
WEB APPENDIX 1 

Analytical Approaches for Data Generated Under the Causal Graphs Presented in Figure 3 

Here we formalize the consideration of analytical approaches for data generated under the 

assumptions encoded in the directed acyclic graphs (DAGs) presented in Figure 3 in the text. First, we 

include an arrow from X′ to Y to allow for an overall effect of treatment versus no treatment, a more 

realistic scenario than the overall sharp null assumed in the first example in the main text and an 

unnecessary assumption for our purposes. We also add an arrow from X′′ to Y; under a treatment specific 

sharp null ( for all subjects i), this arrow would be omitted. These augmented DAGs appear 

in Web Figure 1. We remain interested in estimating the average treatment effect comparing our two 

treatments: .  Note this effect can be rewritten in terms of X′′, i.e., our treatment effect of 

interest is X′′ on Y conditional on X′ = 1. Under the sharp null, this effect takes the value 0. 

Let us first consider data generated under the DAG in Web Figure 1C. With an arrow from X′ to 

Y, Z is not an instrument unconditionally: it violates condition 2, as there is a path from Z to X′ to Y. When 

we restrict to X′ = 1 (i.e., X = 1 or X = 2), this path gets blocked and all the instrumental conditions are 

satisfied conditionally: 1)  because there is an 

arrow from Z to X′′; 2) among those with X′ = 1,  for all values x′′ and z because there is no 

path from Z to Y not through X′′ when we condition on X′; and 3)  for X′′ = 1 and X′′ = 2.  

Because the instrumental conditions are satisfied conditionally, we are able to obtain the effect in the 

restricted subpopulation using the standard instrumental variable (IV) estimator: 

 

This depends on a further effect homogeneity assumption: 

 

 

Since  and (as there are no backdoor paths from X′ to Y), this estimator further 



identifies the effect in the full study population. Note we cannot identify the average treatment effect 

using a non-IV method, as there is unmeasured confounding (i.e., a backdoor path from X′′ to U to Y we 

cannot block). If we were uncomfortable making the effect homogeneity assumption, we may consider 

bounding the average treatment effect or adapting a monotonicity condition to identify a local average 

treatment effect. 

Next, consider data generated under the DAG in Web Figure 1B. Z is not an instrument for X′′ 

(unconditionally or conditional on X′): condition 3 would be violated if we condition on X′ = 1 due to 

collider-stratification, while condition 2 would be violated if we did not condition on X′ because of the 

path from Z to X′ to Y. We can, however, identify the effect in those who received either treatment 1 or 2 

(i.e., conditioning on X′ = 1) by standardizing over Z: 

 

We cannot identify the effect in the untreated because of positivity violations, 

e.g., . As such, we cannot identify the average treatment 

effect using either an IV or non-IV approach. 

Web Figure 1A merges these themes: we cannot identify the average treatment effect using an 

IV approach, nor can we identify the effect in those receiving treatments 1 or 2 using a non-IV approach. 

However, if there was no arrow from Z to X′ in any of the causal diagrams presented in Web Figure 1, 

then the IV approach described above would validly identify the average treatment effect in all three 

scenarios. 

These DAGs are somewhat simplified, as we often would have some measured covariates L that 

may help block some or all of the pathways from U to X′ or X′′ (Web Figure 2). In the context of 

equivalence randomized trials, Robins (1) considered data generated under the DAG in Web Figure 1A, 



with a measured L1 on the pathway from U to X′. Following from his example for identifying the intent-

to-treat effect, we could intervene on X′ (forcing everybody to take one of the active treatments) using 

inverse probability weighting with the following stabilized weights:  

. 
 

The DAG for our pseudopopulation would be Web Figure 1C. We could then identify the average 

treatment effect using an IV analysis in this pseudopopulation for the reasons described above. See 

Section 4 of the Appendix in Robins (2) for a related discussion. 

It is possible that we could measure a set of covariates L2 that were sufficient to block the path 

from U to X′′. If so, then we could restrict to the treated (X′ = 1) and instead perform inverse probability 

weighting to create a pseudopopulation resembling Web Figure 1B but without the arrow from Z to X′′, 

using the following weights: 

. 

In this pseudopopulation, the crude association would identify the effect in the treated under the reasoning 

described above. Note if we condition on Z in the numerator of the weights, we could instead have created 

a pseudopopulation that exactly reflected Web Figure 1B, but would then need to standardize over Z. 

Finally, suppose we have sufficient measured covariates L to block both the U to X′ and U to X′′ 

pathways, i.e., we can do a valid IV or non-IV approach. Does the IV approach offer clear additional 

value? First, we recognize that IV methods are inefficient relative to most non-IV methods. We also see 

the targeted estimands differ, and to get a point estimate under an IV method we would need to make an 

additional assumption not encoded in the DAG. Therefore, the choice should weigh three considerations: 

the efficiency of the methods, the relevance of the estimand, and the reasonableness of an additional 

assumption. As the additional assumptions needed for a point estimate from an IV method may not be 

palatable, and the IV methods are less efficient, doing an IV analysis in addition to or instead of the non-

IV analysis would not have clear added utility. 



Given all this, the only time an IV analysis would definitively be preferable to a non-IV analysis 

is if the investigators made the assumptions encoded in Web Figure 1C or thought they had measured all 

L on the pathway from U to X′ but not from U to X′′.  

When an investigator has not measured sufficient L to block either the pathway from U to X′ or U 

to X′′, a natural question is how much bias may be incurred in an IV analysis that fails to appropriately 

account for U in the analysis. Our simulations (described in more detail below) provide a framework 

toward answering this question. Another approach may be to describe bias formulas in simplified settings. 

For reasons described above, we cannot repurpose formulas for collider-stratification bias to recover a 

corrected estimate for the IV numerator had we not restricted analyses to X′ = 1, as an IV analysis 

unconditional on X′ would violate the exclusion restriction if there was an arrow from X′ to Y.  We may 

instead consider repurposing a bias formula for the controlled direct effect to understand the bias in the 

effect of Z on Y when X′ is set to 1 but we fail to adjust for U. In the case where U is binary and under 

strong homogeneity assumptions, this suggests that the bias in the IV numerator would be a function of 1) 

the prevalence difference of U across levels of the instrument among those receiving X = 1 or X = 2, or 2) 

the difference in the mean of Y across levels of U holding Z and X′ constant (and then the bias in the IV 

estimate would be amplified by the strength of the instrument). However, the homogeneity conditions 

may often be unlikely to hold, and without a more thorough understanding of how U interacts with Z to 

influence treatment decisions, it is possible that such a simplified formula would be misleading. For these 

reasons, the practice of assessing covariate balance by levels of the instrument versus levels of the 

treatment may not be informative to the relative magnitude or even direction of bias in an IV versus non-

IV analysis selecting on treatment. In settings where measured covariates appear well-balanced across 

levels of the instrument, and the measured covariates are considered good proxies for unmeasured 

confounders, it could seem reasonable to proceed assuming this selection bias could be minimal — 

although investigators should proceed cautiously as even small imbalances could be indicative of large 

biases. Beyond using our simulation framework, investigators may consider using measured covariates in 



their dataset as proxies for unmeasured covariates to understand how their estimates change when they 

omit a measured covariate from the combined IPW-IV approach described above. 

Using our statin therapy dataset, we estimated treatment effects of hydrophilic versus lipophilic 

statin therapy on diabetes risk. In Web Table 1, we present the valid estimates under the various sets of 

assumptions. If we are confident that there is no arrow from U to Z (i.e., the proposed instrument is not 

confounded), we can confirm the presence of the arrow from Z to X′ with the observed data: the 

probability of receiving statin therapy differs across levels of the instrument (5% versus 6%; P < 0.001).  

As noted in the main text, there are many patient characteristics that are likely to influence the decision to 

treat with a statin, the decision between types of statins, and diabetes risk, thus Web Figure 1A is the 

most reasonable of these three DAGs to assume. 



WEB APPENDIX 2 

Description of Simulations 

We can generate k samples of N patients from the following general form: 

Zi ~ bernoulli(p1) 

Ui ~ bernoulli(p2) 

Yi ~ bernoulli(a0 + a1Ui) 

Xi ~ multinom(b10 – b11Zi – b12ZiUi, b20 + c1(b11Zi) + c1(b12ZiUi), b30 + c2(b11Zi) + c2(b12ZiUi)) 

where b10 + b20 + b30 = 1, c1 + c2 = 1, and 0 ≤ a0, a0 + a1, b10, b20, b30, c1, c2 ≤ 1. 

We demonstrated in the main text how bias is a function of the relationship between the confounder and 

treatment decisions, specifically by varying b12, c1, and c2. Bias increases with increases in the risk of the 

outcome and/or strength of the relationship between the confounder and outcome (a0, a1); note if the 

relationship between U and Y is flipped (e.g., a1 is negative versus positive), the direction of the bias flips 

as well. A continuous confounder or outcome could instead be simulated using other distributions (e.g., 

normal). 

To simulate a preference-based instrument, we would need to adapt these simulations to 

incorporate provider-level measured and unmeasured preference variables. We can generate k samples of 

N patients seen by M providers. Providers’ preferences might be conceptualized as a vector of how 

strongly the provider prefers treatment 1 versus treatment 2 versus neither for a patient with the reference 

level of the confounders. The simulation could either allow for providers to have any possible preference 

with equal probability, or it could restrict this range based on descriptive data of prescribing practices. 

Measured preference could be as the treatment given to the prior patient seen by that provider who was 

prescribed either X = 1 or X = 2.  

 

References 

1. Robins JM. Correction for non-compliance in equivalence trials. Stat Med. 1998;17(3):269–302. 



2. Robins JM. Analytic methods for estimating HIV treatment and cofactor effects. In: Ostrow DG, 

Kessler RC, eds. Methodological Issues in AIDS Behavioral Research. New York, NY: Plenum 

Publishing Company; 1993:213–290. 

 



 

Web Figure 1. Graphical representation of possible ways an unmeasured confounder may affect 

treatment decisions in the presence of treatment effects. Z indicator of calendar time (1 if post-warning, 0 

if pre-warning); U indicator of unmeasured confounder; Y outcome; X′ indicator of receiving treatment 1 

or 2 versus neither; X′′ indicator of receiving treatment 1 versus treatment 2 or neither. 
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Web Figure 2. Graphical representation of Web Figure 1A with measured covariates. 

 

 



Web Table 1. Twelve-month risk of diabetes comparing hydrophilic and lipophilic statin therapy using 

an IV and non-IV approach under the assumptions encoded in the DAGs shown in Web Figure 1 

 

Risk Differences (95% CI) Derived Using Methods  

Under the Assumptions Encoded in the Causal Diagram
a
 

Web Figure 1A Web Figure 1B Web Figure 1C 

Non-IV approach, effect in those 

receiving statin therapy 

Invalid -0.00 (-0.01, 0.01) Invalid 

IV approach with effect homogeneity 

condition, average treatment effect 

Invalid Invalid 0.02 (-0.00, 0.05) 

Abbreviations: CI, confidence interval; DAG, directed acyclic graph; IV, instrumental variable. 

a
 Because we measured preference with a proxy, the causal diagrams should technically be augmented to 

have Z be a surrogate (noncausal) instrument. 

 

 


