications, losses, transfers
and incomplete lineage sorting with nonbinary species trees. Bioinformatics 2012, 28(18):i409–
i415.

[4] Refrégier G, Gac M, Jabbour F, Widmer A, Shykoff J, Yockteng R, Hood M, Giraud T: Cophylogeny
of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and
importance of delimiting parasite species for inferring cospeciation. BMC Evol. Biol. 2008, 8:100.

6

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (all solutions)
<−1,1,1,1>

Datasets

A
ve

ra
ge

 n
um

be
r

0
5

10
15

20

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (all solutions)
<0,1,1,0>

Datasets

A
ve

ra
ge

 n
um

be
r

0
10

20
30

40

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (all solutions)
<0,1,1,1>

Datasets

A
ve

ra
ge

 n
um

be
r

0
5

10
15

20
25

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (all solutions)
<0,1,2,1>

Datasets

A
ve

ra
ge

 n
um

be
r

0
5

10
15

20

Figure 2: For each dataset we show the average number of each event in all optimal reconciliations.

7

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (acyclic solutions)
<−1,1,1,1>

Datasets

A
ve

ra
ge

 n
um

be
r

0
5

10
15

20

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (acyclic solutions)
<0,1,1,0>

Datasets

A
ve

ra
ge

 n
um

be
r

0
10

20
30

40

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (acyclic solutions)
<0,1,1,1>

Datasets

A
ve

ra
ge

 n
um

be
r

0
5

10
15

20
25

EC GL SC RP SFC PML PMP RH PP FD

c
d
hs
l

Average number of each event type (acyclic solutions)
<0,1,2,1>

Datasets

A
ve

ra
ge

 n
um

be
r

0
5

10
15

20

Figure 3: For each dataset we show the average number of each event in all acyclic optimal reconciliations.

8

EC GL SC RP SFC PML PMP RH PP FD

Total
Acyclic
Cyclic

Number of classes
<−1,1,1,1>

Datasets

N
um

be
r

of
 c

la
ss

es

0
2

4
6

8

EC GL SC RP SFC PML PMP RH PP FD

Total
Acyclic
Cyclic

Number of classes
<0,1,1,0>

Datasets

N
um

be
r

of
 c

la
ss

es

0
50

10
0

15
0

20
0

25
0

EC GL SC RP SFC PML PMP RH PP FD

Total
Acyclic
Cyclic

Number of classes
<0,1,1,1>

Datasets

N
um

be
r

of
 c

la
ss

es

0
2

4
6

8
10

EC GL SC RP SFC PML PMP RH PP FD

Total
Acyclic
Cyclic

Number of classes
<0,1,2,1>

Datasets

N
um

be
r

of
 c

la
ss

es

0
5

10
15

Figure 4: For each dataset we show the number of different solution classes in all optimal reconciliations, in
the ones that are cyclic and also in the acyclic ones.

9

5 10 15 20

0
20

40
60

80
10

0
12

0

Optimum cost for vector <−1,1,1,1>

k

C
os

t

●
●

● ● ● ● ● ● ● ●

● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

EC : Height = 5
GL : Height = 7

SC : Height = 8
RP : Height = 9

SFC : Height = 8
PML : Height = 9

PMP : Height = 10
RH : Height = 12

PP : Height = 9
FD : Height = 12

5 10 15 20

5
10

15
20

25
30

35

Optimum cost for vector <0,1,1,0>

k

C
os

t

● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

EC : Height = 5
GL : Height = 7

SC : Height = 8
RP : Height = 9

SFC : Height = 8
PML : Height = 9

PMP : Height = 10
RH : Height = 12

PP : Height = 9
FD : Height = 12

5 10 15 20

0
20

40
60

80
10

0
12

0
14

0

Optimum cost for vector <0,1,1,1>

k

C
os

t

●
●

● ● ● ● ● ● ● ●

● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

EC : Height = 5
GL : Height = 7

SC : Height = 8
RP : Height = 9

SFC : Height = 8
PML : Height = 9

PMP : Height = 10
RH : Height = 12

PP : Height = 9
FD : Height = 12

5 10 15 20

20
40

60
80

10
0

12
0

14
0

Optimum cost for vector <0,1,2,1>

k

C
os

t

● ● ● ● ● ● ● ● ● ●

● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

EC : Height = 5
GL : Height = 7

SC : Height = 8
RP : Height = 9

SFC : Height = 8
PML : Height = 9

PMP : Height = 10
RH : Height = 12

PP : Height = 9
FD : Height = 12

Figure 5: For all datasets we show the relation between the number of optimal solutions and the value k, of
the maximum allowable distance of a switch.

10

