1	APPENDIXES
2	
3	LEGENDS TO APPENDIX FIGURES
4	
5	Figure A1. Phylogenetic tree based on a 343-nucleotide partial sequence corresponding to
6	nucleotides 5999-6342 of open reading frame 2 (ORF2) of the HEV genome (GenBank
7	accession no. AF082843).
8	The legend of this figure is the same as that of Figure 1, except the tree was built using the
9	Maximum Likelihood method based on the General Time Reversible model. Initial tree(s) for
10	the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of
11	pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. A
12	discrete Gamma distribution was used to model evolutionary rate differences among sites (5
13	categories (+G, parameter = 0.6239)). The tree is drawn to scale, with branch lengths
14	measured in the number of substitutions per site. The analysis involved 261 nucleotide
15	sequences and there were a total of 343 positions in the final dataset.
16	
17	Figure A2. Phylogenetic tree based on a 231-nucleotide partial sequence of open reading
18	frame 2 (ORF) 2 of the HEV genome (a fragment from the 343 nucleotide-long sequence
19	analyzed in Figure 1 that corresponds to nucleotides 6,063-6,293 of genome GenBank
20	accession no. FJ705359).
21	The HEV sequences obtained in our laboratory are indicated by a black frame. The 10
22	sequences with the highest BLAST scores (excluding those from our laboratory or with a
23	query coverage <98%) recovered from the NCBI GenBank nucleotide sequence database
24	(indicated in boldface, underlined, labeled with BBH (for best BLAST hit), GenBank
25	accession number, host, country and year of sample collection or sequence submission) with

1

the near full-length genome obtained in this study (GenBank accession no. KJ701409) have 26 been incorporated into the phylogeny reconstruction in addition to a comprehensive set of 245 27 full-length genome sequences that were downloaded from the Virus Pathogen Resource 28 database (1) (labeled, if they are clustered with sequences from the present study, with 29 genotype and subtype, GenBank accession number, host, country and year of sample 30 collection or sequence submission). To allow for the better legibility of the tree, branches 31 were collapsed when they did not directly link to sequences from the present study and when 32 the bootstrap value at node was >90%. Nucleotide alignments were performed using the 33 34 MUSCLE software (http://www.ebi.ac.uk/Tools/msa/muscle/). The tree was constructed using the MEGA 5 software (http://www.megasoftware.net/) and the neighbor-joining method. 35 Branches with bootstrap values were obtained from 1,000 resamplings of the data, and values 36 >50% are labeled on the tree. The scale bar indicates the number of nucleotide substitutions 37 38 per site. BBH, best BLAST hit; BOL, Bolivia; GER, Germany; FRA, France; Hu, Human; JAP, Japan; 39 40 KYR, Kyrgyzstan; MON, Mongolia; NLD, the Netherlands; Sw, Swine; SWE, Sweden; URU, Uruguay; Wb, wild boar.

42

41

43

APPENDIX TABLES

Case no.	Age (years)	Gender	Date of presumed	Time since kidney-	HEV testing at diagnosis		
			HEV infection	transplantation (months)	HEV RNA	Anti-HEV IgM	Anti-HEV IgG
1	46	М	27-Apr-09	56	+	+	+
2	55	М	02-Apr-04	70	+	+	+
3	64	М	19-Jun-06	121	+	+	+
4	53	М	27-Jun-06	14	+	+	-
5	43	М	26-Sep-06	25	+	+	+
6	73	М	02-May-07	107	+	+	-
7	50	F	05-Nov-07	12	+	N.t.	N.t.
8	46	М	18-Aug-08	59	+	-	-

Table A1. Main characteristics of the 8 chronically-HEV infected patients

+, positive; -, negative; IgG, immunoglobulin G; IgM, immunoglobulin M; M, male; F, female; N.t., not tested

Name	Orientation	Nucleotide positions amplified ^a	Sequence length (nt)	HEV genes	Sequences (indicated in 5'-3' orientation)	Reference
F25 R5500	ESP EAP	7-251	245	ORF1	GGTCGAYGCCATGGAGGCCC GVGGGGCGCTGGGACTGGTCAS	(2)
HEVORF1con HEVORF1con	ESP EAP	54-471	418	ORF1	CTGGCATYACTACTGCYATTGAGC CCATCRARRCAGTAAGTGCGGTC	(3)
Mars1 Mars2	ESP AP	369-1009	641	ORF1	AGAGAYGTYCAGCGCTGGTA RAGCATGAGCCGRTCCCA	Present study
None None	ESP AP	933-2102	1170	ORF1	ACAGAGGTGTATGTTAGATCCATATTTGGC GGGGAGAAGTCGCTAGAGAAACCTGATGT	(4)
MJ-B MJ-B MJ-B	ESP EAP IAP	2085-2351	267	ORF1	GCATRTTTGGGAGTCKGCTAATCC GCATGGCAGAGSCCGCCGCCGGGGC ACCTTAGMGCCGTCMGGGTAGGT	(5)
MJ-B MJ-C	ESP EAP	2148-2779	632	ORF1	GCATRTTTGGGAGTCKGCTAATCC AGGGTGCCGGGCTCGCCGGA	(5)
Mars3 Mars4	ESP AP	2705-3847	1143	ORF1	GCAGCATATCGAGAGACCTG GTGAGCTCTTGTGGCATGTA	Present study
Mars5 Mars6 Mars7 Mars8 Mars9	ESP AP AP AP AP	3756-4473	718	ORF1	AATGCRTCKAAYCCYGGC GCACARAGGTYTTRCTCCA CAAACTCAGAAAARTCRTTCTCAAT GCATSCCACACTCCTCCAT CRCCGGARTGYTTCTTCC	Present study
MJ-B MJ-C	ISP IAP	3848-4579	732	ORF1	ACWTTKTATACCCGTACTTGGTC TCACCGGAGTGYTTCTTCCAGAA	(5)
None None	SP AP	4559-5169	611	ORF1-ORF3	ACAGAGGTGTATGTTAGATCCATATTTGGC GGGGAGAAGTCGCTAGAGAAACCTGATGT	(4)
F25 R5470	ESP IAP	5152-5601	450	ORF3-ORF2	GGTCGAYGCCATGGAGGCCC GGGACTGGTCRGCCAAG	(2)
Mars10 Mars11	SP AP	5213-5983	771	ORF3-ORF2	CATGCGCCCTAGGGYTGT AGCCATGTATGCARAGCATWAC	Present study
HevMrsFwd1 HevMrsFwd2 HevMrsRev2 HevMrsRev1	ESP ISP IAP EAP	5711-6475	765	ORF2	AATTATGCYCAGTAYCGRGTT GTWATGCTYTGCATACATGGCT AGCCGACGAAATCAATTCTGTC CCCTTRTCYTGCTGRGCATTCTC	(6)
None None	SP AP	6372-7125	754	ORF2	ACAGAGGTGTATGTTAGATCCATATTTGGC GGGGAGAAGTCGCTAGAGAAACCTGATGT	(4)

Table A2. PCR primers used in the present study

^a A, antisens; E, external; I, internal; P, primer; S, sens

Reference List

- Pickett, B. E., E. L. Sadat, Y. Zhang, J. M. Noronha, R. B. Squires, V. Hunt, M. Liu, S. Kumar, S. Zaremba, Z. Gu, L. Zhou, C. N. Larson, J. Dietrich, E. B. Klem, and R. H. Scheuermann. 2012. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 40:D593-D598.
- Peralta, B., E. Mateu, M. Casas, D. N. de, M. Martin, and S. Pina. 2009. Genetic characterization of the complete coding regions of genotype 3 hepatitis E virus isolated from Spanish swine herds. Virus Res. 139:111-116.
- Erker, J. C., S. M. Desai, and I. K. Mushahwar. 1999. Rapid detection of Hepatitis E virus RNA by reverse transcription-polymerase chain reaction using universal oligonucleotide primers. J Virol.Methods 81:109-113. doi:S0166-0934(99)00052-X [pii].
- Legrand-Abravanel, F., J. M. Mansuy, M. Dubois, N. Kamar, J. M. Peron, L. Rostaing, and J. Izopet. 2009. Hepatitis E virus genotype 3 diversity, France. Emerg.Infect.Dis. 15:110-114.
- Zhai, L., X. Dai, and J. Meng. 2006. Hepatitis E virus genotyping based on full-length genome and partial genomic regions. Virus Res. 120:57-69.
- Kaba, M., B. Davoust, J. L. Marie, M. Barthet, M. Henry, C. Tamalet, D. Raoult, and P. Colson. 2009. Frequent transmission of hepatitis E virus among piglets in farms in Southern France. J Med.Virol. 81:1750-1759.