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ABSTRACT We describe the analogy between the theory
of natural selection on sex ratio in newborn gonochores (which
will not change sex), and on the age of sex change in sequential
hermaphrodites (which are all born into one sex and change to
the other later on). We also discuss the conditions under which
natural selection favors sequential hermaphrodites over gono-
chores and vice versa. We show that, in a nearly stable popula-
tion of-nearly constant age composition, selection favors a rare
mutant if it increases the prospective reproduction of its new-
born bearers that are (or while they are) members of one sex by
a percentage exceeding the percentage loss to the other sex.

Ghiselin (1) suggested that when fertility increases more rapidly
with age in one sex than in the other, then individuals should
be born into the sex where the penalty of youth is less, where
fertility increases less rapidly with age, and change later to the
sex where age is more advantageous. Simulations (2) and ele-
mentary theory (3) suggested plausible conditions where natural
selection would favor a sex-changing or "sequentially herma-
phroditic" genotype over a gonochore genotype whose bearers
stay the same sex all their lives. The bluehead wrasses of Ca-
ribbean reefs satisfy these conditions for sex change, and they
are normally born female, turning male when they are be-
coming large enough to hold reproductive territories and attract
females in their own right (3). Here, we will try to establish
more generally when selection favors sexchangers over gono-
chores and vice versa.

That enquiry led us to a very striking analogy that we shall
also report, between the theory of the proper age for a se-
quential hermaphrodite to change its sex and the proper ratio
of male to female births in a gonochore population, an analogy
which made sex ratio theory much clearer to us.
Our theory presupposes nearly static populations of nearly

stable age composition, but permits fertility and death rate to
vary arbitrarily with age and sex. In this way, the theory gen-
eralizes our earlier efforts (3).
A bestiary of methods: Sex ratio theory revisited
To illustrate the methods of this paper, we review the proof that
if a male birth costs its parents the same as a female's, selection
favors an allele whose carriers bear equal numbers of each sex.
We will show in detail how to decide which of two alternative
alleles is favored over the other, and how to find the optimum
sex ratio. This calculation serves as prototype for all our oth-
ers.

Consider a locus with two alleles, A and B, in a population
of sexual haploids. Let NAm(t), NAf(t), NBm(t), and NBf(t) be
the numbers, respectively, of A males, A females, B males, and
B females at time t. Let the offspring of matings between A and
A be all A-bearers, born in the ratio of 1 + k females to 1 - k
males; let half the offspring of matings between A and B be
A-bearers, born in the ratio of 1+ k females to 1- k males, and

half be B-bearers, born in the ratio of 1 + k + Ak females to
1 - k - Ak males; and let the offspring of matings between B
and B be all B-bearers born in the ratio of 1 + k + Ak females
to 1 - k - Ak males. In the language of Spieth (4), ours is a
constant total expenditure model. Notice that we have assumed
sex ratio among newborns is governed by the genes of those
newborns: most models assume, as Fisher (5) implied, that the
genes of the parents govern the sex ratio of the offspring. Sup-
pose also that the death rate per head of males and females of
age x is dm(x) and df(x), respectively, regardless of genotype,
while the fertility of males and females aged x are proportional,
respectively, to bm(x) and by(x). bm and bf are defined only up
to a constant factor: strictly speaking, the ratio of the fertility
of x- to y-year-old males is bm(x)/bm(y), and similarly for fe-
males.
We shall assume that the population consists almost entirely

of A-bearers, whose age composition is static and whose num-
bers do not change with time, while the B-bearers are rare
enough to have a constant logarithmic growth rate yet common
enough to have attained a stable age distribution. Then the
logarithmic growth rate s of the number of B-bearers represents
the selective advantage of B over A.

Since A-bearers are so common that they mate essentially
only with each other, we may write

0 = dNAm/dt = -dAmNAjn + ½2BA(l - k), [I]
where dAm is the average per capita death rate among A males
(because the age composition of the population is constant, this
and other such averages are constant too) and BA is the total
number of A organisms born per unit time, of which a fraction
Vk - k) are male. The number of A males-aged x in the pop-
ulation is the number of A males born x years ago times the
proportion Lm(x) of males surviving to age x; since the total
birth rate MBA(1- k) is constant from year to year, the number
of A males aged x is proportional to Lm(x). thus, we may set

dAm = |fdm(x)Lm(x)dXf Lm(x)dx. [2]
We may express the number of A organisms born per unit time
as rVAmNAmVAfNAf, where

VA. = f bm(x)Lm(x)dx Lm(x)dx [3]

and VAf, defined similarly, measure the average fertility of A
males and A females, Lf(x) is the proportion of females sur-
viving to age x, and r is a scaling factor which makes rVAm-
NAmVAfNAf = BA. r is necessary because the b's, and hence the
V's, are defined in a purely relative manner: only the ratios
VAm/VBm and VAf/VBf have empirical meaning. We may
accordingly write, for the A-bearers,

0 = dNAm/dt = -dAmNAmf + /2r(1 - k)VAmNAmVAfNAf,
[4]
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O = dNA,/dt =-dAfNAf + %2r(1 + k)VAmNAmVAfNAf.

[5]
Since B is so rare, matings between B and B contribute

negligibly to B's numbers. Nearly all B are born from matings
between A and B. half the offspring of which are B. Since B is
in logarithmic phase,
dNBm/dt = sNBm = -dBmNBm + Y/4r(1 - k

- AkXVAmNAmVBfNBf + VBmNBmVAfNAf), [6]

dNB /dt = SNBf = -dBf NBf + '/4r(1 + k

+ Ak)(VAmNAmVBfNBf + VBmNBmVAfNAf) [7]
Since the chances of death are the same for all males the same
age, whatever their genotype, dBm differs from dAm only
through differences in the age composition of A and B males.
These age compositions are different: only e 'X times as many
B were born x years ago as now, so the relative number of B
males aged x is e sxLm(x). Thus,

dBm = f dm(x)e-sxLm(x)dx e-SXLm(x)dx,

VBm = f bm(x)esXLin(x)dx/f esXLm(x)dx.

[8]

[9]

Notice that Eqs. 4 and 5 imply VAmVAfNAf = 2dAm/r(1 -
k) and VAjVAmNAm = 2dAf/r(1 + k), respectively, and that
6 and 7 imply
NBm(dBm + s)/(l - k - Ak)

= NB,(dBf + s)/(l + k + Ak)
'/4T(VAmNAmVBfNBJ + VAfNAf VBmNBm), [1Oj

NBf= (dBBm + s)1 + k + Ak)/(dBf + sX1 - k - Ak).
[11]

Using Eqs. 4 and 5 to clear NAf and NAm from 6, expressing NBf
in terms of NBm, and dividing through by NBm, we find
d log NBm/dt = s =

-d~m + (1/2){1 + k + Ak [dAf(dBm + S)VBf1
d~m+1/2){[ 1 + k JL(dBf,+s)VAf

+ dAm[(1 - k- Ak)V ]}
1A. (1 -k)VAm

Eq. 12 can in theory be solved for s by successive approxima-
tions. Find a first approximation to s by evaluating the right-
hand side of 12 for s = 0 (which makes dAm = dBm, dAf = dBf,
VAM = VBm, etc.). Then plug this first approximation to s into
the right-hand side of 12 to get a second approximation, and
continue in this wise until successive approximations differ
insensibly. Notice that the first approximation to s predicts the
direction of selection: that is to say, if d log NBfldt > 0 when
we set s = 0 on the right-hand of 12, then B is favored over
A.

In this instance, B is favored if

(dBm/2) {[1 + k + Ak
1 + k

Since dBm > 0 and log(1 + k) + log(1 - k) = log( -k2), B is
favored over A if Ak(d log(1 - k2)/dk) > 0, that is to say, if log
[1 - (k + Ak)2] exceeds log (1 -k2).
The optimum sex ratio for newborns is that for which log (1

- k2) is maximum, which occurs when males and females are
born in equal numbers. In other words, selection favors a mu-
tant allele if the product of the numbers of males and females
born per capita is always higher for the mutants than for their
wild-type contemporaries (for any one moment in time this
product increases with 1-k2). However, this substitution need
not permanently increase the product of the numbers of males
and females born per unit time, just as the selective substitution
of one allele for another need not permanently increase popu-
latin size or growth rate.

Assuming haploidy makes no difference: the results apply
also to diploids, so long as the sex ratio in heterozygotes lies
between those of the two homozygotes. If we let A represent
the common homozygote AA, and B represent the mutant
heterozygote AB, then the conditions for AB's increase when
rare are the same as those for B's increase in the haploid theory.
This is because AB X AA matings produce half AB offspring,
just as A X B matings produce half B offspring. It is only these
matings which we need to consider when the mutant is rare (i.e.,
for the equilibrium).

The proper age to change one's sex
Consider a single locus with two alleles, A and B, in a population
of sequentially hermaphrodite sexual haploids. Suppose all
individuals are born female, and that A-bearers turn male at
age T while B-bearers turn male at age T + AT. In some
populations, of course, individuals are born male and turn fe-
male, in which case one exchanges the subscripts m and f in the
mathematics. When is B favored over A?
Assume that the population is composed almost entirely of

A-bearers, whose numbers are static: A's arise, then, almost
exclusively from matings of A with A. The number of A born
(which are all female) just balances the number of A females
dying plus the number of A females turning male. In sym-
bols,
o = dNAf/dt = -dAfNAf + BA(t) - Lf(T)BA(t - T),

[15]
where dAf is the average death rate per head of A females, BA(t)
is the total number of A born per unit time at time t, and
Lf(T)BA(t- T) is the total number of A females turning male
at time t, which is the number BA (t- T) born T time units
earlier times the proportion Lf(T) surviving to the age T of sex
change.

As the number of A's is unchanging, BA is independent of
time, and the relative number of A females aged x is accord-
ingly measured by the proportion Lf that survive to age x.
Thus,

dAf = df(x)Lf(x)dx/f L,{x)dx.1]

+[17k k _ 1j}>o. [13]

In words, B is favored if the percentage gain it confers on its
bearers' female offspring exceeds the percentage loss to its
males. Notiee-that if Ak is small,

1 + k +Ak d
1 + k__ - 1 ~Ak log (1 + k),

1 -k -Ak
Ak d log (1-k). [14]

_--k A

[16]

BA may be expressed as rVAmNAmVAfNAf, where VAm and VAf
are the average fertilities per head of A males and females, as
before. In particular,

TT'?
VAf = bf(x)Lf(x)dx/J Lf(x)dx.

0 /0
[17]

If the proportion of a putative cohort of individuals born male
that would survive to age x is Lm(x), and if the death rate for
males aged x is independent of how long ago they changed sex,
then the proportion of A newborns surviving to the age x > T
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is Lm(x)Lf(T)/Lm(T). Lm(x) is the relative number of males
aged x, so

VA. = bm(x)L.(x)dx / Lm(x)dx. [18]

In summary, the number of A females obeys the equation

0 - dNAf/dt - -dAfNAf + r[1 - Lf(T)]VAmNAmVAfNAf.
[19]

Since A males can only be "born" by transforming from A fe-
males,
0 dNAm/dt =-dAmNAm + rL/(t)VAmNA.VAfNAf[ [20]
Now assume that B is so rare that its bearers are still in

"logarithmic phase," yet common enough to have attained a

stable age distribution. Then matings between B and B will be
too infrequent to matter; B can only be born from matings
between A and B. Remembering that only half the offspring
of these matings are B, we write

dNBf/dt - sNBf - -dBfNBf
+ V,2r[VANAm VBfNBf(t) + VAfNAfVBmNBm(t)]

- YArL,(T + AT)[VAmNAmVBfNBf(t - T AT)
+ VAfNAf VBmNBm(t - T - AT)], [21]

where s is again the selective advantage of B over A;

dill = d,(x)L(x)exdx Lf(x)e~klx; [22]

and dBm, VBm, and VBf are defined similarly (see 8 and 9). The
population of B's is not static, so we have denoted the time de-
pendence. NBm(t - T - AT) = e (T+T) NBm(t)( e sT

Ngm(t) we assume s and AT so small that their product is
negligible-and NBf(t - T - AT) e-sT NBf(t). We may

accordingly write

dNBf/dt = sNBf = -dBfNBf + Y2r[1 Lf(T
+ AT)k8T][V.4mNAmVBfNBf + VAfNAfVBmNBm1] [23]

dNBm/dt = sNBm =-dBmNBm + 112rLf(T + AT)e-sT

X [VAmNAmVBfNBf + VAfNAf VBmNBm]. [24]

Eqs. 19 and 20 imply rVAmNAm = dAf/VAf [1 -Lf(T)] and
rVAfNAf = dAm/VAmLf(T), while Eqs. 23 and 24 imply

(dBf + s)NBf/[1 Lf(T + AT)e8sT]
= (dBm + s)NBm/Lf(T + AT)e-sT [25]

NBf = (dBm + s)[1 - Lf(T + AT)e-8T]
X NBml(dBf + s)Lf(T + AT)e-8Tl [26]

To find whether B is favored over A, substitute for rVAmNAm,
rVAfNAf, and NBf in Eq. 24 and set s = 0 on the right. Call dAm,
dm(T); dAf, df(T); and set

dm(x)Lm(x)dX Lm(x)dx = dm(T + AT), [27]
T+AT / +.AT

fT+Tdf(x)Lf(x)dx f Lf(x)dx d,(T + -AT), [28]

for the values of these averages are set by the age of sex change.
With this relabeling and some rearrangement, we find B is
favored if

2 <
Vf(T + AT)[1 - Lf(T + AT)]df(T)

Vf(T)[1 - L$T)]df(T + AT)
Vm(T + AT)Lf(T + AT)dm(T)

+ Vm(T)Lf(T)dm(T + AT) *29]

To simplify, notice that
rT

Lf(T) = exp - f df(x)dx;d log Lf/dx = -1/Lf; [30]

rT rT
fdf(x)Lf(x)dx (dLfjdx)dx = 1 - L(T); [31]

Vf(T)[1 - Lf(T)]/dfl(T) - [1 - Lf(T)] bf(x)Lf(x)dx

x /,fdf(x)Lf(x)dx = f b(x)Lf(x)dx, [32]

which last we call Rf(T), the reproductive value (5) of a new-
born programmed to turn male at age T, during the female part
of its life cycle. Likewise,

Vm(T)Lf(T)/df(T)
- [Lf(T)/Lm(T)] f bm(x)Lm(x)dx = Rm(T). [33]

Since Lf(T)Lm(x)/Lm(T) is the chance of a newborn female
living to age x if it turns male at an age T < x, Rm(T) is the
prospective reproductive value of that newborn during the male
part of its life. Substituting Eqs. 32, 33, and their analogues into
Eq. 29, we find B is favored if

2 < Rf(T + AT)/Rf(T) + Rm(T + AT)/Rm(T). [34]
Proceeding as in Eqs. 13 and 14, we find B is favored if
0< [ Rf(T + AT) R(T+) 1 [35]

Rf(T) 1R+L ,(T) -

.0 < AT Ilog [R f (T + .AT) /R(T)]
+ log [Rm(T + AT)/Rm(T)Th, [36]

B is favored if it increases a newborn's reproductive value
during the female part of its life by a percentage exceeding the
percentage loss as a male. When phrased thus, the conclusion
applies whatever the mortality that might be associated with
sex change, and whatever the lull in reproduction changing sex
might impose.

Substituting back from the R's of Eq. 36, we find that if sex
change is instantaneous and costs nothing, it is best to change
sex at that age T when

dT log { bf(x)Lf(x)dx}
+ d log [Lf(T)/Lm(T)],f bm(x)Lm(x)dx = 0, [37]

that is to say, when

dT log f bf(x)Lf(x)dx + d log Lf/dT - d log Lm/dT

d log fTbm(x)Lm(x)dx = O [38]

bf(T)Lf(T) - df(T) b(T)L(T) df(T).
f bf(x)Lf(x)dx f bm(x)Lm(x)dx [39]

Suppose first that males and females have the same fertility
and death rates, so Lm(x) = Lf(x), dm(X) = df(x), and bm(x) =
bf(x). Then females should change sex at the age T' when

bf((r)Lf(T')/f bf(x)Lf(x)dx

= bf(T')Lf(T')/f bf(x)Lf(x)dx, [40]
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f bf(x)Lf(x)dx f b>(x)Lf(x~dx. [41]

In words, females should change sex at the age T' when a cohort
of females born all at once would have exhausted half the re-
productive value they would have were they to stay female all
their lives.
Now suppose that males gain fertility more rapidly with age

than females, so that if x > y, bm(X)/bm(y) > by(x)/bf(y). As-
sume, to be specific, that bm(x) = g(x)bf(x), where g(x) >0 and
g(x) > g(y) if x > y. Then

bm(x)lbm(y) - [g(x)/g(y)]bf(x)/bf(y) > bf(x)/b,<y). [42]
Suppose, moreover, that males and females of the same age
have the same death rate, so that dm(x) = df(x), Lm(X) = Lf(x).
Then the optimum age T' to change sex is that for which

bf(T"")Lf(T"*)

Jb~x)Lf(xjdx

0- , [43]

TPg(x)bf(x)Lf(x)dx

f b,(x)Lf(x)dx = f [g(x)/g(T")j)bf(x4Lf(x)dx. [44]

Since g(x) > g(T') for x > T", we may set g(x)/g(T0) = 1 +
h(T", x), where h > 0 for x > T". Out of pure whimsy we may
rewrite 44 as

brx)Lf(x)dx + f bsx)Lf(x)dx f brx)Lf(x)dx

- f'~'brx)Lf(x)dx + fh(T", x)bf(x)Lf(x)dx. [45]
If T' is the best age to change sex when g(x) = 1 for all x, so that
fT'bf(x)Lf(x)dx = .Obfb(x)Lf(x)dx, we find that when dg/dx
> 0 the best age to change sex is that age T" when

2f' b'bx)Lf(x)dx = fh(T",x)bf(x)Lf(x)dx. [46]

As h, by, and Lf are all positive, Eq. 46 implies T" > T. This is
as we would expect: the more fertile older males are relative
to younger, the greater the proportion of matings garnered by
the older males, and the older a newcomer must be to compete
profitably for mates.

Selection between gonochores and sexchangers
When would a sequentially hermaphrodite genotype replace
gonochores? Consider a dimorphic locus with alleles A and B
in our customary population of sexual haploids: let the A-
bearers be gonochores, a proportion %(1 - k) of which are born
male, and let the B-bearers be hermaphrodites changing sex
at age T. Suppose first that the population consists almost en-
tirely of A-bearers whose numbers are in balance, while the
B-bearers are rare enough to be in logarithmic phase yet nu-
merous enough to have attained a stable age distribution.
Then
O = dNAf/dt =-dAfNAf + /2r(1 + k)VAmNAmVAfNAf,

[47]
O = dNAm/dt =-dAmNAm + Y2r(1 - k)VAmNAmVAfNAf'

[48]
sNBf - dNB,/dt = -dBfNBf + '2r11 - L,(T)e-sT]

X [VAmNAmVBfNBf + VAfNAfVBmNBm]1 [49]
SNBm = dNBm/dt = -dBmNBm + ArLf(T)e-T

X [VAmNAmVBf NBf + VAfNAfVBmNBm] [50]

Using Eqs. 47 and 48 to eliminate NAm and NAf from 50, ex-
pressing NBf in terms of NBm as in 26, setting s =0 on the right,
and dividing through by dBm, we find B is favored if

[1 + Lf(T)1 Vf((T)dAf Lf(T) 1 VjM(T)dAm [51]
L 1 + k J VAfdf(T) L+ - kJ VAm!dm(T) m

If, as in Eqs. 30-33, we express the V/d terms as reproductive
values, we find B is favored if

IT

Jbf(x)Lf(x)dx
1<

(1 + k) bf(x)Lf(xkdx

+
[Lf(T)ILm(T)] bm(x)Lm(x)dx

(1 - k) fbm(x)Lm(x)dx
Let the male reproductive value per newborn gonochore in-
dividual be defined as Rm(k) or 3(1 - k) f;bm(x)Lm(x)dx, and
similarly for females. Then B is favored if

2 < Rm(T)/Rm(k) + Rf(T)/Rf(k). [53]

Here again, a rare mutant allele will spread if it confers a per-
centage gain in reproductive value on one sex that exceeds the
percentage loss to the other.

Suppose first that males and females have identical death and
fertility rates (modulo the scaling factor for sex ratio), so dm(x)
= df(x). Suppose, moreover, that

rT
Jbf(x)Lf-(x)dx= /(1 + u) f bf(x)Lf(x)dx. [54]

Then B is favored over A if

___ ___+ [55]1<(1 + k 2+21 k )

or if 1 -k2 < 1 -ku. If u is smaller in absolute value than k, or
of the opposite sign, the hermaphrodites are favored when rare,
just as if they were gonochores bearing male and female off-
spring in the ratio 1 - u to 1 + u. Notice that hermaphrodites
cannot even hold their own against gonochores bearing equal
numbers of male and female offspring unless u = 0, unless the
prospective reproductive value of newborn hermaphrodites is
divided precisely equally between the male and female phases
of their lives. Death rates vary from generation to generation,
so the age of sex change appropriate for one generation is wrong
for the next. Thus a gonochore allele producing half males and
half females will in practice outcompete any sequentially
hermaphrodite allele: sex change entails a purely "genetical"
penalty in addition to its physiological cost.

Sex change, however, is favored if one sex gains fertility much
more rapidly with age than the other, as in the bluehead wrasse
(3), where females will wait their turn to mate with a larger
male even if smaller ones are free, thus confering dispropor-
tionate fertility on the largest males.

Suppose now that bm(x) = g(x)by(x), where g(x) > g(y) if x
> y; that Lm(X) = Lf(x); and that

fg(x)bf(x)Lf(x)dx= f bf(x)Lf(x)dx. [56]

Defining u as in Eq. 54, we find that the hermaphrodite allele
B is favored when rare if

2<1 + u2 <
1 + k

+ Jg(x)bf (x)Lf(x)dx( - k)J bf(x)Lf(x)dx. [57]

Genetics: Leigh et al.
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Since g is an increasing function of x, Eq. 56 implies

g(x)bf(x)Lf(x)dx = Uj bf(x)Lf(x)dx, [58]

where U > 1. We may therefore rewrite Eq. 57 as

2 < (1 + u)/(1 + k) + U(1 - 01(1 - k). [59]
If k = 0, 59 becomes 2 < 2 + (U - 1)(1 - u), which is always
true if u < 1. If gonochores are at their optimum sex ratio and
if males gain fertility more rapidly with age than females, se-
lection will favor a rare hermaphrodite allele, as Warner's
simulations (2) suggested.
Now consider a rare gonochore allele in a stable population

of sequential hermaphrodites which change sex at the optimum
age, and let the assumptions leading to 57 apply. Will selection
exclude all gonochore mutants? An argument corresponding
to Eqs. 47-52 shows that selection favors a rare gonochore allele
if ",

(1 + k) fbf(x)Lf(x)dx
1<

4 bf(x)Lf(x)dx

(1 - k) J bm(X)Lf(x)dx
+ °

JT

[60]

Eq. 60 implies that if the hermaphrodites exclude gonochores
bearing only females and gonochores bearing only males, they
will also exclude gonochores bearing young in any intermediate
sex ratio. Gonochores bearing only females (k = 1) are excluded
if

T
2J bf(x)Lf(x)dx > bf(x)Lf(x)dx. [61]

Eq. 61 holds if the hermaphrodites change sex at the optimum
age. Likewise, if the gonochoresbear only males (k = -1), they
are excluded if

2f bm(x)Lf(x)dx > fbn,(x)Lf(x)dx. [62]

If we set bf(x) = p(X)bm(x), where p(x) < p(y) if x > y, an
argument parallel to Eqs. 42-46 shows that 62 holds when the
hermaphrodites change sex at the optimum age.
The above calculations suggest that if one sex gains fertility

even slightly faster with age than the other, then selection will
favor sex change. This is true only if changing sex costs nothing;
in fact, the fertility differential must be sufficient to outweigh
the cost of changing sex, and in higher vertebrates the cost of
changing sex is apparently impossibly high.

We are most grateful to an anonymous referee who pointed out,
among other things, how our result applied to diploids. E. L. is greatly
indebted to William Schaffer and the University of Utah for a stimu-
lating visit there, which provided opportunity to cross the Rockies and
follow the Colorado through many a familiar canyon, and which
permitted him to discuss sex change with Eric Charnov.
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