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Weak Convergence for Occupation Measures
We study the convergence of the processes fWσðtÞ; 0≤ t≤ 1g
toward fW ðtÞ; 0≤ t≤ 1g as σ→ 0 for Theorem 2. We are in-
terested in showing that the fraction of time fWσðtÞg spends in
a set Θ0 ⊂Θ over the discrete set of times fkσ2; k= 1; . . . ; 1=σ2g
converges in distribution to the fraction of time fW ðtÞg spends in
Θ0. We choose fWσðtÞg to be a right-continuous step function ap-
proximation to a diffusion to simplify the relationship between the
occupancy fraction over the discrete set of times and over the con-
tinuous interval. However, this simplification requires us to work
with convergence to fW ðtÞg in a space of processes with discon-
tinuous sample paths, leading us to work with a Skorokhod topology.
Let Dp½0; 1� be the space of Rp-valued functions on ½0; 1� which

are right continuous with left limits. Let X = fXðtÞgt∈½0;1� and
fXnðtÞgt∈½0;1�, n≥ 1, be stochastic processes with paths in Dp½0; 1�.
Let ⇒ denote weak convergence, and suppose that Xn ⇒X
as n→∞ in Dp½0; 1� equipped with the strong Skorokhod J1
topology (1).
Proposition S1 (Proposition VI.1.17 of ref. 1). If X has con-

tinuous paths, then Xn ⇒X as n→∞ in the space Dp½0; 1� equip-
ped with the uniform metric.
Suppose that f : Rp →R is Borel measurable function and

define the map Tf : Dp½0; 1�→R

Tf ðxÞ :=
Z1
0

f ðxðtÞÞdt; x∈Dp½0; 1�:

Now, let DiscðTf Þ denote the set of discontinuity points of Tf , let
Cp½0; 1� be the space of Rp-valued continuous functions on ½0; 1�,
and write Leb for Lebesgue measure.
Proposition S2. Suppose that f is bounded. We have that

Disc
�
Tf
�
∩Cp½0; 1�⊂ fx∈C½0; 1� : Lebðft∈ ½0; 1�

: xðtÞ∈Discðf ÞgÞ> 0g=: Df :

[S1]

Proof. Suppose that x∈Cp½0; 1� does not belong to the right–
hand side of Eq. S1 and let xn → x in J1. Then, according to
a standard property of the Skorokhod J1 topology (1), we also
have supt∈½0;1�jxnðtÞ− xðtÞj→ 0, as n→∞. Now, since x∉Df , we
have that for almost all t∈ ½0; 1�, the point xðtÞ is a continuity
point of f. Therefore, f ðxnðtÞÞ→ f ðxðtÞÞ;  n→∞, for almost all
t∈ ½0; 1�. Since f is bounded, the Lebesgue dominated conver-
gence theorem then yields

Tf ðxnÞ≡
Z1
0

f ðxnðtÞÞdt→
Z1
0

f ðxðtÞÞdt≡Tf ðxÞ; as  n→∞:

This completes the proof.
In the context of stochastic processes, by the Continuous

Mapping Theorem, we have convergence in distribution,

Tf ðXnÞ→d Tf ðXÞ; as n→∞;

provided X has continuous paths and PðX ∈Discðf ÞÞ= 0. In the
case when f ðxÞ= 1AðxÞ, the latter translates to

PfThe measure of the time X spends on the boundary 
of A is zerog= 1:

[S2]

If the stochastic process has continuous marginal distribution and
the set A has zero boundary, the Fubini’s theorem readily implies
Eq. S2. Indeed, the probability in Eq. S2 equals

Z
Ω

Z1
0

1∂AðXðt;ωÞÞdt  PðdωÞ=
Z1
0

PðXðtÞ∈∂AÞdt= 0;

provided that Lebð∂AÞ= 0 and if XðtÞ has a marginal density for
each t∈ ð0; 1Þ. The above arguments lead to the proof of the
following result.
Lemma S1. Suppose that Xn ⇒X in Dp½0; 1�, equipped with the

uniform convergence topology. If the process X takes values in
Cp½0; 1� and has continuous marginal distributions, then for all
bounded Borel functions f : Rp →R, that are continuous almost
everywhere, i.e., such that LebðDiscðf ÞÞ= 0, we have

Z1
0

f ðXnðtÞÞdt→d
Z1
0

f ðXðtÞÞdt; as n→∞:

Iterated Importance Sampling
When N = 1 in IF2, we obtain a general latent variable algorithm
in which each iteration involves importance sampling but not
filtering. This situation is called iterated importance sampling (2)
and we call this special case of our algorithm IIS2. Iterated im-
portance sampling has previously been used to provide a route
into proving convergence of iterated filtering (2, 3). However, in
this article, we found it more convenient to prove the full result
for iterated filtering directly. Although IIS2 may have some in-
dependent value as a practical algorithm, our only use of IIS2 in
this article is to provide a convenient environment for explicit
computations for Gaussian models in Gaussian and Near-
Gaussian Analysis and non-Gaussian models in A Class of Exact
Non-Gaussian Limits.

A general latent variable model can be specified by a joint
density fXY ðx; y; θÞ, with X taking values in X⊂RdimðXÞ, Y taking
values in Y⊂RdimðYÞ, and θ taking values in Θ⊂RdimðΘÞ. The data
consist of a single observation, yp ∈Y. The likelihood function is

Algorithm IIS2. Iterated importance sampling

input:
Simulator for fX ðx  ;θÞ Evaluator for fY jX ðyjx   ;θÞ
Data, y* Number of iterations, M
Initial parameter swarm, fΘ0

j ,j in 1 : Jg Number of particles, J

Perturbation density, hðθjφ  ; σÞ Perturbation sequence, σ1:M

output: Final parameter swarm, fΘM
j ,j  in  1 : Jg

For m in 1 : M
Φm

j ∼hðθjΘm−1
j   ;σmÞ for j in 1 : J

Xm
j ∼ fX ðx   ;Φm

j Þ for j in 1 : J
wm

j = fY jX ðy* jXm
j   ;Φm

j Þ for j in 1 : J
Draw k1:J with Pðkj = iÞ=wm

n,i=
PJ

u=1w
m
n,u

Θm
j =Φm

kj
for j in 1 : J

End For

Ionides et al. www.pnas.org/cgi/content/short/1410597112 1 of 8

www.pnas.org/cgi/content/short/1410597112


ℓðθÞ= fY ðyp; θÞ=
Z

fXY ðx; yp; θÞdx;

and we look for a maximum likelihood estimate (MLE), i.e.,
a value θ̂ maximizing ℓðθÞ. The parameter perturbation step of
Algorithm IIS2 is a Monte Carlo approximation to a perturbation
map Hσ where

HσgðθÞ=
Z

gðφÞhðθjφ  ; σÞdφ: [S3]

A natural choice for hð · jφ; σÞ is the multivariate normal density
with mean φ and variance σ2Σ for some covariance matrix Σ, but
in general, h could be any condition density parameterized by σ.
The resampling step of Algorithm IIS2 is a Monte Carlo approx-
imation to a Bayes map, B, given by

Bf ðθÞ= f ðθÞℓðθÞ
�Z

f ðφÞℓðφÞdφ
�−1

: [S4]

When the SD of the parameter perturbations is held fixed at
σm = σ > 0, Algorithm IIS2 is a Monte Carlo approximation to
TM
σ f ðθÞ where

Tσ f ðθÞ=BHσ f ðθÞ=
R
f ðφÞℓðθÞhðθjφ; σÞdφRR

f ðφÞℓðξÞhðξjφ; σÞdφ  dξ: [S5]

Gaussian and Near-Gaussian Analysis of Iterated Importance
Sampling
The convergence results of Theorems 1 and 2 in Convergence of
IF2 are not precise about the rate of convergence, either toward
the MLE as σ→ 0 or toward the stationary distribution as
M→∞. Explicit results are available in the Gaussian case and
are also relevant to near-Gaussian situations. The near-Gaussian
situation may arise in practice, since the parameter perturbations
can be constructed to follow a Gaussian distribution and the log
likelihood surface may be approximately quadratic due to as-
ymptotic behavior of the likelihood for large sample sizes. The
near-Gaussian situation for a POMP model does not require that
the POMP itself is near Gaussian, only that the log likelihood
surface is near quadratic. Here, we consider only the univariate
case, and only for iterated importance sampling. We offer this
simplified case as an illustrative example, rather than an alter-
native justification for the use of our algorithm. In principle,
these results can be generalized, but such results do not add
much to the general convergence guarantees already obtained.
We investigate the eigenvalues and eigenfunctions for a Gaussian

system, and then we appeal to continuity of the eigenvalues to study
systems that are close to Gaussian. Here, we consider the case of
a scalar parameter, dimðΘ= 1Þ, and an additive perturbation given by

hðθjφ; σÞ= κðθ−φÞ: [S6]

We first study the unnormalized version of Eq. S5 defined as

Sf ðθÞ= ½f ðθÞℓðθÞ� p κðθÞ=
Z

½f ðθ−φÞℓðθ−φÞ�κðφÞdφ: [S7]

This is a linear map, and we obtain the eigenvalues and eigenfunc-
tions when ℓ and h are Gaussian in Proposition S3. Iterations of
the corresponding normalized map, Tσ , converge to the normal-
ized eigenfunction corresponding to the largest eigenvalue of S,
which can be seen by postponing normalization until having car-
ried out a large number of iterations of the unnormalized map.
Suppose, without loss of generality, that the maximum of the

likelihood is at θ= 0. Let ϕðθ; σÞ be the normal density with
mean zero and variance σ2.
Proposition S3. Let S0 be the map constructed as in Eq. S7 with

the choices ℓðθÞ=ϕðθ; τÞ and κðθÞ=ϕðθ; σÞ. Let
u2 =

�
σ2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ4 + 4σ2τ2

p �.
2= στ+ oðσÞ: [S8]

The eigenvalues of S0 are

λn = στ
ffiffiffiffiffi
2π

p 	
u2 − σ2

u2


ðn+1Þ=2
;

for n= 0; 1; 2; . . ., and the corresponding eigenfunctions have the form

en = pnðθÞϕðθ; uÞ; [S9]

where pn is a polynomial of degree n.
Proof. Let Pn be the subspace of functions of the form

qðθÞϕðθ; uÞ where q is a polynomial of degree less than or equal
to n. We show that S0 maps Pn into itself, and look at what
happens to terms of degree n. Let Hn be the Hermite polynomial
of degree n, defined by ðd=dθÞnϕðθ; 1Þ= ð−1ÞnHnðθÞϕðθ; 1Þ. Let
α= ð1=u2 + 1=τ2Þ−1=2, and set

f ðθÞ= α−2nHnðθ=αÞϕðθ; uÞ: [S10]

Then,

f ðθÞℓðθÞ= α

στ
ffiffiffiffiffi
2π

p α−2nHnðθ=αÞϕðθ; αÞ= α

στ
ffiffiffiffiffi
2π

p ð−1Þn dn

dθn
ϕðθ; αÞ:

[S11]

Since ½ðd=dθÞnf ℓ� p κ= ðd=dθÞn½ðf ℓÞ p κ�, we get

ðf ℓÞ p κ= α

στ
ffiffiffiffiffi
2π

p ð−1Þn d
n

dθn
ϕðθ; uÞ= α

στ
ffiffiffiffiffi
2π

p u−2nHnðθ=uÞϕðθ; uÞ:
[S12]

Writing HnðθÞ= h0 + h1θ+ . . . + hnθn, we see that the coefficient
of the term in θn in Eq. S10 is α−nhn, whereas in Eq. S12, it is

α
στ
ffiffiffiffi
2π

p u−n. We have shown that S0 operating on Pn multiplies the
coefficient of degree n by a factor of λn. Letting Ln be the matrix
representing S0 on Pn with the basis b0; . . . ; bm given by
bmðθÞ= θmϕðθ; uÞ, we see that Ln is lower triangular with diago-
nal entries λ0; . . . ; λn. Therefore, the eigenvalues are λ0; . . . ; λn,
and the eigenfunction corresponding to λm is in Pm.
The case where log ℓðθÞ is close to quadratic is relevant due to

asymptotic log quadratic properties of the likelihood function.
Choosing κðθÞ to be Gaussian, as in Proposition S3, we have the
following approximation result.
Proposition S4. Let Se be a map as in Eq. S7, with ℓ satisfying

supθjℓðθÞ−ϕðθ; τÞj< e and κðθÞ=ϕðθ; σÞ. For « small, the largest
eigenvalue of Se is close to λ0 and the corresponding eigenfunction
is close to ϕðθ; uÞ.
Proof. Write ℓðθÞ=ϕðθ; τÞ+ ηðθÞ, with supθjηðθÞj< e. Then,

jjSe f − S0f jj= jjðfηÞ * κjj≤ jjfηjj≤ ejjf jj: [S13]

Here, k · k is the L2 norm of a function or the corresponding
operator norm (largest absolute eigenvalue). Convolution with
κ is a contraction in L2, which is apparent by taking Fourier
transforms and making use of Parseval’s relationship, since all
frequencies are shrunk by multiplying with the Fourier transform
of κ. From Eq. S13, we have jjS0 − Sejj< e. This implies that Se
has a largest eigenvalue μ0 with jμ0 − λ0j< e, based on the rep-
resentation that
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jμ0j= jjSjj= sup
f

jjSef jj
jjf jj : [S14]

Writing the corresponding unit eigenfunction as w0, we have

w0 = ð1=μ0ÞSew0 = ð1=μ0Þ½S0w0 + η�; [S15]

where jjηðθÞjj< e. Writing w0 =
P∞

i=1αiei, in terms of feig from
Eq. S9, Eq. S15 gives

X∞
i=1

αiei =
X∞
i=1

αi
λi
μ0

ei + η=
X∞
i=1

αi
λi
λ0

ei + ~η; [S16]

where jj~ηjj< e ð1+ ½λ0ðλ0 − eÞ�−1Þ. Comparing terms in ei, we see
that all terms α1; α2; . . . must be of order «.

A Class of Exact Non-Gaussian Limits for Iterated
Importance Sampling
We look for exact solutions to the equation Tf = f where
T =BH, as specified in Eq. S5 with hðθjφ ; σÞ= κðθ−φÞ. This
situation corresponds to iterated importance sampling with
additive parameter perturbations that have no dependence
on σ, as in Eq. S6. Now, for gðxÞ being a probability density on
Θ, define

ℓgðxÞ= c
gðxÞ

κ p gðxÞ; [S17]

where c is a nonnegative constant. For likelihood functions of
the form of Eq. S17, supposing that ℓg is integrable, we obtain an
eigenfunction eðxÞ= κ p gðxÞ for the unnormalized map S defined
in Eq. S7 via the following calculation:

SeðxÞ= c
Z

gðx− uÞ
ðg p κÞðx− uÞ ðg p κÞðx− uÞκðuÞdu

= c
Z

gðx− uÞκðuÞdu
= c½g p κðxÞ�= c  eðxÞ:

Under conditions such as Theorem 1, it follows that κ p g is the
unique eigenfunction for T, up to a scale factor, and that
limM→∞TMf = e. We do not anticipate practical applications for
the conjugacy relationship we have established between the pair
ðℓg; κÞ since we see no reason why the likelihood should have the
form of Eq. S17. However, this situation does serve to identify
a range of possible limiting behaviors for TM .

Applying PMCMC to the Cholera Model
We carried out PMCMC for the cholera model, with the prior
being uniform on the hyperrectangle specified by θlow and θhigh in
Table S1. Thus, the IF1 and IF2 searches were conducted
starting with random draws from this prior. Since PMCMC is
known to be computationally demanding, we investigated a sim-
plified challenge: investigating the posterior distribution starting
at the MLE. This would be appropriate, for example, if one
aimed to obtain Bayesian inferences using PMCMC but giving it
a helping hand by first finding a good starting value obtained by
a maximization procedure. We used the PMMH implementation
of PMCMC in pomp (4) with parameter proposals following
a Gaussian random walk with SDs given by ðθhigh − θlowÞ=100.
We started 100 independent chains at the estimated MLE in
Table S1. Each PMCMC chain, with J = 1; 500 particles at each
ofM = 2× 104 likelihood evaluations, took around 30 h to run on

a single core of the University of Michigan Flux cluster. Writing
Vm;d for the sample variance of variable d∈ f1; . . . ; dimðΘÞg
among the 100 chains at time m∈ f1 . . . ;Mg, and τd for the
Gaussian random walk SD for parameter d, we tracked the
quantity

Vm =
XdimðΘÞ

d=1

Vm;d

τ2d
: [S18]

Supposing the posterior variance is finite, a necessary require-
ment for convergence to stationarity as m increased is for Vm
to approach its asymptotic limit. Since all of the chains start at
the same place, one expects Vm to increase toward this limit. The
number of iterations required for Vm to stabilize therefore pro-
vides a lower bound on the time taken for convergence of the
chain. This test assesses the capability of the chain to explore the
region of parameter space with high posterior probability den-
sity, rather than the capability to search for this region from
a remote starting point. We also tested PMCMC on a harder
challenge, investigating convergence of the MCMC chain to its
stationary distribution from overdispersed starting values. We
repeated the computation described above, with 100 chains ini-
tialized at draws from the prior distribution. The results are
shown in Fig. S1. From Fig. S1A, we see that the stationary
distribution has not yet been approached for the chains starting
at the MLE, since the variance of independent chains continues
to increase up to M = 2× 104. As a harder test, the variance for
the initially overdispersed independent chains should approach
that for the initially underdispersed chains, but we see in Fig.
S1B that much more computation would be required to achieve
this with the algorithmic settings used.
The PMCMC chains used here, for the cholera data with

N = 6 × 102 data points, involved JMN = ð1:5× 103Þ× ð2× 104Þ×
ð6× 102Þ= 1:8× 1010 calls to the dynamic process simulator (the
dominating computational expense), and yet failed to converge.
By contrast, IF2 with JMN = ð104Þ× 102 × ð6× 102Þ= 6× 108
calls to the dynamic process simulator was shown to be an ef-
fective tool for global investigation of the likelihood surface.
As with all numerical comparisons, it is hard to assess whether
poor performance is a consequence of poor algorithmic choices.
Conceptually, a major difference between iterated filtering and
PMCMC is that the filtering particles in IF2 investigate the
parameter space and latent dynamic variable space simulta-
neously, whereas, in PMCMC, each filtering iteration is used
only to provide a single noisy likelihood evaluation. It may not
be surprising that algorithms such as PMCMC struggle in sit-
uations where filtering is a substantial computational expense
and the likelihood surface is sufficiently complex that many
thousands of Monte Carlo steps are required to explore it. In-
deed, IF1 and IF2 remain the only algorithms that have cur-
rently been demonstrated computationally capable of efficient
likelihood-based inference for situations of comparable diffi-
culty to our example.

Applying Liu and West’s Method to the Toy Example
Bayesian parameter estimation for POMP models using se-
quential Monte Carlo with perturbed parameters was proposed
by ref. 5. Similar approaches using alternative nonlinear filters
have also been widely used (6, 7). Liu and West (8) proposed a
development on the approach of ref. 5 that combines parameter
perturbations with a contraction that is designed to counterbalance
the variation added by the perturbations, thereby approximating the
posterior distribution of the parameters for the fixed parameter
model of interest. Liu and West (8) also included an auxiliary
particle filter procedure in their algorithm (9). The auxiliary particle
filter is a version of sequential Monte Carlo that looks ahead to
a future observation when deciding which particles to propagate.
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Generally, auxiliary particle filter algorithms do not have the plug-
and-play property (10, 11) since they involve constructing weights
that require evaluation of the transition density for the latent pro-
cess. In addition, the auxiliary particle filter does not neces-
sarily have superior performance over a basic sequential Monte
Carlo filter (12). To compare with IF2 and PMCMC on our toy
example, we therefore use a version of the Liu and West al-
gorithm, which we call LW, that omits the auxiliary particle
filter procedure. LW carries out the key innovation of param-
eter perturbation and contraction (Steps 3 and 4 in section 10.4
of ref. 8) while omitting the auxiliary particle filter (Steps 1 and
2, and the denominator in Step 5, in section 10.4 of ref. 8). LW
was implemented via the bsmc2 function of the pomp package
(4). If an effective auxiliary particle filter were available for
a specific computation, it could also be used to enhance other
sequential Monte Carlo based inference procedures such as
IF1, IF2, and PMCMC.
For the numerical results reported in Fig. S2, we used J = 104

particles for LW. This awards the same computational resources
to LW that we gave IF1 and IF2 for the results in Fig. 1. The
magnitude of the perturbations in LW is controlled by a discount
factor (δ in the notation of ref. 8), and we considered three
values, δ∈ f0:99; 0:999; 0:9999g. Liu and West (8) suggested that
δ should take values in the range δ∈ ½0:95; 0:99�, with smaller
values of δ reducing Monte Carlo variability while increasing bias
in the approximation to the target posterior distribution. For our
toy example, we see from Fig. S2A that the choice δ= 0:99 results
in a stable Monte Carlo computation (since all eight realizations
are close). However, Fig. S2A also reveals a large amount of bias.
Increasing δ to 0.999, Fig. S2B shows some increase in the Monte
Carlo variability and some decrease in the bias. Further in-
creasing δ to 0.9999, Fig. S2C shows the bias becomes small
while the Monte Carlo variability continues to increase. Values
of δ very close to 1 are numerically tractable for this toy model,
but not in most applications. As δ approaches 1, the ensuing
numerical instability exemplifies the principal reason why
Bayesian and likelihood-based inference for POMP models is
challenging despite the development of modern nonlinear fil-
tering techniques.
The justification provided by ref. 8 for their algorithm is based

on a Gaussian approximation to the posterior distribution.
Specifically, ref. 8 argued that the posterior distribution should
be approximately unchanged by carrying out a linear contraction
toward its mean followed by adding an appropriate pertur-
bation. Therefore, it may be unsurprising that LW performs
poorly in the presence of nonlinear ridges in the likelihood
surface. Other authors have reported poor numerical perfor-
mance for the algorithm of ref. 8, e.g., figure 2 of ref. 13 and
figure 2 of ref. 14. Our results are consistent with these findings,
and we conclude that the approach of ref. 8 should be used with
considerable caution when the posterior distribution is not close
to Gaussian.

Consequences of Perturbing Parameters for the Numerical
Stability of SMC
The IF2 algorithm applies sequential Monte Carlo (SMC) to an
extended POMP model in which the time-varying parameters are
treated as dynamic state variables. This procedure increases the
dimension of the state space by the number of time-varying
parameters. Empirically, SMC has been found effective in many
low-dimensional systems, but its numerical performance can
degrade in larger systems. A natural concern, therefore, is the
extent to which the extension of the state variable in IF2 increases
the numerical challenge of carrying out SMC effectively. Two
rival heuristics suggest different answers. One intuitive (but not
universally correct) argument is that adding variability to the
system stabilizes numerically unstable filtering problems, since it
gives each particle at least a slim chance of following a trajectory

compatible with the data. An opposing intuition, that SMC breaks
down rapidly as the dimension increases, has theoretical support
(15). However, the theoretical arguments of ref. 15 may be
driven more by increasing the observation dimension than in-
creasing the state dimension, so their relevance in the present
situation is not entirely clear.
We investigated numerical stability of SMC, in the context of

our cholera example, by measuring the effective sample size
(ESS) (16). We investigated the ESS for two parameter vectors,
the MLE and an alternative value for which SMC is more nu-
merically challenging. We carried out particle filtering with and
without random walk perturbations to the parameters, obtaining
the results presented in Fig. S3. We found that the random walk
perturbations led to a 5% decrease in the average ESS at the
MLE, but a 13% increase in the average ESS at the alternative
parameter vector. This example demonstrates that the random
walk perturbations can have both a cost and a benefit for nu-
merical stability, with the benefit outweighing the cost as the
filtering problem becomes more challenging.

Checking Conditions B1 and B2
We check B1 and B2 when Θ is a rectangular region in RdimðΘÞ,
with hnðθjϕ  ; σÞ describing a Gaussian random walk having as
a limit a reflected Brownian motion on Θ. A more general study
of the limit of reflected random walks to reflected Brownian
motions (in particular, including limits where the random walk
step distribution satisfies B5) was presented by Bossy et al. (17).
The specific examples of the IF2 algorithm given in our paper all
use Gaussian random walk perturbations for the parameters.
The examples did not use boundary conditions to constrain the
parameter to a bounded set. While such conditions could be
used to ensure practical stability of the algorithm, we view the
conditions primarily as a theoretical device to assist the mathe-
matical analysis of the algorithm.
Suppose that Θ= ½a1; b1�× ½a2; b2�× . . . × ½adimðΘÞ; bdimðΘÞ�. For

each coordinate direction d= 1; . . . ; dimðΘÞ, let Rd : R→ ½ad; bd�
be the reflection map defined recursively by

RdðxÞ=
8<
:

x if x∈ ½ad; bd�
Rdð2bd − xÞ if x> bd
Rdð2ad − xÞ if x< ad

:

Let hn;dðθdjϕd   ; σÞ be the density of Rdðϕd + σZÞ where Z is a stan-
dard Normal random variable. Let hnðθjϕ  ; σÞ be the joint density
corresponding to the product of hn;1; . . . ; hn;dimðΘÞ. This choice of
hn corresponds to a perturbation process for the parameter vec-
tor in the IF2 algorithm following a Gaussian random walk on Θ
with reflective boundary conditions, independently in each co-
ordinate direction. By construction, the finite dimensional dis-
tributions of WσðtÞ at the set of times

�
kσ2 : k= 0; 1; 2; . . . and kσ2 ≤ 1

�
exactly match the corresponding finite dimensional distributions
of a reflected Brownian motion fW ðtÞg taking values in Θ. This
fW ðtÞg gives a construction of the limiting process whose exis-
tence is assumed in B1. For A⊂Θ, we see from this construction
of fW ðtÞg that the probability fW ðtÞg is in A for all e≤ t≤ 1� is
greater than the corresponding probability for an unreflected
Brownian motion, fWðuÞðtÞg with the same intensity parameter.
It is routine to check that fWðuÞðtÞg has a positive probability of
remaining in any open set A for all e≤ t≤ 1 uniformly over all
values of WðuÞð0Þ∈Θ. Thus, we have completed the check of
condition B1.
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To check B2, the positivity of the marginal density of W ðtÞ on
Θ, uniformly over the value of W ð0Þ, again follows since this
density is larger than the known density for WðuÞðtÞ.
Additional Details for the Proof of Theorem 1
In Convergence of IF2, a condensed proof of Theorem 1 is pro-
vided to describe the key steps in the argument. Here, we restate
Theorem 1 and provide a more detailed proof. The reader is
referred back to the main text for the notation and statement of
conditions B2 and B4. Let L1Θ denote the space of integrable
real-valued functions on Θ with norm jjf jj1 =

R jf ðθÞjdθ. For
nonnegative measures μ and ν on Θ, let jjμ−νjjtv denote the total
variation distance and let Hðμ; νÞ denote the Hilbert metric
distance (18, 19). The measures μ and ν are said to be compa-
rable if they are both nonzero and there exist constants 0< a≤ b
such that a  νðAÞ≤ μðAÞ≤ b  νðAÞ for all measurable subsets A⊂Θ.
For comparable measures, Hðμ; νÞ is defined by

Hðμ; νÞ= log
supA   μðAÞ=νðAÞ
infA   μðAÞ=νðAÞ ; [S19]

with the supremum and infimum taken over measurable subsets
A⊂Θ having νðAÞ> 0. For noncomparable measures, the Hilbert
metric is defined by Hð0; 0Þ= 0, and otherwise Hðμ; νÞ=∞. The
Hilbert metric is invariant to multiplication by a positive scalar,
Hðaμ; νÞ=Hðμ; νÞ. This projective property makes the Hilbert
metric convenient to investigate the Bayes map: In the context
of the following proof, the projective property lets us analyze the
linear map Sσ to study the nonlinear map Tσ .
Theorem 1. Let Tσ be the map defined by Eq. 1 in the main text,

and suppose B2 and B4. There exists a unique probability density fσ
such that for any probability density f on Θ,

lim
m→∞

jjTm
σ f − fσ jj1 = 0; [S20]

where jjf jj1 is the L1 norm of f. Let fΘM
j ;  j= 1; . . . ; Jg be the

output of IF2, with σm = σ > 0. There exists a finite constant
C such that

lim sup
M→∞

E

"1J
XJ
j=1

ϕ
�
ΘM

j

�
−
Z

ϕðθÞfσðθÞdθ

#
≤
CsupθjϕðθÞjffiffiffi

J
p :

[S21]

Proof. For θ0:N ∈ΘN+1, we single out the last component of θ0:N
by writing ℓ

^ðθ0:NÞ= ℓ
^ðθ0:N−1; θNÞ and hðθ0:N jϕÞ= hðθ0:N−1; θN jϕÞ.

Then, for ϕ and θ in Θ, we define

sσðϕ; θÞ=
Z

hðθ0:N−1; θjϕ; σÞ ℓ
^ðθ0:N−1; θÞdθ0:N−1: [S22]

The function sσ in Eq. S22 defines a linear operator Sσf ðθÞ=R
sσðϕ; θÞf ðϕÞdϕ that maps L1ðΘÞ into itself. Notice that Tσf ðθÞ=

Sσ f ðθÞ=jjSσf jj1. More generally, if μ is a probability measure on
Θ, Sσμ denotes the function SσμðθÞ=

R
sσðϕ; θÞμðdϕÞ. Notice

also that Smσ f , the m-th iterate of Sσ , can be written as Smσ f ðθÞ=R
sðmÞ
σ ðϕ; θÞf ðϕÞdϕ, where sð1Þσ ðϕ; θÞ= sσðϕ; θÞ, and for m≥ 2,

sðmÞ
σ ðϕ; θÞ= R sσðϕ; uÞsðm−1Þ

σ ðu; θÞdu. Using the definition of ℓ
^

and B4,

sσðϕ; θÞ=
Z

hðθ0:N−1; θjϕ; σÞ
Z

fX ðx0:N jθ0:N−1; θÞfY jX
�
y*1:N jx0:N

�
dx0:N dθ0:N−1 ≥ eN

Z
hðθ0:N−1; θjϕ; σÞdθ0:N−1;

[S23]

and, similarly,

sσðϕ; θÞ≤ e−N
Z

hðθ0:N−1; θjϕ; σÞdθ0:N−1: [S24]

By iterating the Inequalities S23 and S24, assumption B2 implies
that there exists m0 ≥ 1 such that for any m≥m0, there exist
0< δm <∞, a probability measure λm on Θ such that for all mea-
surable subsets A⊂Θ and all θ∈Θ,

δmλmðAÞ≤
Z
A

sðmÞðθ;ϕÞdϕ≤ δ−1m λmðAÞ: [S25]

In other words, Sm0
σ is mixing in the sense of ref. 19. In the

terminology of ref. 18, this means that for each m≥m0, Sm has
finite projective diameter (see lemma 2.6.2 of ref. 18). There-
fore, by theorem 2.5.1 of ref. 18, we conclude that Sσ has a unique
nonnegative eigenfunction fσ with jjfσ jj1 = 1, and for any density
f on Θ, as q→∞,


�
Sm0
σ

�qf
jj�Sm0

σ

�qf jj1 − fσ



1

= jjTm0q
σ f − fσ jj1 → 0:

This implies the Statement S20, by writing for any m≥ 1,
m= qm0 + r, for 0≤ r≤m0 − 1, and Tm

σ f = ½Tqm0
σ �Tr

σ f .
Let the initial particle swarm fΘ0

j ;   1≤ j≤ Jg consist of in-
dependent draws from the density f. To prove Eq. S21, we
decompose M = qm0 + r, for some r∈ f0; . . . ;m0 − 1g, and we
introduce the empirical measures μð0Þ = J−1

PJ
j=1δΘðrÞ

j
, and for

k= 1; . . . ; q, μðkÞ = J−1
PJ

j=1δΘðr+m0kÞ
j

, so that μðqÞ = J−1
PJ

j=1δΘðMÞ
j
.

We then write, for any bounded measurable function ϕ,

μðqÞðϕÞ− �TM
σ f
�ðϕÞ= μðqÞðϕÞ− �Tm0q

σ μð0Þ
�ðϕÞ

+
�
Tm0q
σ μð0Þ

�ðϕÞ− �Tm0q
σ Tr

σ f
�ðϕÞ

=
Xq
i=1

nh
Tm0ði−1Þ
σ μðq−i+1Þ

i
ðϕÞ−

h
Tm0 i
σ μðq−iÞ

i
ðϕÞ
o

+
�
Tm0q
σ μð0Þ

�ðϕÞ− �Tm0q
σ Tr

σ f
�ðϕÞ:

Using theorem 2 of ref. 20, we can find a finite constant C3 such
that for all k≥ 1, and writing jjϕjj∞ = supθjϕðθÞj,

ρ= sup
ϕ:jjϕjj∞=1

E

hμðkÞðϕÞ− hTm0
σ μðk−1Þ

i
ðϕÞ
i≤ C3ffiffiffi

J
p ; [S26]

with B4 implying that the constant C3 constructed by ref. 20 does
not depend on μðk−1Þ. Since Sm0

σ is mixing and Eq. S25 holds,
using lemma 3.4, lemma 3.5, lemma 3.8, and equation 7 of ref.
19, we have

E
��Tm0q

σ μð0Þ
�ðϕÞ− �Tm0q

σ Tr
σf
�ðϕÞj�

≤ jjϕjj∞E
�jjTm0q

σ μð0Þ −Tm0q
σ Tr

σf jjtv
�

≤
2jjϕjj∞
log 3

E

h
H
�
Sm0q
σ μð0Þ; Sm0q

σ Tr
σf
�i

≤
2jjϕjj∞
log 3

 
1− δ2m0

1+ δ2m0

!q−2
1
δ2m0

E

h
jjTm0

σ μð0Þ −Tm0
σ Tr

σ f jjtv
i

≤
4jjϕjj∞
log 3

 
1− δ2m0

1+ δ2m0

!q−2
1
δ2m0

ρ

δ2m0

:
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For i= 3; . . . ; q, a similar calculation gives

E

hTm0ði−1Þ
σ μðq−i+1ÞðϕÞ−Tm0i

σ μðq−iÞðϕÞ
i=E

hTm0ði−1Þ
σ μðq−i+1ÞðϕÞ

−Tm0ði−1Þ
σ Tm0

σ μðq−iÞðϕÞ
i≤ 4jjϕjj∞

log 3

 
1− δ2m0

1+ δ2m0

!i−3
1
δ2m0

ρ

δ2m0

:

The case i= 1 boils down to Eq. S26, where the case i= 2 gives,
by similar calculations:

E

hTm0
σ μðq−1ÞðϕÞ−T2m0

σ μðq−2ÞðϕÞj
i
≤ 2jjϕjj∞

ρ

δ2m0

:

Hence, using Eq. S26,

E

hμðqÞðϕÞ− �TM
σ f
�ðϕÞi

≤
C3jjϕjj∞ffiffiffi

J
p

0
@1+

2
δ2m0

+
4

log 3

 
1
δ2m0

!2Xq−2
j=0

 
1− δ2m0

1+ δ2m0

!j
1
A:

We conclude that there exists a finite constant C4 such that

E

"1J
XJ
j=1

ϕ
�
ΘM

j

�
−
Z

ϕðθÞ�TM
σ f
�ðθÞdθ


#
≤

C4jjϕjj∞ffiffiffi
J

p : [S27]

Eq. S21 follows by combining Eq. S27 with Eq. S20.
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Fig. S1. The Liu and West algorithm (8) applied to the toy example with varying values of the discount factor: (A) δ= 0:99; (B) δ= 0:999; (C) δ= 0:9999. Solid
lines show eight independent estimates of the marginal posterior density of θ1. The black dotted line shows the true posterior density.
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Fig. S2. PMCMC convergence assessment, using the diagnostic quantity in Eq. S18. (A) Underdispersed chains, all started at the MLE. (B) Overdispersed chains,
started with draws from the prior (solid line), and underdispersed chains (dotted line). The average acceptance probability was 0.04238, with Monte Carlo SE
0.00072, calculated from iterations 5,000 through 20,000 for the 100 underdispersed PMCMC chains. For the overdispersed chains, the average acceptance
probability was 0.04243 with SE 0.00100.
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Fig. S3. Effective sample size (ESS) for SMC with fixed parameters and with perturbed parameters. We ran SMC for the cholera model with the parameter
vector set at the MLE, θ̂, and at an alternative parameter vector ~θ for which the first 18 parameters in Table S1 were multiplied by a factor of 0.8. We defined
the ESS at each time point by the reciprocal of the sum of squares of the normalized weights of the particles. The mean ESS was calculated as the average of
these ESS values over the 600 time points. Repeating this computation 100 times, using J= 104 particles, gave 100 mean ESS values shown in the “fixed”
columns of the box-and-whisker plot. Repeating the computation with additional parameter perturbations having random walk SD of 0.01 gave the 100 mean
ESS values shown in the “perturbed” column. For both parameter vectors, the perturbations greatly increase the spread of the mean ESS. At θ̂, the pertur-
bations decreased the mean ESS value by 5% on average, whereas at ~θ the perturbations increased the mean ESS value by 13% on average. The MLE may be
expected to be a favorable parameter value for stable filtering, and our interpretation is that the parameter perturbations have some chance of moving the
SMC particles away from this favorable region. When started away from the MLE, the numerical stability of the IF2 algorithm benefits from the converse effect
that the parameter perturbations will move the SMC particles preferentially toward this favorable region. For parameter values even further from the MLE
than ~θ, SMC may fail numerically for a fixed parameter value yet be feasible with perturbed parameters.
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Table S1. Parameters for the cholera model

θ̂ θlow θhigh

γ 20.80 10.00 40.00
« 19.10 0.20 30.00
m 0.06 0.03 0.60
βtrend × 102 −0.50 −1.00 0.00
β1 0.75 −4.00 4.00
β2 6.38 0.00 8.00
β3 −3.44 −4.00 4.00
β4 4.23 0.00 8.00
β5 3.33 0.00 8.00
β6 4.55 0.00 8.00
ω1 −1.69 −10.00 0.00
ω2 −2.54 −10.00 0.00
ω3 −2.84 −10.00 0.00
ω4 −4.69 −10.00 0.00
ω5 −8.48 −10.00 0.00
ω6 −4.39 −10.00 0.00
σ 3.13 1.00 5.00
τ 0.23 0.10 0.50
S0 0.62 0.00 1.00
I0 0.38 0.00 1.00
R1,0 0.00 0.00 1.00
R2,0 0.00 0.00 1.00
R3,0 0.00 0.00 1.00

θ̂ is the MLE reported by ref. 1. Three parameters were fixed (δ= 0:02,
Ns = 6, and k= 3) following ref. 1. Units are per year for γ, «, m, βtrend, and δ;
all other parameters are dimensionless. The θlow and θhigh are the lower and
upper bounds for a hyperrectangle used to generate starting points for the
search. Nonnegative parameters (γ, «, m, σ, τ) were logarithmically trans-
formed for optimization. Unit scale parameters (S0, I0, R1,0, R2,0, R3,0) were
optimized on a logistic scale. These parameters were rescaled using the
known population size to give the initial state variables, e.g., Sðt0Þ=
S0fS0 + I0 +R1,0 +R2,0 +R3,0g−1Pðt0Þ.
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