1 Haugum et al., Supplemental material, 20140507

2 Table S1. PCR primers used in the study.

Primer	Sequence (5'-3' direction)	Target	Amplicon	Reference	
		gene	size		
SLTI 1	AAA TCG CCA TTC GTT GAC TAC TTC T	stx1	368 bp	Brian et al. 1992	
SLTI Rnew	CCA TTC TGG CAA CTC GCG ATG CA			This study	
SLTI TaqMan	FAM-AAC CTC ACT GAC GCA GTC TGT GGC AAG			This study	
	AGC-BHQ1				
SLTIIFnew	CAG TCG TCA CTC ACT GGT TTC ATC	stx2	283 bp	This study	
SLTIIRnew	GGA TAT TCT CCC CAC TCT GAC AC			This study	
SLTII TaqMan	HEX-CTG TCA CGG CAG AAG CCT TAC GCT TCA			This study	
	GGC-BHQ1				
eae-Fny	TTC ATT GAT CAG GAT TTT TCT GG	eae	105 bp	This study	
eae-Rny	GCT CAT GCG GAA ATA GCC			This study	
eae-P	FAM-ATA GTC TCG CCA GTA TTC GCC ACC AAT			Nielsen et al.	
	ACC			2003	
efa1-F	ATC AGA AGC CCG ACT ACG	efa-1/lifA	193 bp	This study	
efa1-R	AAC ATT TGC CAG ACC AAG G			This study	

4 Table S2. Number of virulence genes identified in various STEC serotypes by PCR analysis of 138 HUS-associated and non-HUS STEC strains

5 diagnosed at St. Olavs Hospital, Trondheim, Norway during the period 1996-2011.

Serogroup	stx1	stx2	<i>stx2</i> subtype	eae	ehxA	nleB	nleE	ent	efa-	nleA	nleF	nleH1-2	espK	HUS-	non-	Total
									1/lifA					associated	HUS	
0145	18	8	2a	28	28	28	28	28	26	26	28	28	28	7	21	28
0103	18	0	0	20	21	21	21	21	21	4	21	21	21	2	19	21
0157	9	20	2a (n=2), 2a+2c (n=1), 2c (n=17)	20	20	20	20	20	15	20	19	20	20	0	20	20
O26	8	3	2a	11	11	11	11	11	11	11	11	11	11	1	10	11
0121	0	9	2a	9	9	9	9	9	9	9	9	9	8	5	4	9
SF 0157	0	6	2a	9	9	9	9	9	9	9	9	9	9	9	0	9
0111	1	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1

Others	24	25	2a (n=8),	10	24	7	6	7	5	7	10	10	8	0	39	39
			2a+2c (n=3),													
			2b (n=10), 2c													
			(n=1), 2d													
			(n=2), 2g													
			(n=1)													
Total	78	71	-	108	123	106	105	106	97	87	108	109	106	24	114	138

- 6 Table S3. Comparison of potential virulence genes in 138 STEC strains diagnosed in patients where
- 7 STEC was analyzed irrespective of symptoms (patients <2 years old) and on specific suspicion of STEC
- 8 disease (patients ≥2 years old) at St. Olavs Hospital, Trondheim, Norway during the period 1996-
- 9 <mark>2011.</mark>

Gene	Age <2 years n=	50	Age ≥2 years n=	88	D	
Gene	No. of strains	(%)	No. of strains	(%)	_ '	
stx2	20	(40)	51 ¹	(58)	0.05	
stx2a	9	(18)	28	(31.8)	0.1	
stx1	27	(54)	51	(58)	0.7	
eae	44	(88)	64	(72.7)	0.05	
ehxA	47	(94)	76	(86.4)	0.3	
nleB	44	(88)	62	(70.5)	0.02	
nleE	43	(86)	62	(70.5)	0.06	
ent	44	(88)	62	(70.5)	0.02	
efa-1/lifA	39	(78)	58	(65.9)	0.2	
nleA	34	(68)	53	(60.2)	0.5	
nleF	45	(90)	63	(71.6)	0.02	
nleH1-2	45	(90)	64	(72.7)	0.02	
espK	42	(84)	64	(72.7)	0.1	

¹This number does not include one SF O157:H- strain (St. Olav75, see Table 1) previously found to be

11 positive for *stx2a* and one strain of unknown serotype (St. Olav154, see Table 1) previously found to

12 be positive for *stx2b*.

Figure S1

Figure S2

Figure S3

19 Figure legends

20 Figure 1. Cluster analysis of potential virulence genes in STEC. eae negative and eae positive STEC 21 were mainly separated in two clusters. One exception was one eae negative strain that clustered 22 among the eae positive strains due to the presence of some of the potential virulence genes. All HUS-23 associated strains clustered among eae positive strains and harbored all the potential virulence 24 genes investigated in the study. For further details (serotype, *stx2* subtype etc.), please see Figure S1. 25 26 Figure S1. Cluster analysis of potential virulence genes in STEC. eae negative and eae positive STEC 27 were mainly separated in two clusters. One exception was one eae negative strain that clustered 28 among the eae positive strains due to the presence of some of the potential virulence genes. All HUS-29 associated strains clustered among eae positive strains and harbored all the potential virulence 30 genes investigated in the study. Strains with serotype 0 did not belong to any of the serotypes tested 31 for in the study. 32

Figure S2. MLVA dendrograms of the 109 non-O157 STEC strains, using seven repeat loci. The strains
 were distributed in 48 distinct MLVA genotypes. The virulence gene profile of each strain is
 displayed.

36

Figure S3. MLVA dendrograms of O157 and SF O157 with the virulence gene profile displayed. The
strains were distributed in 17 distinct MLVA genotypes. The virulence gene profile of each strain is
displayed.