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Supplementary Texts 

S1. Spatial characteristics of articulator motion components 

Articulator motion artifacts have multiple sources of origin and may be driven by two 

distinct mechanisms. First, noise signals related to jaw motion can propagate into inferior frontal 

and temporal brain regions (see Fig. 2, Panel 1 in the main text). They are likely caused by 

perturbations of the static magnetic field (Birn et al., 1998) due to bone movement and muscle 

contraction. Second, in some other components, signals in oral/laryngeal cavities (including tongue; 

Fig. 2, Panel 2; see Fig. 1b for an enlarged view), nasal/pharyngeal cavities (Fig. 2, Panel 7), and 

frontal sinus (Fig. 2, Panel 15) coexist with artifacts in ventromedial cerebral regions and brain 

stem. Common spatial properties, e.g., a characteristic radiant stripe pattern close to the caudate and 

thalamus, are often observed for these components; in addition, a single component may sometimes 

contain multiple sources of origin; thereby indicating a common underlying mechanism – 

presumably a susceptibility distortion effect (Barch et al., 1999; Kemeny et al., 2005) caused by the 

vibrations of air-tissue interfaces. 

Most of the articulator motion components can be robustly detected by a spatial feature 

derived from the dual-mask method – out-of-brain ratio. These artifacts may also show 

scattered/interspersed intensity patterns in both brain tissues and extracerebral soft tissues, possibly 

caused by image warping. Additionally, for images collected using interleaved sagittal slices, the 

jaw motion artifacts only affect lateral slices, whereas the artifacts caused by susceptibility 

distortion primarily affect medial slices; and both may be identifiable from an interleaved pattern in 

axial or coronal views (Fig. 2, Panel 11). 

To identify the susceptibility distortion components near the frontal sinus, sometimes lack 

all above features, a complementary template matching method (Fig. 2, Panel 15) may be necessary. 
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These components might be contributed by both articulation and head motion, based on the 

observation of temporal correlations with both types of motion measures, i.e., speech envelope and 

rigid-body alignment parameters. Their relationship to articulation might be driven by the vibration 

of the sinus air cavities during vowel nasalization (Pruthi et al., 2007). Meanwhile, the spatial 

displacement of these air cavities along with bulk head motion may introduce an effect also called 

susceptibility-by-motion interaction (Andersson et al., 2001; Wu et al., 1997). 

S2. Partitioning of temporal variance based on mechanistic classification 

First of all, it is important to mention that although the variance decompositions in sICA and 

its PCA preprocessing step are computed spatially, here we only report the partitioning of temporal 

variance, as this is more relevant to the time series analyses commonly applied to fMRI data. The 

amount of variance for each noise category is defined as the sum of time course variances of all 

components belonging to that category. In addition, the variances were measured separately for the 

data acquired in speech production and speech comprehension tasks. The latter served as a low-

noise control condition that should contain significant less amounts of articulator and head motion 

related variances by our prediction. In order to obtain a proper measurement of the task-related 

variance (i.e., neural signal), the time course segment for each task includes both their task blocks 

and the succeeding rest intervals. 

On average across datasets, the identified noise components explained more than sixty 

percent of the temporal variance in speech production tasks (IS Fig. 1a). Nearly half of the noise 

variance was accounted for by head motion. A smaller portion of variance appeared to be due to 

articulator motion, but these artifacts might be more detrimental in the detection of functional 

activity because they are more focally distributed. Compared with the large proportion of noise 

variance, the temporal variance in the neural signal components only account for a fairly small 
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percentage. This is not surprising as it is generally known that fMRI has a rather low signal-to-noise 

ratio (Caparelli, 2005). When comparing noise variances between production and comprehension 

(IS Fig. 1b), we indeed found that articulator motion showed the most significant difference 

followed by head motion, whereas no significant differences were observed for other noise 

categories. 

The denoised datasets contain two other types of variance in addition to the variance 

explained by neural signal components (IS Fig. 1a). Unlike a direct reconstruction algorithm which 

operates by summing up the signal components only (Kochiyama et al., 2005), our technique adopts 

a noise component removal approach, which retains the temporal variances removed in the two 

preprocessing steps of sICA: spatial mean centering and PCA data reduction. 

Spatial mean centering removed the global mean fluctuation caused by scanner drift, bulk 

respiratory motion (Glover et al., 2000), and CO2-related hemodynamic changes (Birn et al., 2006). 

However, due to their heterogeneous amplitude distribution across regions, these effects are better 

to be removed by a voxel-wise regression method (Macey et al., 2004) rather than subtracting a 

uniform mean value across voxels. 

PCA data reduction also removed a significant amount of temporal variance, which might 

contain random thermal noise as well as a mixture of unmodeled structured noise and neural signal. 

This portion of variance should therefore not be removed to avoid “throwing the baby out with the 

bathwater”. Equally important, PCA residual variance contains the majority of the temporal degrees 

of freedom in the original fMRI time series, which are crucial for maintaining the statistical power 

of individual-level inferences or group analyses based on hierarchical models (Hodges and Sargent, 

2001). 
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The amount of PCA residual variance is determined by the dimensionality (i.e., model 

order) of the brain-masked decomposition (Fig. S3). Increasing the order of dimensionality will 

cause a shrinkage of the PCA residual variance, which may lead to an increase of variance 

explained by both signal and noise components. By varying the dimensionality with an incremental 

multiplier sequence of the original MDL estimate, we found that the residual variance shrinkage 

primarily contributes to the variance explained by noise components. However, this increase of 

noise variance is systematically reduced as the multiplier increases above one. These result support 

the idea that MDL estimate is a reasonable trade-off between the amount of noise variance removal 

and the model order (which in turns determines the degree-of-freedom cost as well as the amount of 

computational time). 

S3. Comparisons with existing fMRI methods for imaging overt speech production 

The effectiveness of our technique was further demonstrated by comparing it to existing 

BOLD fMRI methods that have been used for imaging overt speech production. First, most of the 

existing methods are restricted to the use of slow event-related designs or short block durations with 

relatively low detection power (Birn et al., 2002) because the confounding temporal correlation 

between overt speech artifacts and hemodynamic responses increases with block duration (Birn et 

al., 2004; Soltysik and Hyde, 2006). Second, there are experimental paradigms specially designed to 

work around the severe motion during overt speaking. For example, the most commonly used 

method in the field employs sparse image acquisition (here we called sparse), in which images can 

only be collected during a period of silence following speech (Gracco et al., 2005). An alternative 

method allows continuous acquisition, but images collected during speech are simply discarded 

(Birn et al., 2004; here we called discard). The underlying assumption of both methods is that there 

is a brief non-overlapping period between the lagged hemodynamic response and the overt speech 
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artifacts, which can be utilized to obtain “clean” images. However, this makes them suffer from the 

similar limitations of the scrubbing method that were mentioned earlier in the introduction, 

particularly the inability to obtain continuous fMRI time series. Therefore, developing an effective 

denoising technique is critical for overcoming these limitations, especially in a context of 

ecologically valid language research that is focused on connected speech production (Braun et al., 

2001). 

The methodological comparisons in this section were based on an ROI (BA 45) that was 

used previously for evaluating the impact of artifacts on activity detection. Both sICA denoising and 

the discard method (by the exclusion or “censoring” of images during all task blocks plus one 

image immediately following each block, which was applied only in the individual-level GLM 

stage after all the preprocessing steps, along with the removal of the corresponding parts of design 

matrix and serial correlation matrix derived from the uncensored data; for more details of this 

method, see Birn et al., 2004) were used to analyze data acquired in both short (10 s) and longer (30 

s) blocks. Hence, the effects of these two different techniques, block duration, as well as their 

interactions can be examined in a single model (IS Fig. 2a). In the analysis of uncorrected data, the 

artifactual deactivation of the ROI was more severe in the 30 s production than in the 10 s 

production (t16 = 4.08, Padj = 0.0044), as predicted by the differential temporal correlations between 

task periods (which contain artifacts) and hemodynamic responses in IS Fig. 2b. Notably, the ROI 

still showed apparent deactivation, though to a lesser degree, in the 10 s production blocks, which 

was nevertheless the opposite of the positive activation observed in PET (see Fig. 6d). These 

findings indicate that optimizing block duration alone cannot fundamentally solve the artifact 

problem. After sICA denoising however, both 10 s and 30 s production showed positive activations 

(10 s: t16 = 2.47, P = 0.0254; 30 s: t16 = 3.39, P = 0.0037). The activation of the 30 s production task 
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was even (nonsignificantly) higher, probably due to a difference in detection power (Birn et al., 

2002) between the two types of designs. 

When compared to the direct analysis of uncorrected data, the discard method eliminated 

the artifactual deactivations for both 10 s and 30 s production blocks. However, its performance was 

inferior to the sICA method in terms of the magnitude of positive activation (F1, 16 = 5.63, P = 

0.0305, pooled across 10 s and 30 s; IS Fig. 2a, the 2nd and 3rd groups of yellow and red bars). 

Furthermore, the combination of these two methods (“discard+sICA”) showed no significant 

difference in percent signal change than estimates obtained using the sICA method alone. What is 

surprising is that the sICA method further increased the signals of the production tasks even after 

the noisy images acquired during task periods were discarded (F1, 16 = 10.46, P = 0.0052; IS Fig. 2a, 

the 3rd and 4th groups of yellow and red bars). If this is due to persistent motion artifacts observed 

in the post-task periods, then the basic assumption of both the sparse and discard methods may be 

incorrect. 

To resolve this question, we obtained the FD and DVARS measures during and after each 

narrative block using the methods proposed by Power et al. (2012). Both FD and DVARS revealed 

a very striking motion “aftereffect” during the post-task periods of narrative production (IS Fig. 

2c/d), i.e., both bulk head motion and noise-induced intensity fluctuations failed to fall back to the 

baseline level immediately after the task. The results of DVARS also showed a transient burst at 

approximately two seconds after production, which was even higher than the mean measurement 

during task (t166 = 4.33, Padj = 0.0033, pooled across 10 s and 30 s). However, after sICA denoising, 

the DVARS curves for production appeared to be flat, with their means lowered approximately to 

(and slightly lower than) the range observed during comprehension tasks. This indicates that the 



An fMRI Denoising Technique Based on Spatial ICA (Supplementary Materials)  7 

 

sICA method can reduce the artifacts of all acquired images – during and after speech production – 

to at least a level similar to that seen during conventional low-noise tasks. 

The exact mechanisms underlying the above post-task motion are still not clear to us. They 

are likely caused by deep breathing and/or swallowing after a period of continuous speaking, both 

of which may result in bulk head motion (Seto et al., 2001) as well as image intensity changes (Birn 

et al., 1998; Glover et al., 2000). Nevertheless, these measurements may indeed explain the 

suboptimal performance of the discard method. 

In addition, although the sparse method was not formally investigated in this study, we 

expect it may suffer from the same problem when subjects are required to maintain speaking in 

separate but consecutive task epochs (Gracco et al., 2005), especially since sparse images are 

typically acquired in 2-3 second gaps between these epochs, during which deep breathing and 

swallowing are most likely to occur. Hence, the FD and DVARS profiles observed here may argue 

against the benefits of using this paradigm as well. 

Taken together, the above evidence suggests that the denoising performance of sICA is not 

constrained by block duration, nor does it require the discarding of noise-contaminated images. 

Importantly, the ability to use a task period of at least 30 seconds is critical for obtaining a more 

natural narrative structure in discourse-level production. Besides, the flexibility for subjects to 

choose variable speaking durations is a necessity in studies of conversation (Scott et al., 2009), 

required by the normal turn-taking behavior during such interactions. Moreover, retaining all of the 

consecutive images within task blocks is mandatory for evaluating hemodynamic fluctuations that 

correlate with cognitive-behavioral events occurring during longer production tasks. All of these 

may have significant implications for unraveling the neural bases of a variety of clinical disorders 
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including autism, stuttering, schizophrenia, aphasia, traumatic brain injury and Alzheimer’s disease, 

in which symptoms may emerge only in the above contexts (Bloom et al., 1994). 

S4. A brief comparison with prospective motion correction 

In parallel to the research on retrospective artifact removal methods (including our sICA-

based denoising technique), recent advances in prospective motion correction have made it possible 

for correcting rigid-body head motion by real-time adjustment of the imaging pulse sequence based 

on pose information obtained from external tracking mechanisms (Maclaren et al., 2013). There are 

clear advantages for prospective correction as it directly improves the quality of collected data by 

preventing certain artifacts from being generated, e.g., spin-history effects (Friston et al., 1996). In 

our opinion, the prospective and retrospective methods are complementary rather than competitive 

because they have quite different applications. While prospective correction provides unique 

benefits for reducing the effects of rigid-body motion, our denoising technique can deal with a 

much broader range of artifacts including complex and non-rigid motion (e.g., artifacts generated by 

articulator or eye motion), physiological noise, and residual head motion effects caused by the 

perturbation or susceptibility distortion of the magnetic field. Moreover, there are still numerous 

technical challenges for the wide adoption of prospective correction as an essential tool of MRI 

(Maclaren et al., 2013). Our denoising technique, besides being more broadly applicable, is on the 

contrary immediately available and can be applied to data that have already been collected, e.g., the 

huge fcMRI database of the Human Connectome Project. 
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Supplementary Data 

Fig. S1. Dimensionality estimation for the head-masked sICA. 

Line plots depict the relationships between the spatial correlation of head-masked (HM) and 

brain-masked (BM) independent component pairs (ICPs), the classification scores of the automated 

independent component classifier (AICC), and the dimensionality multiplier between the HM and 

BM sICA. The classification specificity (black) of AICC was crucially affected by the 

dimensionality multiplier: at a multiplier of one, the specificity is under 0.85, with a significant 

number of signal components misidentified as “noise” (i.e., false positives); the specificity increases 

with the multiplier and reaches a plateau at a critical point near 2.5. The classification sensitivity 

(gray) decreases only very slightly as the value of the multiplier increases. The relationship between 

the multiplier and AICC specificity was best predicted by the minimal spatial correlation between 

the HM and BM ICPs for signal components (red). When the ground truth classification scores 

established by human experts are not available, an optimal multiplier can be predicted by the mean 

spatial correlation of the “signal” ICPs identified by AICC (blue), whereas the mean spatial 

correlation of all ICPs (yellow) may lead to an underestimate. The optimal multiplier value may 

vary under different image acquisition settings. A reduced extracerebral coverage may decrease this 

value, whereas severe Nyquist ghost artifacts may increase this value. However, given the 

relationships between the multiplier and the classification sensitivity/specificity, using a higher 

value as a conservative guess can usually give fairly reliable classification results at the cost of 

computational efficiency. 
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Fig. S2. Effects of multiple runs for the Head-Masked sICA.

Line plots depict the increases of spatial correlation between matched HM and BM 

components with the number of runs. Data points indicate mean spatial correlation across all ICPs. 

After an initial steep increase, the mean spatial correlation increases more slowly with the number 

of runs. In addition, ICASSO can slightly increase the mean spatial correlation if matching is 

confined into the most stable run as compared to a random single run. But the benefit appears to be 

much less than that provided by matching across runs since the goal is to maximize the matching 

between BM and HM components rather than the stability of HM decomposition itself. Across a 

given number of runs, the convergence of mean spatial correlation is actually slightly slower if the 

runs are sorted by the stability metric (gray), as compared to randomly ordered runs (black). This is 

because there is less random variability for the components contained in runs with higher stability 

metrics than those with lower stability metrics. 

Number of Runs
0 2 4 6 8 10 12 14 16 18 20

S
pa

tia
l C

or
re

la
tio

n 
(r

)

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

Randomly Ordered
Sorted by Stability

The most stable run
identified by ICASSO



An fMRI Denoising Technique Based on Spatial ICA (Supplementary Materials) 12 

Fig. S3. Effects of source dimensionality on denoising. 

Stacked bar charts depict the variation of temporal variance partitions across different orders 

of source dimensionality. The dimensionality of brain-masked sICA was varied systematically by 

applying a linearly incremental multiplier sequence of the original MDL estimate. Bars of each 

color indicate the mean proportions of variances across 18 datasets. Note that the total stacked 

variance of each multiplier group is slightly smaller than one. This is due to the existence of small 

temporal covariance between signal and noise components. 
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Fig. S4. In-plane and off-plane correlations of head motion components.

Bar charts depict the means and standard errors of Fisher’s z'-transformed correlation 

coefficients between the time courses of head motion components and the motion parameters. The 

number of components (N) identified for each type of head motion is annotated under the 

corresponding label. The set of in-plane parameters include the rigid-body alignment parameters 

and their first-order Volterra expansion in anterior-posterior, inferior-superior and pitch directions. 

The set of off-plane parameters are derived from the left-right, roll and yaw directions. There are 12 

time series in each set for each fMRI run. The correlation coefficient of each component time 

course with each set of motion parameters is represented by the maximum absolute value among all 

the 12 correlations and across four runs. Asterisks indicate the significance levels of Tukey-Kramer 

honestly significant difference test: * Padj < 0.05. 
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Fig. S5. Generalizability of different machine learning algorithms to novel datasets.

(a) Bar charts for the classification scores tested on 2,581 independent components 

decomposed from 22 resting-state datasets (Power et al., 2012). All the four classifiers utilized the 

same set of spatial features selected by our performance criteria. The two supervised classifiers, 

based on univariate decision tree (UDT) and support vector machine (SVM) respectively, were 

trained on all the components of our speech production datasets and then applied on these testing 

datasets. The two unsupervised classifiers, based on expectation maximization (EM) and k-means 

(KM) respectively, were applied on the testing datasets directly. 

(b) Exemplar 2×2 contingency tables of sensitivity and specificity for comparing the 

performance of different leaning algorithms using Barnard's exact tests. The classification scores of 

the EM algorithm employed in our technique were compared with the other three algorithms. The 

specificity of UDT is significantly lower than EM. No significant differences were observed for the 

other tests. However, the overall performance of EM appeared to be the most optimal for a balanced 

consideration of both sensitivity and specificity. The performance of SVM is close to EM, but EM 

is more advantageous in that it is completely automatic and independent of pre-labeled data. 
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Fig. S6. Region of interest (ROI) defined from PET activation. 

A conjunction map between production and comprehension was computed by taking the 

minimal t-values (Nichols et al., 2005) from the group-level contrast maps comparing narrative vs. 

pseudoword. A watershed transform (Meyer, 1994) was applied to segment the large left perisylvian 

cluster (encompassing frontal and temporal lobes) seen in the conjunction map into discrete regional 

clusters. The ROI (red) selected to evaluate the effectiveness and specificity of denoising was an 

inferior frontal cluster centered in BA 45. 
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Table S1. Distributions of components for different noise categories and spatial features. 

Values indicate the number of components above the threshold for each feature. There is a 

large redundancy between the four features so that a single noise component may meet the 

thresholds of more than one feature. The “unique” count in the table indicates the number of 

components that only meet the threshold of one specific feature. Based on both the “total” and 

“unique” counts, the out-of-brain ratio is the most effective feature for detecting articulator and eye 

motion; the scattering degree is the most effective for detecting both head motion and physiological 

noise; whereas most components in the “other” category need to captured by the template matching 

method. 

 Components Identified by Each Feature (Total / Unique) Total 

Identified / 

Human Expert  
Out-of-Brain 

Ratio 

Scattering 

Degree 

Slice-Wise 

Variation 

Template 

Match 

Articulator Motion 235 / 9 229 / 3 187 / 2 21 / 4 255 / 255 

Head Motion 224 / 31 471 / 209 90 / 0 15 / 1 504 / 507 

Physiological Motion 202 / 1 300 / 31 234 / 6 1 / 1 311 / 316 

Eye Motion 37 / 1 26 / 0 26 / 0 19 / 0 38 / 38 

Other Structured Noise 1 / 1 0 / 0 1 / 0 47 / 46 48 / 50 

All Noise Components 699 / 43 1026 / 243 538 / 8 103 / 52 1156 /1166 
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Table S2. Performance measures of AICC spatial features on resting-state datasets. 

The ground truth classification (2,331 noise components, 250 signal components) for 

computing the sensitivity index and identified noise component counts (total, unique, false positive) 

is a set of human expert ratings obtained by detailed examination on each component using our 

mechanistic classification scheme. The identified noise component counts were derived from the 

classification results of AICC. 

 
Sensitivity 

Index 

Bimodal 

Coefficient 

Total 

Identified 

Uniquely 

Identified 

False 

Positives 

Out-of-Brain Ratio 1.60 0.607 1,070 46 0 

Scattering Degree 4.66 0.812 2,182 710 0 

Slice-Wise Variation 1.41 0.588 908 7 0 

Template Match 0.14 0.706 74 26 1 

Total – – 2,306 – 1 
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Table S3. Noise components matched to flexible templates. 

The same set of flexible templates, created by a secondary sICA on the components 

decomposed from the speech datasets, were applied in the classification of the resting state datasets. 

The total component count was the sum of all matched noise components for each type of template 

across datasets. The unique count was the sum of all matched noise components that were missed 

by the other spatial features. The ground truth count was the sum of the components labeled by a 

human expert as “dural venous sinuses” or “ventricles” during mechanistic classification. The 

detection rate was computed by the percentage of components conjointly identified by the template 

and the human expert among the ground truth count. 

Templates 

Speech Datasets Resting-State Datasets 

Total Unique 
Ground 

Truth 

Detection 

Rate 
Total Unique 

Ground 

Truth 

Detection 

Rate 

Dural Venous Sinuses 18 17 18 100% 18 12 18 88.9% 

Ventricles 11 11 12 91.7% 16 7 13 100% 

Other Templates 56 6 – – 20 3 – – 

  



An fMRI Denoising Technique Based on Spatial ICA (Supplementary Materials)  19 

 

Supplementary Appendices 

A. A reference measure for validating the removal of overt speech artifacts 

Overt speech artifacts have imposed significant limitations on the application of BOLD 

fMRI to the research of language production (Price, 2010). For this reason, a majority of fMRI 

studies in this field have used covert speech, i.e., silent speech without actual movement of 

articulators. A covert speech production task is not a good reference for the purpose of validation in 

our study because there are distinct neural correlates between overt and covert speech (Barch et al., 

1999; Huang et al., 2002). 

The overt production of single words or brief individual sentences have been investigated 

previously by using slow event-related designs (Birn et al., 1999; Gopinath et al., 2009), sparse 

image acquisitions (Abrahams et al., 2003;  Gracco et al., 2005), or by discarding images during 

short blocks (Birn et al., 2004). However, there are no validated BOLD imaging methods for 

working around the severe artifacts during continuous (or “connected”) overt speech production. 

Recent fMRI studies based on arterial spin labeling (ASL) perfusion contrast (Kemeny et al., 2005; 

Troiani et al., 2008) appeared promising, but may still be limited by the low intrinsic signal-to-noise 

ratio of this technique (Calamante et al., 1999). 

Therefore, questions related to continuous overt speech production have been conventionally 

studied using positron emission tomography (PET; Awad et al., 2007; Blank et al., 2002; Braun et 

al., 2001; Brownsett and Wise, 2010), which is still considered the gold standard up to this point 

(Horwitz and Simonyan, 2014). In fact, the lack of susceptibility-related artifacts in PET not only 

makes it a convenient reference for validating the functional activity in language production, but 

also provides certain benefits for other cognitive tasks (Devlin et al., 2000; Frey and Petrides, 2002; 
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Schacter and Wagner, 1999), especially in the requirement of imaging regions near air-tissue 

interfaces (Ojemann et al., 1997). 

However, the fMRI and PET images derived from individual-level analyses are not directly 

comparable even though in both cases, values have been converted into percent signal change. This 

is due to an intrinsic difference in image contrast, where PET is much higher than fMRI in terms of 

both signal range and standard deviation (Ramsey et al., 1996). In order to obtain a quantitative 

comparison, we converted image intensities into a standardized normal variate, called standardized 

signal change (Zs). Since the original percent signal change images had global means very close to 

zero (due to global signal removal for fMRI, and proportional scaling with baseline subtraction for 

PET), this procedure essentially applied a common scale factor (SF) to all images within each 

imaging modality, i.e., 

                  
 ⁄⁄ , 

where SF was the inverse of the pooled standard deviation (PSD) of image intensities across 

subjects and tasks (for fMRI, only including tasks with 30 s block length). Again, due to a near zero 

global mean, PSD is approximately equal to the grand root mean square of image intensities (    
 ) 

across all voxels and images for all subjects and tasks. For fMRI, this computation was also pooled 

across denoised and uncorrected datasets. 

The above Zs method for standardizing image intensities shares the same goal but has a 

different formula from the zt method proposed by Ramsey et al. (1996). The major difference is in 

the computation of PSD. The zt method requires two calculation steps – first computing the voxel-

wise standard deviations across images then pooling across voxels to compute PSD. The Zs method 

only involves a single step of pooled calculation. 
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Although we emphasize on the importance of using PET as a reference measure for cross-

modal validation, it is by no means a “better” imaging technique. Obtaining reliable fMRI 

measurements can provide significant advantages that are absent in PET, e.g. the ability to perform 

event-related analysis and functional connectivity analysis. This is the exact reason for the 

paramount importance of advancing fMRI methods for imaging language production. 

B. Reliability benefits of multiple sICA runs 

Given the stochastic nature of ICA algorithms (Himberg et al., 2004), every single run of 

decomposition performed on the same dataset under different random initial conditions produces a 

slightly different set of components (note that this stochasticity in decomposition should not be 

confused with the deterministic source mechanism represented by each resulting component). 

Although the fMRI time series reconstructed after denoising are usually minimally affected by the 

minor variations across ICA runs, optimizing the stability of source decomposition is still preferable 

in order to reduce the likelihood of picking up occasional outlier components. This is analogous to 

take the median value of other quantitative measures to reduce random errors. 

The most stable run containing the BM components was selected from among 20 runs by a 

modified ICASSO algorithm implemented in GIFT. The original algorithm (Himberg et al., 2004) 

determines the final component maps using the centroids of component clusters across multiple runs. 

However, the computation of the mixing matrix can occasionally lead to erroneous results due to 

multicollinearity when dimensionality is high, as is the normal case in sICA-based denoising 

applied on individual subject data. The modified algorithm still uses the results of a single run, 

which is considered “stable” based on the maximization of a metric computed by summing the 

similarity (absolute value of the Pearson's correlation coefficient) between each component map 

and the centroid of its belonging component cluster across runs. 



An fMRI Denoising Technique Based on Spatial ICA (Supplementary Materials) 22 

For each BM component chosen, a best-matched HM component was selected from a 

repertory of all HM components pooled across 10 runs. Because the best-matched HM component 

derived from each individual run varies slightly according to the random initial conditions, the 

degree of spatial matching can always be enhanced by selection from an increased number of 

matched candidates across multiple runs. The optimal run number was determined by a balance 

between the degree of matching and computational efficiency (see Fig. S2). 

C. Computational theory of automated component classification 

C.1. Spatial features 

Among the various types of objective measures for automated component classification, 

spatial features provide the best generalizability in the following two aspects. First, classifiers based 

on spatial features are most robustly generalizable to different experimental designs – either resting-

state or blocked/event-related task-based designs – due to their complete independence from the 

temporal structure of these paradigms. Second, classifiers based on spatial features should also be 

generalizable to different image acquisition parameters and field strength. This is because sICA 

detects consistent and statistically independent spatial patterns embedded in fMRI images, which 

are essentially driven by the coherent temporal relationships between voxels located in the same 

functional networks (Calhoun et al., 2008) or contaminated by the same source of artifacts (Turner 

and Twieg, 2005). Hence, the spatial distributions of the resulting components are minimally 

affected by the geometric parameters of imaging voxels (De Martino et al., 2011), but depend on the 

dimensionality of decomposition (Turner and Twieg, 2005). 

In contrast, classifiers based on temporal correlation with motion measures (computed by a 

univariate general linear model, GLM; Rummel et al., 2013) may be effective for resting-state or 

event-related designs, but most likely inaccurate for block designs, during which motion and task-
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related effects may be significantly correlated (Johnstone et al., 2006; cf. Fig. 1c and Table 1). 

Kochiyama et al. (2005) proposed an alternative method to univariate GLM based on the difference 

in heteroscedasticity of temporal variance between motion- and task-related components. However, 

this method was only tested on head motion engineered by a pneumatic system in a block design, 

and may be problematic for naturally occurring head motion in real tasks, especially in event-related 

designs. In addition, spectral features derived from component time courses are also very limited in 

their practical use. Unless the fMRI time series are collected with a very fast temporal resolution by 

imaging only a few slices (Thomas et al., 2002), the physiological noise components are heavily 

aliased (cf. Fig. 4a/b); and in general there is no single frequency band in which the aliasing 

happens (Lund et al., 2006). On the other hand, components related to transient event-related neural 

responses may be falsely identified as high-frequency noise on the basis of spectral features (De 

Martino et al., 2007). In addition, separate feature design and training process might be required by 

different experimental designs when temporal or spectral features were utilized (Tohka et al., 2008), 

thus significantly compromising the generalizability of the classifier. 

Due to the above reasons, the automated independent component classifier in our technique 

employs only spatial features. These measures are based on either the head-masked (HM) or the 

brain-masked (BM) component map, both derived from the dual-mask sICA method. Because the 

source signals from ICA are in arbitrary units, the HM and BM component maps were first scaled 

into Z-scores with the standard deviation of in-mask voxel intensities as unit. 

Since these maps are mean-centered, the measurement of intensity distributions should not 

be based on the first order statistics, i.e., means (Tohka et al., 2008). Instead, we used sums of 

squared intensities for our primary features, ensuring that each measure (as a ratio between the 

intensities in a spatial partition and the overall intensity distribution) is normalized into a range 
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between 0 and 1. In contrast, the ratio between two variances (i.e., sums of squares adjusted by their 

degrees of freedom; Tohka et al., 2008) is not normalized. It may vary significantly across datasets, 

and hence adversely affect the generalizability of the classifier. Furthermore, the ratio of sums of 

squared intensities should provide a more accurate measure of relative intensity distributions than 

the ratio of suprathreshold voxel counts (Bhaganagarapu et al., 2013) because the latter measure is 

not weighted by the magnitude of intensities. 

Out-of-brain ratio measures the ratio of the sum of squared intensities, within major 

suprathreshold clusters, between the portion of voxels outside the brain and the entire portion of 

voxels in these clusters: 

   
∑   

 
        ̅̅ ̅̅ ̅̅

∑        
   

where Iv represents voxel intensity in the head-masked (HM) component map; MC is the set of 

voxels belonging to major suprathreshold clusters; B is the set of voxels inside the brain. The 

purpose of selecting major suprathreshold clusters is to identify the primary sites of activations. 

Instead of using an arbitrary extent threshold, the major suprathreshold clusters are 

identified in a heuristic manner: 1) all voxels in the HM were thresholded at |Z| > 1; 2) 

suprathreshold positive and negative voxels are clustered respectively based on a 6-connected 

neighborhood; 3) the voxels counts of all positive and negative clusters identified were further 

clustered into two classes, major and minor, using a one-dimensional k-means algorithm (Lloyd, 

1982). 

There are two seemingly related but different measures used in previous methods. Tohka et 

al. (2008) proposed a spatial feature that measures the relative intensity distributions between the set 

of voxels in the brain boundary and the set of voxels inside the brain. Bhaganagarapu et al. (2013) 
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measured the spatial extent of suprathreshold clusters overlapping with the brain boundary as 

relative to the volume of the boundary. An important advantage of our measure is that it utilizes the 

extracerebral spatial information provided by the dual-mask method. 

Scattering degree measures the sum of squared intensities, within major suprathreshold 

clusters, between the portion of voxels with interspersed positive/negative values and the entire 

portion of voxels in these clusters: 

   
∑   

 
        

∑        
   

where S is the set of voxels with at least 8-connected neighbors that have the opposite sign. This 

measure is computed from the HM component maps in order to capture the scattering patterns both 

inside and outside the brain. 

This novel feature is different from the degree of clustering (De Martino et al., 2007) that 

measures the number of voxels belonging to the major clusters divided by the total number of 

suprathreshold voxels. Our scattering degree measure is more sensitive to artifactual intensity 

fluctuations due to image warping or in-plane head motion, in which the conventional clustering 

method often fails to separate interspersed but still spatially connected positive or negative voxels 

into small clusters. 

Slice-wise variation measures the absolute difference of the sum of squared intensities 

between the voxels belonging to the odd (Podd) and even (Peven) slices, divided by the sum of 

squared intensities of all voxels within the brain mask (B); a square-root transform is applied to 

reduce the skewness of the resulting distribution: 

   √
|∑               ∑               |

∑       
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This feature is sensitive to transient physical or physiological motion artifacts that only 

affect a single or a few interleaved slices. It was originally proposed by Tohka et al. (2008) with a 

slightly different formula. The measurement of slice-wise variation can be applied to either the HM 

or BM data. The latter was selected to improve the efficiency of computation. 

Template match measures the maximal spatial correlation coefficient between a BM 

component map and a set of predefined noise templates: 

      
     

{    [  ( )   (   )]} (   )   

where k is the index of N templates (N = 8 for the current study) including medial and lateral frontal 

air sinus (three templates), brain-edge signals for off-plane head motion, CSF signals at the cistern 

of great cerebral vein, dural venous sinuses, ventricles, and brain mask boundary (see Fig. 2, Panel 

15-20); Ic contains the voxel intensity values of the component map smoothed by a Gaussian kernel 

of 3×3×3 voxels with a standard deviation of 0.65; It contains the voxel intensity values of the 

templates. 

The above templates need to meet two common criteria. First, they are highly spatially 

clustered and can be consistent identified across datasets. Second, their spatial patterns have 

minimal overlap with the distributions of known functional neural networks. These templates, 

except for the brain mask boundary, were defined with the following procedure: 1) all BM 

component maps for each subject were transformed into a standard brain space by applying the 

spatial normalization parameters of the structural image and smoothed with a 6 mm FWHM 

Gaussian kernel; 2) the resulting maps for all subjects were concatenated and entered into a low-

dimensional, second-level sICA (with an estimated source dimension of 30 in the current study) in 

order to identify common spatial patterns across the first-level components; 3) target noise 

components were selected from the second-level component maps based on visual inspection; 4) the 
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selected component maps were inversely transformed to each subject’s native brain space to create 

individualized templates. 

Template matching methods have been used in previous studies for automated identification 

of signal components in individual-level sICA (Greicius et al., 2004), and noise components in 

group sICA (Sui et al., 2009). A unique property of our procedure is that the templates are defined 

in a data-driven manner to improve their spatial matching with the actual components. In addition, 

in the case of requirement for new templates, they can be generated on demand with the same 

procedure from new learning datasets and appended to the current set, which further increases the 

flexibility and general applicability of our classifier. 

C.2. Feature selection criteria

Feature selection is critical for the optimal performance of an automated component 

classifier. De Martino et al. (2007) examined the percent loss of overall classifier performance after 

the removal of each individual feature. However, this measure is affected by the performance of 

other features in the classifiers and can also be biased by the variability of thresholds determined by 

different learning algorithms. Here we propose an individual feature selection scheme for the binary 

signal/noise classification of sICA components. This scheme is based on two criteria that evaluate 

the performance of each feature independent of the learning algorithm and other features included 

in the classifier. 

The first criteria is called sensitivity index (SI), which measures the separability of signal 

and noise, in a set of components labeled by our mechanistic classification, according to their 

distributions of a given feature value: 

   
|     |

√(  
    

 )  ⁄
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where mS and mN are the means of labeled signal and noise components respectively; sS and sN are 

their standard deviations respectively. SI is closely related to the Fisher criterion score (    

(     )
 (  

    
 )⁄ ) that has been widely used for feature selection in other classification 

problems, e.g., microarray classification in genetics (Guyon et al., 2002). Compared to FCS and its 

several variants (Furey et al., 2000; Golub et al., 1999; Maldonado et al., 2011), the value of SI has 

a more direct mathematical relationship with the separability of signal/noise distributions, i.e., the 

distance between the two distributions (expressed as the absolute difference of means) as relative to 

their average width (expressed as the root mean square of standard deviations). 

Note that the pooling between two sample standard deviations is not weighted by their 

sample sizes, unlike what is normally used in the statistical measures of effect size (e.g., Cohen's d; 

see Olejnik and Algina, 2000). This is in order to balance the effects between signal and noise 

because the latter usually contains a much larger number of components. Additionally, contrary to 

the usual requirement of Gaussian distributions by effect size measures, the use of SI should not be 

limited by the shapes of signal/noise distributions. This is analogous to a nonparametric form of 

detection sensitivity (often called d-prime, d', an essential measure in signal detection theory) 

derived from rating data (Simpson and Fitter, 1973). 

The second criteria, bimodality coefficient (BC; Freeman and Dale, 2013; Pfister et al., 

2013), is employed in our feature selection scheme for estimating the reliability of threshold 

detection that can be achieved for a given feature: 

   
  
   

     
(   ) 
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where n is the number of components in the sample set, m3 is the sample skewness (i.e., the 

normalized third central moment) and m4 is the sample excess kurtosis (i.e., the normalized fourth 
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central moment minus 3). The value of BC lies between 0 and 1. A critical value for BC is 5/9 (≈ 

0.555) that would be expected from a uniform distribution. Higher values indicate bimodality 

whereas lower values indicate unimodality. Based on the above formula, a heavy-tailed unimodal 

distribution (e.g., the distribution of template match values as illustrated in Fig. 5) is expected to 

have a large value of BC due to its high skewness. This is not surprising in that a heavy-tailed 

unimodal distribution is very close to a bimodal distribution with severely asymmetric peak 

amplitudes. 

The bimodality of feature distributions directly impacts the reliability of unsupervised 

classification algorithms such as Gaussian mixture modeling and k-means clustering (Hellwig et al., 

2010; Monti et al., 2003) since the existence of a sharp decision boundary provides an important 

practical advantage for binary clustering. For supervised classification algorithms, using bimodally 

distributed features can reduce the ambiguity of training. For example, the detection of a maximum-

margin hyperplane by a support vector machine should be facilitated when bimodality is present in 

all or most of its features. 

For each of the two performance criteria, we empirically define the acceptable ranges to 

guide their practical use in feature selection. For SI: SI < 1, low; 1 ≤ SI ≤ 2, moderate; SI > 2, high. 

For BC: BC < 0.5, low; 0.5 ≤ BC ≤ 0.6, moderate; BC > 0.6, high. In our scheme, a feature can only 

be selected if at least one of the criteria falls into the high range, or both criteria falls into the 

moderate range. 

C.3. Machine learning algorithms 

The automated independent component classifier (AICC) of our denoising technique is 

based on an unsupervised expectation maximization (EM) algorithm (Dempster et al., 1977) by 

fitting the distribution of each spatial feature (called a mixture distribution) to a Gaussian mixture 
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model (GMM; see Fig. 5). The threshold of each feature was determined by the crossover point of 

posterior probability density (also called responsibility) functions of the two fitted Gaussian 

distributions, corresponding to the hidden distributions of the actual data. After applying the 

threshold, the ICA components were automatically clustered into two classes, one of which 

contained only noise components. This procedure can be performed on the components either 

within each individual dataset or across multiple datasets acquired using closely matched imaging 

parameters. The latter was used by the current study due to a better accuracy of threshold detection 

given the increased sample size. 

Before running the EM algorithm, either separate or shared covariance matrices can be 

specified for the hidden distributions of GMM. When the mixture distribution contains two 

Gaussian-shaped and clearly distinguishable peaks, using separate covariance matrices usually 

detects the location of threshold more accurately. However, the threshold detection can be biased or 

unstable if the mixture distribution is highly skewed (e.g., in the case of a heavy-tailed uniform 

distribution) or lacks of a sharp decision boundary. This is likely due to violation of the Gaussian 

assumption for hidden distributions. For example, the assumption may be violated by the clipping 

of values at either end of the mixture distribution since the values of our features are all bounded 

between 0 and 1. In such cases (empirically defined by skewness > 1 or bimodality coefficient ≤ 

0.6), a shared covariance matrix is used to obtain a more conservative estimate. 

An alternative way for unsupervised binary clustering is to use the k-means (KM) algorithm, 

which has been utilized by a previous study on automated component classification (Bhaganagarapu 

et al., 2013). KM can be considered as a nonprobabilitic and limited version of the EM algorithm 

(Bishop, 2006). It is equivalent to EM when setting the covariance matrix to a diagonal matrix with 

equal, close-to-zero diagonal elements. An important advantage of EM is that it allows clusters to 
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have different shapes; whereas KM is less accurate when the clusters are significantly unequal in 

size. 

 Besides the above unsupervised algorithms, we also investigated two commonly used 

supervised algorithms, which require a training procedure performed on a set of pre-labeled 

components. These include a univariate decision tree (UDT) algorithm based on the classification 

and regression trees (CART) technique (Breiman et al., 1984) and a multivariate support vector 

machine (SVM) algorithm based on the sequential minimal optimization (SMO) technique (Platt, 

1999). 

Unlike the fixed-structure decision tree used by our unsupervised classification method, the 

nodes in a UDT are automatically determined by the training process. While the decision rule of 

each node is still represented by a single feature (i.e., univariate), each feature can be used by 

multiple nodes with different cut-off thresholds. In order to prevent the induced classification tree 

from being over-complicated, which affects the generalizability of the classifier, a post-hoc pruning 

procedure was applied to control the depth of the tree. An alternative method to UDT, called global 

decision tree (GDT), was used in a previous study on automated component classification (Tohka et 

al., 2008). GDT is a multivariate, fixed-structure decision tree induction algorithm. That is, the 

decision rule of each node is represented by the combination of multiple features as a subset. 

However, such combinations are arbitrarily defined a priori and may not be suitable for our 

technique that employs only spatial features. 

SVM is a multivariate classification method that separates the data into two different classes 

(in the case of binary classification) with a learned hyperplane in a multidimensional space 

represented by the combination of all features. The hyperplane, known as the maximum-margin 

hyperplane, is determined from the training data by maximizing the distances to the nearest data 
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points (i.e., the support vectors) in each class. A variant of SVM, called least squares support vector 

machine (LS-SVM), was used in a previous study on automated component classification (De 

Martino et al., 2007). 
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