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SI Materials and Methods
Stall Complex Formation. The polymerases used in this study were
purified from E. coli by the Nudler Laboratory at the New York
University Medical Center (1). All three preparations, the two
mutants and the WT enzyme, contain a biotin in the β′ subunit.
Stalled elongation complexes are made by incubating the poly-
merase holoenzyme (core enzyme + σ initiation factor) with the
template DNA that contains a λPR promoter. Directly upstream
of the promoter, the DNA has a 70-bp sequence that lacks GMP
(C-less cassette). The polymerase is walked from the promoter
sequence to the stall site by further incubation of the open com-
plexes with a low concentration of three of the four nucleotide
triphosphates (ATP, GTP, and UTP at 150 μM; Fermentas). The
addition of 2.5 μM of a ribo-dinucleotide (ApU; Dharmacon)
complementary to the first two bases of the DNA template, fa-
cilitates polymerase initiation. The downstream end of the DNA
used in this experiment is ligated to a digoxigenin handle. This
handle is a 380-bp PCR product of a reaction supplemented with
Dig-labeled deoxy-nucleotides (labeled dNTPs, Roche Diagnostics;
nonlabeled dNTPs, Fermentas). The stalled elongation com-
plexes are then bound to anti-Dig polystyrene beads (Spher-
otech) with a radius of 2.1 μm. These beads are suspended in
transcription buffer containing 20 mM Tris, pH 7.9, 20 mM
NaCl, 10 mM MgCl2, and 20 mM DTT and adjusted to a pH of
7.9. The beads are then introduced into a glass chamber where
the single molecule experiment will take place. Once in the
chamber, a tether is made between one of the anti-Dig beads
containing the complexes and another 2.1-μm streptavidin bead
(Spherotech). The starting force on the tether was 3–4 pN. A
buffer containing transcription buffer and a full set of nucleotide
triphosphates at a saturating concentration of 1 mM (Fermentas)
and 1 μM PPi (Fluka Biochemica) was used to reinitiate tran-
scription. For experiments with nucleotide analogs, this same
buffer was supplemented with 200 μM of either ITP (Sigma-
Aldrich) or BrUTP (Sigma-Aldrich). In this passive mode ex-
periment, the distance between the traps is kept constant so that
when transcription restarts and the DNA between the beads
shortens, the force on the polymerase increases. The initial
contour length from the polymerase stall site to the other end of
the DNA was 11,731 bases.

Data Analysis. Force data were converted into number of nu-
cleotides transcribed using the extensible Worm-Like-Chain
model of DNA elasticity (2) using a persistence length of 53 nm,
a stretch modulus of 1,200 pN, and the initial DNA contour
length. Data collected were filtered both with a Gaussian filter
(1,200 ms) and a Savitzky-Golay filter (2.5 ms). Velocity was
calculated by differentiating the number of bases transcribed.
Pauses were removed by two methods that yielded equivalent
results. (i) A histogram of all velocities consisted of two peaks,
one around zero corresponding to pauses and the second one
around the average velocity of the enzyme. A threshold of 2 or 3
SDs from the mean velocity was set to differentiate between
elongation and pause. Velocities below the set threshold were set
to be a pause, whereas everything above it was considered to be
the pause-free velocity. (ii) Dwell times, which is the time spent
at a particular position on the template, were calculated using
a spatial bin of two nucleotides. The average dwell time was
calculated, and a threshold of 2–3 SDs was set to differentiate
the paused and the elongation states as done for the velocity
threshold above. These methods are able to reliably remove
pauses longer than 2 s. The pause-free velocity information and

the number of pauses and their duration were saved for further
analysis.

SI Text
Constructing a Kinetic Model. As mentioned above, pause density
decreases as the average velocity increases, both in the case of the
mutant polymerases and for the experiments done in the presence
of nucleotide analogs (Fig. 2A). By further analyzing these data,
we can perhaps better understand the observed behavior and
help answer questions such as the following. Which rate have the
point mutations affected? Has more than one rate been modi-
fied? Why is it that nucleotide analogs seem to affect the enzyme
in a similar way than the mutations? What is the rate-limiting
step in transcription? What causes the enzyme to pause? The
construction of a kinetic scheme that reproduces the experi-
mental data provides a quantitative approach to answering these
questions.
Several previous studies have found that the elongating and

pausing pathways are in kinetic competition with each other (3–
5). For the simplest kinetic scheme (shown in Fig. 2B), at each
base pair, the enzyme either moves one step forward or pauses.
In this case, the probability of entering a pause is given by
Pp = kp=ðkp + vÞ, where kp is the pause entry rate, and v is the
pause-free elongation velocity as shown in the diagram. As we
already mentioned, the mutant polymerases present different
pause-free elongation velocities, indicating that the mutations
affect a rate-limiting step in transcription. That is, even if tran-
scription is composed of many different steps like translocation,
catalysis, and PPi release, velocity is determined by the rate af-
fected by the mutations, and which, according to our interpretation
of the single molecule data, is the folding of the TL, kF . If the
mutations affect the TL folding rate kF and kF completely
determines transcription velocity so that kF ∼ v, then the
simple model Pp = kp=ðkp + vÞ should be able to fit the exper-
imental data.
The best fit to this model using themeasured pause density data

is shown by the dashed line in Fig. 2A, and as can be seen, this
expression is not able to reproduce the experimental results. One
possible explanation is that the folding rate kF does not com-
pletely determine the velocity of transcription ðv≁kFÞ, but that
instead there is more than one rate-limiting step, that is, the
elongation velocity is determined by more than one rate of
comparable magnitudes.
Based on this realization, a second kinetic scheme (Fig. 2C)

was constructed in which the elongation pathway is now divided
in two steps. The first one is the folding of the TL, prompted
by the binding of the next NTP and characterized by a second-
order rate coefficient kF , with units of micromolar per second
(μM−1·s−1), and that is affected by the mutations. This step is
assumed to be reversible with a reverse rate kFB. Once in the
folded state (F), the irreversible hydrolysis of the nucleotide
and release of PPi occurs with rate kinc. As already mentioned,
pausing (P) is an off-pathway mechanism that stems from the
main elongation pathway. It is unclear, however, from which state
pauses originate. A previous study (3) has shown that the number
of pauses decreases with increasing NTP concentrations. There-
fore, pausing can only stem from a state before NTP binding oc-
curs, which corresponds in this case to the unfolded TL state (U)
of the proposed kinetic scheme [it can be shown that if pausing
where to stem from the folded state (F), higher NTP concen-
trations would increase the number of pauses, contrary to experi-
mental observations].
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Cleland (6) derived simple rules for the calculation of effective
rates for a wide variety of kinetic schemes. Using these guide-
lines, it is possible to calculate expressions for velocity (effective
forward rate), as well as the pausing probability, and then use
them to fit the experimental data.
In this way, we obtain for the scheme in Fig. 2C that v=

1=ð1=kinc + 1=kfeff Þ and kfeff = ðkFNkincÞ=ðkFB + kincÞ. Then a cal-
culation of the effective forward rate renders

v=
kFNkinc

kFN + kinc + kFB
; [S1]

where N is the nucleotide concentration.
Now the pausing probability is

Pp =
kp

kp+
kFNkinc
kFB + kinc

: [S2]

To write the pause density as a function of velocity, we can solve
for kF from Eq. S1 and get

kF =
vðkinc + kFBÞ
Nðkinc − vÞ : [S3]

Substituting this expression back into Eq. S2 we get

Pp =
kp

kp +
�

vkinc
−v+ kinc

�: [S4]

This final expression relates the measured pause-free velocity,
V, with the enzyme’s pause density. In fact, as shown in Fig. 2A
(solid line), this model is able to reproduce the experimental
data very well ðR2 = 0:97Þ with two fitting parameters and ren-
ders the values

kp = 0:69± 0:13 s−1

kinc = 25:3± 4:5 s−1:

This value of kinc is very close to the one obtained by
Abbondanzieri et al. (7) ðkinc = 24± 2 s−1Þ and by Bai et al. (8)
ðkmax = 24:5± 1:9 s−1Þ through very different methods. The kp
values are also in relatively good agreement with kp ≈ 0:42 s−1

calculated from the temperature dependence of transcription by
Mejia et al. (5).
It must be pointed out that in this previous calculation kinc has

been assumed to be constant; however, this assumption has not
been strictly justified yet. As shown below, if kF and kFB are
taken to be constant and kinc is allowed to change, the calcu-
lated expression for pause density as a function of velocity is
not able to fit the experimental measurements (Fig. S2, dotted
line). Therefore, we can conclude that the observed changes
in velocity and pause density are not determined by changes
in kinc.
In addition, note that the pausing probability Pp does not ex-

plicitly depend on kF , the rate of TL folding, or on kFB. One way
to learn more about how kF changes due to the point mutations is
to calculate the changes in equilibrium energy for the kF=kFB
transition compared with the WT enzyme, as given by ΔΔGx−wt,
where x represents either the fast or slow mutant and wt refers to
the WT enzyme.

We know that

ΔG=−kBTln
kFN
kFB

:

We define

ΔΔGx−wt ≡ΔGx −ΔGwt;

therefore

ΔΔGx−wt =−KBTlnkFx −KBTlnN +KBTlnkFBx +KBTlnkFwt
+KBTlnN −KBTlnKFBwt:

For a fixed value of N, we can simplify to

ΔΔGx−wt =−KBTlnkFx +KBTlnkFBx +KBTlnkFwt −KBTlnKFBwt:

[S5]

In this model, the rate of TL folding kF is the rate responsible
for the observed changes in velocity, and the other rates, in-
cluding kFB, are considered constant, we demonstrate that
changes in kFB, while keeping all other rates constant, are not
sufficient to generate the observed velocity changes. Further-
more, because, as it has already been shown, variations in kinc
cannot account for the observed changes in pause density as
a function of velocity, this analysis leaves kF as the rate most
likely responsible for the velocity changes caused by the muta-
tions or the nucleotide analogs). Therefore, taking kFBx = kFBwt,
Eq. S5 now becomes

ΔΔGx−wt =−KBTln
kFx
kFwt

: [S6]

By using Eq. S3, it is possible to write kF in terms of velocity and
therefore

kFx
kFwt

=
vxðkinc − vwtÞ
vwtðkinc − vxÞ:

Eq. S6 then becomes

ΔΔGx−wt =−KBTln
vxðkinc − vwtÞ
vwtðkinc − vxÞ; [S7]

where again, x represents either the fast or the slow mutant, and
wt represents the WT enzyme. Using the measured velocities for
the fast and the slow mutant and the kinc value of 25 s−1 that was
previously obtained from the fit in Fig. 2A, we get

ΔΔGSlowM−WT =+2:2 pNnm=+0:31 kcal=mol

ΔΔGFastM−WT =−5:1 pNnm=−0:73 kcal=mol;

for the changes in equilibrium energy for the mutant’s kF=kFB
transition with respect to the corresponding transition in the WT
enzyme. Significantly, this result is in excellent agreement with
the estimates of the changes in equilibrium free energy for the
mutant TL folding based on differences in TL helix propensity.
From the helix propensity scale shown in Fig. S4, we obtain

ΔΔGSlowM−WT =+0:2 kcal=mol

ΔΔGFastM−WT =−0:5 kcal=mol

Thus, despite the simplicity of the helix propensity calculation,
it is reassuring that it yields ΔΔG values similar to those obtained
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from the direct comparison of mutant and WT rates. The di-
agram in Fig. 2D illustrates how the TL mutations are thought
to change the transcription energy landscape. Note that for the
fast mutant, kF is faster, whereas for the slow mutant, kF is
slower compared with the WT enzyme. All other rates are
unchanged.
With the purpose of obtaining an estimate of kF and kFB, the

expression for velocity shown in Eq. S1 can be further analyzed.
After some rearrangement

v=
kFNkinc

kFN + kinc + kFB
=

kinc

1+
kinc
kFN

+
kFB
kFN

; [S8]

where, as we described, for our experimental data, all rates are
constant except kF , which varies.
Because ΔGF ≤ 0 is required for the reaction to go forward, we

will impose the condition kFslow=kFB = 1, that is, ΔGFslow = 0 for
the slowest reaction (slow mutant) and so ΔGF < 0 for all other
reactions.
Starting from Eq. S5, we have

ΔΔGslow−x =−KBTlnkFslow +KBTlnkFBslow +KBTlnkFx −KBTlnkFBx;

where we now placed the slow mutant as reference and x repre-
sents the fast and WT enzymes. After some rearranging we have

ΔΔGslow−x =+KBTln
kFB
kFslow

−KBTln
kFB
kFx

:

Here we used the fact that kFB is constant. Applying the condition
that kFslow=kFB = kFB=kFslow = 1

ΔΔGslow−x = 0−KBTln
kFB
kFx

:

Inverting the natural logarithm, we have

kFB
kFx

= e−
ΔΔGslow− x

KBT ≡Ax: [S9]

Substituting back in V (Eq. S8)

v=
kinc

1+
1
N

�
kinc
kFx

+Ax

�; [S10]

Ax can be calculated from Eq. S9 and using Eq. S7, resulting in

v=
kinc

1+
1
N

�
kinc
kFx

+
vslowðkinc − vxÞ
vxðkinc − vslowÞ

�: [S11]

Because in this expression, kinc is a known quantity and N is the
nucleotide concentration, the only element that remains un-
known is kFx, which can then be used as a fitting parameter. Fig.
S3 shows some of the published data for the nucleotide de-
pendence of transcription velocity for the WT enzyme [blue
triangles from Abbondanzieri et al. (7); pink diamonds from
Forde et al. (3); green triangles from Davenport et al. (9); and
red circle from this study]. As the plot shows, this nucleotide
dependence data can be well fit by the expression for velocity
derived in Eq. S11 with only one fitting parameter kFwt with
values of 0.15 (blue curve), 0.05 (pink curve), 0.04 (black curve),
and 0.025 s−1 (red dashed curve). We believe that this variability

is most likely due to differences between experimental con-
ditions, including but not limited to the template sequence used
(10–12), the data processing methodology, and the pause re-
moval algorithms.
Even if the experimental data do not allow the exact de-

termination of the value of kF for the WT, this analysis does at
least provide bounds for kFwt of 0.15–0.025 s−1. From Eq. S7, we
see that kFwt = kFB=Awt and therefore these boundaries corre-
spond to values for kFB that range from 0.09 to 0.015 s−1 (re-
member that kFB is assumed to be constant for all data sets; only
kF changes). Table S2 shows the values of ΔΔGx−wt, ΔΔGslow−x,
and kF for all datasets, using the known value of kinc = 25 s−1 and
choosing kFB = 0:09 s−1 because it is the value that best fits our
experimental data (Fig. S3).
It is interesting to note that under saturating nucleotide con-

centrations ðN = 1;000=μMÞ, kFN is of the same order of mag-
nitude as kinc; thus, under these conditions, two rate-limiting
steps determine the transcription velocity: the TL folding rate
ðkFNÞ and nucleotide hydrolysis/PPi release ðkincÞ. Having two
rate-limiting steps means that modifying either of them will re-
sult in a change in the pause-free velocity. Fig. 3B (red line) il-
lustrates how the pause-free transcription velocity as given by
Eq. S1 varies as a function of kF for the known values
kinc = 25  s−1;  kFB = 0:09 s−1, and N = 1,000 μM−1 · s−1. Fig. 3B
also shows the experimental velocity data and the corresponding
values of kF calculated using kF = ½vðkinc + kFBÞ�=½Nðkinc − vÞ�
(blue circles). Note that even for a constant kinc and nucleotide
concentration, changes to kF caused by the mutations or the
nucleotide analogs will have an effect on the pause-free tran-
scription velocity. This model also accurately predicts the ve-
locity saturation for high values of kF as seen in the data, wherein
kinc then becomes the rate-limiting step.

Kinetic Scheme Comparison and Assumptions. As described in the
main text, for the simplest kinetic scheme in which elongation and
pausing compete (3–5), the probability of entering a pause is
given by Pp = kp=ðkp + vÞ, where kp is the pause entry rate, and v
is the pause-free elongation velocity. This model assumes that
transcription velocity is completely determined by the TL folding
rate kF so that v= kFN. However, we showed that this model is
not able to reproduce the experimental data, suggesting that
elongation velocity is not only determined by kF but rather by
a combination of more than one rate-limiting step or other re-
versible transitions.
As derived previously, the pausing probability in terms of the

pause-free velocity, v, is

Pp =
kp

kp +
�

vkinc
−v+ kinc

�: [S12]

As a comparison, note that this expression reduces to the
pausing probability of the first kinetic scheme when kinc is no
longer rate limiting, i.e., in the limit of very large kinc.
As part of this model, we assumed that only one rate is affected

by the mutations, the TL folding rate kF , whereas kinc and kFB are
assumed constant. However, as shown below, the velocity and
pausing probabilities were also calculated for the case in which
either kinc or kFB is allowed to change while kF is kept constant.
This analysis demonstrated that these other models are unable to
replicate the experimental data.
Another assumption of this model, as seen in the second

scheme of Fig. 2, is that the binding of the nucleotide and the
folding of the TL are simultaneous events. As a result, we thus
assume that the duplex stability of an analog stems in part from
the specific contacts made by the analog with the TL. This stability,
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reflected in its binding rate, is in turn manifested in the value of the
rate constant kFN.

Supplementary Analysis on Kinetic Scheme. The kinetic scheme
shown in the previous section is able to reproduce the
experimental data; however, for some of the analyses, we
assumed that kF is the rate that changes, whereas all other
rates are kept constant. Strictly speaking, we did not prove
this idea. Now we will analyze the case in which one of the
other rates involved in the kinetic scheme changes. For sim-
plicity, our model will assume that only one rate changes at
a time.
Assuming kinc changes. First we will analyze the case where kinc
is the rate that varies. For this scenario, instead of solving
for kF from the velocity expression (Eq. S1), we now solve
for kinc

kinc =
vðkFN + kFBÞ
−v+ kFN

;

and substitute it into the pause density (Eq. S2)

Pp=
ðkFB + vÞkp

kpkFB + kpv+ vkFN + vkFB
:

After some rearrangement

Pp=
kp

kp+
vðkFN + kFBÞ

kFB + v

:

This expression can now be used to fit the experimental data
taking kp;  kF ;  and kFB as the three fitting parameters. As
shown by the dotted line in Fig. S2 (dashed line), this model is
not able to fit the data. Therefore, we can conclude that the
observed changes in velocity and pause density are not de-
termined by changes in kinc.
Assuming kFB changes.Next, we will consider the case in which kFB
is the rate that changes, whereas the others are constant.
Again, we solve for kFB from Eq. S1 and substitute into
Eq. S2

kFB =−
vkFN + vkinc − kFNkinc

v

Pp=
kpðv− kincÞ

kpv− kpkinc − vkinc
:

After some rearranging we get

Pp=
kp

kp−
vkinc

v− kinc

;

which is exactly the same expression we got in Eq. S12 when we
solved for kF .
In addition, taking the expression for pause-free velocity in Eq.

S1, but now leaving it in terms of kFB instead of kF as we had
done before, we get

v=
kFNkinc

kFN + kinc + kFB
=

kF
kFB

Nkinc

kF
kFB

N +
kinc
kFB

+ 1

v=

N
Ax

kinc

N
Ax

+
kinc
kFB

+ 1
;

where in this last expression we used the previous definition that
Ax = kFB=kF .
Using kinc = 25 s−1 and Awt that we calculated before, we can

use this expression to fit the nucleotide dependence data for
the WT enzyme. The same data of Fig. 3A can be now fit
with this last expression of velocity with fitting parameter
kFB. For the Abbondanzieri et al. data, the fit renders kFB =
0:102 ð0:087; 0:1178Þ s−1, which in turn gives a value of kF =
0:166 s−1, essentially the same value previously obtained from
the fit to the Abbondanzieri et al. data as shown in Fig. 3A. The
same can be shown for the data of Forde et al. and Davenport
et al. This analysis demonstrates that the same results are ob-
tained if either kF or kFB is used as the fitting parameter, serving
as a good consistency check but not providing information about
which of these two rates the mutations and nucleotide analogs
are affecting.
We can also calculate the change in equilibrium energy

ΔΔGx−wt assuming that kFB is the rate that changes. For the slow
mutant

ΔΔGs−wt =−KBTlnkFs +KBTlnkFBs +KBTlnkFwt −KBTlnkFBwt:

If

kFs = kFwt;

then

ΔΔGs−wt =−KBTln
kFBwt
kFBs

:

Using the expression for kFB in terms of the velocity V

kFBwt
kFBs

=
vsðvwtkFN + vwtkinc − kFNkincÞ
vwtðvskFN + vskinc − kFNkincÞ : [S13]

Using kinc = 25 s−1 and kF = 0:166 μM−1 · s−1 that we got be-
fore, we get for the slow mutant

ΔΔGs−wt =+2:44 pNnm;

Which is very close to the value we got when substituting kF .
However, if we use kF = 0:025 μM−1 · s−1, which was the value
that best fit our data, we now get

ΔΔGs−wt =+8:14 pNnm:

If we plot kFBwt=kFBs as given by Eq. S13 as a function of kF , we
see that it is a nonmonotonic function with a maximum at
kF = 0:01. In the case of the fast mutant, this instability is found
near kF = 0:08. In fact, there is no single value of kF that gives
a value for kFBwt=kFBx that is positive for the slow and the fast
mutant. This analysis suggests that changing kFB is perhaps not
correct.
In addition, we can calculate the changes in velocity according

to Eq. S1 as a function of kFB for kinc = 25 s−1; kF = 0:025 s−1,
and N = 1000 μM−1 · s−1. As Table S2 shows, because kFB is in
the denominator of Eq. S1 and it is small compared with kinc and
kFN, changes in kFB do not result in significant changes to velocity.
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Therefore, we conclude that kF has to be the rate that changes and
not kFB.

Mechanical Modeling. As pointed out by Svetlov and Nudler (13),
additional factors, like entropy, solvation, and internal strain, are
also important for the correct determination of the energetic
changes that occur after amino acid substitutions. These factors
are all taken into account when using molecular mechanics al-
gorithms. One such specialized algorithm that models structural
changes and calculates changes in the folding free energy of
mutants (CC/PBSA) (14) predicted changes in stability that were
in good qualitative agreement with calculations using published
helix propensity data.

Connecting Helix Equilibrium Energies with Folding Kinetics. The
changes in stability of the folded TL presented here are calculated
as changes in the ΔG or equilibrium energy of the transition. We
propose that those energies are then related to the folding ki-
netics of the TL by assuming that only one of the rates, the
folding rate, kF , is modified by the mutations. The unfolding
rate, kFB, is not assumed to change (our data are not consistent

with kFB being the rate that changes). Thus, the change in free
energy, ΔG= kF=kFB scales directly with the rate of folding of the
loop. Therefore, we are able to limit the possible scenarios.
kF—the forward rate—is given by kF = kF0e−ΔG

†=KbT , and kFB—
the backward rate—is given similarly by kFB = kFB0e−ΔG

′†=KbT ,
whereG† andG′† are the energy of the respective transition states
(Fig. S6A). To comply with the conditions that both ΔG and kF
change in the presence of the amino acid substitutions, but that
kFB is kept constant, there are only two options: (i) ΔΔG reflect
changes in the stability of the unfolded state and involve no
modifications of either the energy of the transition state ðΔG†Þ or
the energy of the folded state as shown in Fig. S6B or (ii) there is
a simultaneous and identical shift of the energy of the folded and
transition states relative to a fixed free energy value of the un-
folded state as indicated in Fig. S6C. Although our experiments do
not allow us to precisely determine which of these two possibilities
actually takes place, we believe that the simultaneous and identical
energy shift of the transition state and the folded state is rather
unlikely (scenario 2), and therefore a change in the energy of the
unfolded state is most likely (scenario 1).
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Fig. S1. Structural dynamics of the TL. (A) Crystal structure for the T. Thermophilus RNAP (1) (PDB ID code 2O5J) in the presence of the correct NTP shows
a completely folded helical structure for the TL (red) and close contacts with the F-bridge (green). The mutated residue is shown for the slow mutant ðI→VÞ in
magenta and in yellow for the fast mutant ðG→ SÞ. Mapping of the E. colimutations was done based on the sequence alignment published by Tan et al. (2) and
using the PyMOL molecular viewer software. Template DNA is shown in orange, RNA in blue. (B) Structure for a backtracked yeast Pol II complex (3) (PDB ID
code 3GTJ) shows a partially folded TL. The remaining helical structures of the unfolded TL are known as the base helices. Mutated residues are located near
the start of the unstructured amino acids on the TL-tip. Color code is the same as above. (C) When the TL is unfolded, the polymerase is in an open con-
formation allowing the next nucleotide to enter through the secondary channel. Once the TL folds on NTP binding, it blocks the secondary channel, serving as
a pawl that rectifies the Brownian oscillations of the polymerase by not allowing backward motion. After hydrolysis is complete, the resulting PPi is released,
prompting the TL to unfold and the polymerase to adopt the open conformation. Further conformations take the polymerase from the pre- to post-
translocated state resetting the system for another cycle.

1. Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I (2007) Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448(7150):157–162.
2. Tan L, Wiesler S, Trzaska D, Carney HC, Weinzierl RO (2008) Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J Biol 7(10):40.
3. Wang D, et al. (2009) Structural basis of transcription: Backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324(5931):1203–1206.
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Fig. S2. kinc as the affected rate. Fit to experimental pause density as a function of pause-free velocity with the expression derived assuming that kp, kF , and
kFB are constant and kinc is the rate that varies (dotted gray line). As seen here, this model is not able to fit the data and therefore we can conclude that the
observed changes in velocity and pause density are not determined by changes in kinc .
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Fig. S3. Comparison of TL transition energetics. (A) Schematic of the transition between unfolded (U) and folded (F) TL states. ΔG is the equilibrium energy of
the transition, whereas ΔG† is the energy of the transition state. (B) Scenario 1, in which changes in the equilibrium energy and forward rate kF reflect changes
in the energy of the unfolded state, with no change to the energy of the transition state or to the energy of the folded state. (C) Scenario 2, in which changes
in equilibrium energy and forward rate kF are caused by a simultaneous and identical shift of both the energy of the transition state and energy of the folded
state. As discussed in the SI Text, we believe scenario 1 is more likely.
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Fig. S4. Fit to nucleotide-dependent velocity data. Elongation velocity as a function of nucleotide concentration for the WT enzyme from several published
studies [blue triangles from Abbondanzieri et al. (1), pink diamonds from Forde et al. (2), green triangles from Davenport et al. (3), and red circle from this
study]. The data can be well fit by the model in Fig. 2C with values for kFwt of 0:15 (blue curve), 0.05 (pink curve), 0.04 (black curve), and 0:025 s−1 (red dashed
curve). This variability is thought to arise from differences in data analysis or sequence-dependent effects.

1. Abbondanzieri EA, Shaevitz JW, Block SM (2005) Picocalorimetry of transcription by RNA polymerase. Biophys J 89(6):L61–L63.
2. Forde NR, Izhaky D, Woodcock GR, Wuite GJ, Bustamante C (2002) Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia

coli RNA polymerase. Proc Natl Acad Sci USA 99(18):11682–11687.
3. Davenport RJ, Wuite GJ, Landick R, Bustamante C (2000) Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287(5462):2497–2500.
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Fig. S5. Helix propensity of mutants. Helix propensity scale constructed using the values calculated by Pace and Scholtz (1). This table shows the energetic
penalty contributed by each amino acid during helix formation. For example, glycine’s increased flexibility gives this amino acid a high penalty when forming
a helix. Therefore, changing a glycine to serine in the fast mutant increases the TL helix propensity (the energetic penalty for forming a helix decreases from
1 to 0.5 kcal/mol). On the other hand, the slow mutant substitution of isoleucine to valine decreases the TL helix propensity (the penalty increases from 0.41
to 0.61 kcal/mol). Even though there is some variability among helix propensity scales, they all place glycine as the amino acid with one of the lowest helix
potentials and valine with a lower helix propensity than isoleucine. Therefore, we do in fact find a correlation between the helix forming propensity of the TL
and the rate of catalysis as the crystal structures suggested.

1. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75(1):422–427.

Fig. S6. Predicted structures of mutant TLs. The predicted lowest energy structures of the fast and slow mutants using the algorithm developed by Benedix
et al. (1) appear to be nearly superimposable. It can also be shown that the positions of the conserved E. coli residues that contact the substrate for the WT and
mutant enzymes are also superimposable with the solved T. thermophilus structure. Therefore, these two mutations are not expected to cause significant
geometric alterations of the TL element at the catalytic center or to change the contacts between the TL and the NTP or other parts of the enzyme.

1. Benedix A, Becker CM, de Groot BL, Caflisch A, Böckmann RA (2009) Predicting free energy changes using structural ensembles. Nat Methods 6(1):3–4.
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Fig. S7. Force-velocity curves. The normalized force-velocity curves for the WT and mutant polymerases show an independence of velocity to force, until the
velocity suddenly drops to zero (see ref. 1 for discussion of the reason for this sudden stop). A force-velocity independence indicates that the translocation step
of the enzyme is not the rate-limiting step of the cycle. The identification of both of the two rate limiting steps for elongation established in the present study
can explain the force independence of velocity that has been observed for both mutants and the WT polymerases in this study and in earlier single molecule
experiments (1–4). Because neither of the rate-determining processes identified here coincides with translocation and there is no a priori reason for the in-
ternal conformational changes involved in these processes to be force sensitive, it is to be expected that the measured velocity should be force independent.

1. Mejia YX, Mao H, Forde NR, Bustamante C (2008) Thermal probing of E. coli RNA polymerase off-pathway mechanisms. J Mol Biol 382(3):628–637.
2. Forde NR, Izhaky D, Woodcock GR, Wuite GJ, Bustamante C (2002) Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia

coli RNA polymerase. Proc Natl Acad Sci USA 99(18):11682–11687.
3. Wang HY, Elston T, Mogilner A, Oster G (1998) Force generation in RNA polymerase. Biophys J 74(3):1186–1202.
4. Galburt EA, et al. (2007) Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446(7137):820–823.

Table S1. Changes in velocity as a function of kFB using values of
kinc =25 s−1 and kF = 0:025 s−1

RNAP + nucleotide
analog kFBðs−1Þ=kFA Velocity (Eq. S1) (nt/sec)

Slow M 0.025 12.494
WT 0.015 12.496
WT + ITP 0.011 12.497
Fast M + ITP 0.009 12.498
WT + BrUTP 0.006 12.499
Fast M 0.004 12.499
Fast M + BrUTP 0.0035 12.499

As can be seen, kFB values do not result in significant changes in velocity,
proving that that kF has to be the rate that changes and not kFB.

Table S2. Calculated kinetic values for the proposed model using kinc = 25 s−1 and
kFB =0:09 s−1

RNAP + nucleotide
analog ΔΔGx−WT ðpNnmÞ ΔΔGslow−x ðpNnmÞ kF =

vðkinc + kFBÞ
Nðkinc − vÞ  ðμM−1 · s−1Þ

Slow M +2.20 0 0.09
WT 0 +2.20 0.15
WT + ITP −1.26 +3.45 0.21
Fast M + ITP −2.20 +4.39 0.26
WT + BrUTP −3.71 +5.09 0.39
Fast M −5.11 +7.30 0.56
Fast M + BrUTP −5.91 +8.10 0.69
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