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SUMMARY

Viable yet damaged cells can accumulate during
development and aging. Although eliminating those
cells may benefit organ function, identification of
this less fit cell population remains challenging. Pre-
viously, we identified a molecular mechanism, based
on ‘‘fitness fingerprints’’ displayed on cell mem-
branes, which allows direct fitness comparison
among cells in Drosophila. Here, we study the phys-
iological consequences of efficient cell selection for
the whole organism. We find that fitness-based cell
culling is naturally used to maintain tissue health,
delay aging, and extend lifespan in Drosophila. We
identify a gene, azot, which ensures the elimination
of less fit cells. Lack of azot increases morphological
malformations and susceptibility to random muta-
tions and accelerates tissue degeneration. On the
contrary, improving the efficiency of cell selection is
beneficial for tissue health and extends lifespan.
INTRODUCTION

Individual cells can suffer insults that affect their normal func-

tioning, a situation often aggravated by exposure to external

damaging agents. A fraction of damaged cells will critically

lose their ability to live, but a different subset of cells may be

more difficult to identify and eliminate: viable but suboptimal

cells that, if unnoticed, may adversely affect the whole organism

(Moskalev et al., 2013).

What is the evidence that viable but damaged cells accumu-

late within tissues? The somatic mutation theory of aging (Ken-

nedy et al., 2012; Szilard, 1959) proposes that over time cells

suffer insults that affect their fitness, for example, diminishing

their proliferation and growth rates, or forming deficient struc-

tures and connections. This creates increasingly heteroge-

neous and dysfunctional cell populations disturbing tissue

and organ function (Moskalev et al., 2013). Once organ function

falls below a critical threshold, the individual dies. The theory is

supported by the experimental finding that clonal mosaicism

occurs at unexpectedly high frequency in human tissues as a

function of time, not only in adults due to aging (Jacobs

et al., 2012; Laurie et al., 2012), but also in human embryos

(Vanneste et al., 2009).
Does the high prevalence of mosaicism in our tissues mean

that it is impossible to recognize and eliminate cells with subtle

mutations and that suboptimal cells are bound to accumulate

within organs? Or, on the contrary, can animal bodies identify

and get rid of unfit viable cells?

One indirect mode through which suboptimal cells could be

eliminated is proposed by the ‘‘trophic theory’’ (Levi-Montalcini,

1987; Moreno, 2014; Raff, 1992; Simi and Ibáñez, 2010), which

suggested that Darwinian-like competition among cells for

limiting amounts of survival-promoting factors will lead to

removal of less fit cells. However, it is apparent from recent

work that trophic theories are not sufficient to explain fitness-

based cell selection, because there are direct mechanisms

that allow cells to exchange ‘‘cell-fitness’’ information at the local

multicellular level (Moreno and Rhiner, 2014).

In Drosophila, cells can compare their fitness using different

isoforms of the transmembrane protein Flower. The ‘‘fitness

fingerprints’’ are therefore defined as combinations of Flower

isoforms present at the cell membrane that reveal optimal or

reduced fitness (Merino et al., 2013; Rhiner et al., 2010). The iso-

forms that indicate reduced fitness have been called FlowerLose

isoforms, because they are expressed in cells marked to be elim-

inated by apoptosis called ‘‘Loser cells’’ (Rhiner et al., 2010).

However, the presence of FlowerLose isoforms at the cell mem-

brane of a particular cell does not imply that the cell will be culled,

because at least two other parameters are taken into account: (1)

the levels of FlowerLose isoforms in neighboring cells: if neigh-

boring cells have similar levels of Lose isoforms, no cell will be

killed (Merino et al., 2013; Rhiner et al., 2010); (2) the levels of a

secreted protein called Sparc, the homolog of the Sparc/Osteo-

nectin protein family, which counteracts the action of the Lose

isoforms (Portela et al., 2010).

Remarkably, the levels of Flower isoforms and Sparc can be

altered by various insults in several cell types, including: (1) the

appearance of slowly proliferating cells due to partial loss of ribo-

somal proteins, a phenomenon known as cell competition (Bail-

lon and Basler, 2014; de Beco et al., 2012; Hogan et al., 2011;

Morata and Ripoll, 1975; Moreno et al., 2002; Tamori and

Deng, 2011); (2) the interaction between cells with slightly higher

levels of d-Myc and normal cells, a process termed supercom-

petition (de la Cova et al., 2004; Moreno and Basler, 2004); (3)

mutations in signal transduction pathways like Dpp signaling

(Portela et al., 2010; Rhiner et al., 2010); or (4) viable neurons

forming part of incomplete ommatidia (Merino et al., 2013).

Intriguingly, the role of Flower isoforms is cell type specific,

because certain isoforms acting as Lose marks in epithelial cells
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(Rhiner et al., 2010) are part of the fitness fingerprint of healthy

neurons (Merino et al., 2013). Therefore, an exciting picture

starts to appear, in which varying levels of Sparc and different

isoforms of Flower are produced by many cell types, acting as

direct molecular determinants of cell fitness.

Here, we aimed to clarify how cells integrate fitness informa-

tion in order to identify and eliminate suboptimal cells. Subse-

quently, we analyzed what are the physiological consequences

of efficient cell selection for the whole organism.

RESULTS

Azot Is Expressed in Cells Undergoing Negative
Selection
In order to discover the molecular mechanisms underlying cell

selection in Drosophila, we analyzed genes transcriptionally

induced using an assay where WT cells (tub>Gal4) are outcom-

peted by dMyc-overexpressing supercompetitors (tub>dmyc)

(Figure 1D) due to the increased fitness of these dMyc-overex-

pressing cells (Rhiner et al., 2010). The expression of CG11165

(Figure S1A available online) was strongly induced 24 hr (hr) after

the peak of flower and sparc expression (Figure S1B). In situ hy-

bridization revealed that CG11165 mRNA was specifically de-

tected in Loser cells that were going to be eliminated from

wing imaginal discs due to cell competition (Figure S1C). The

gene, which we named ahuizotl (azot) after a multihanded Aztec

creature selectively targeting fishing boats to protect lakes

(Reeves, 2006), consists of one exon. azot’s single exon encodes

for a four EF-hand-containing cytoplasmic protein of the canon-

ical family (Figures S1D and S1E) that is conserved, but unchar-

acterized, in multicellular animals (Figure S1A).

To monitor Azot expression, we designed a translational re-

porter resulting in theexpressionofAzot::dsRedunder thecontrol

of the endogenous azot promoter in transgenic flies (Figure 1A).

Azot expression was not detectable in most wing imaginal discs

under physiological conditions in the absence of competition

(Figures 1B and 1C). We next generated mosaic tissue of two

clonal populations, which are known to trigger competitive

interactions resulting in elimination of otherwise viable cells. Cells

with lower fitness were created by confronting WT cells with

dMyc-overexpressing cells (Figures 1E–1H) (Moreno and Basler,

2004), bydownregulatingDppsignaling (Morenoet al., 2002) (Fig-

ures 1I–1K), by overexpressing FlowerLose isoforms (Rhiner et al.,

2010) (Figures 1L and1M), in cellswith reducedWgsignaling (Fig-

ure S1F) (Vincent et al., 2011), by suppressing Jak-Stat signaling

(Rodrigues et al., 2012) in subgroups of cells (Figure S1G) or by

generating Minute clones (Lolo et al., 2012; Morata and Ripoll,
Figure 1. Azot Is Expressed during Cell Selection of Viable Unfit Cells

(A–M) Expression analysis of Azot during different types of cell competition. For

clones (green, marked with GFP) of several genotypes. DAPI is in blue. The fol

background (black) and WT cells marked with GFP (green). Clones were genera

(black) and WT cells marked with GFP (green) expressing in addition to the P35 c

generated as shown in (I) and overexpressing brinker (UASbrinker) (J and K), fwe

(Q and R) Twenty-four hour ACI.

(N–P, S, and T) General overexpression of UASfweLose-B and UASmfwe3 using th

(U–Y) Pupal retinas at different developmental time points. (U and V) Expression

after pupa formation (APF) (U and V). (W) Genomic engineering strategy used fo

driven by the azot promoter in azot{KO; gfp}, 44 hr APF, DAPI (blue, Y).
1975; Simpson, 1979) (Figure S1H). Azot expression was not

detectable in nonmosaic tissue of identical genotype (Figures

1N–1P; Figures S1I and S1J), nor in control clones overexpress-

ing UASlacZ (Figure S1K). On the contrary, Azot was specifically

activated in all tested scenarios of cell competition, specifically in

the cells undergoing negative selection (‘‘Loser cells’’) (Figures

1D–1M). Azot expression was not repressed by the caspase in-

hibitor protein P35 (Figures 1G and 1H).

Because Flower proteins are conserved in mammals (Petrova

et al., 2012), we decided to test if they are also able to regulate

azot. Mouse Flower isoform 3 (mFlower3) has been shown to

act as a ‘‘classical’’ Lose isoform, driving cell elimination when

expressed in scattered groups of cells (Petrova et al., 2012), a

situation where azot was induced in Loser cells (Figures 1Q

and 1R) but is not inducing cell selection when expressed ubiq-

uitously a scenario where azot was not expressed (Figures 1S

and 1T). This shows that the mouse FlowerLose isoforms function

in Drosophila similarly to their fly homologs.

Interestingly, azot is not a general apoptosis-activated gene

because its expression is not induced upon eiger, hid, or bax

activation, which trigger cell death (Fuchs and Steller, 2011;

Gaumer et al., 2000) (Figures S1L–S1N). Azot was also not ex-

pressed during elimination of cells with defects in apicobasal po-

larity (Figure S1O) or undergoing epithelial exclusion-mediated

apoptosis (dCsk) (Figures S1P and S1Q) (Vidal et al., 2006).

Next, we analyzed if azot is expressed during the elimination of

peripheral photoreceptors in the pupal retina, a process medi-

ated by Flower-encoded fitness fingerprints (Merino et al.,

2013). Thirty-six to 38 hr after pupal formation (APF), when Flow-

erLose-B expression begins in peripheral neurons (Merino et al.,

2013), we could not detect Azot expression in the peripheral

edge (Figures S1R–S1U). At later time points (40 and 44 hr

APF), Azot expression is visible and restricted to the peripheral

edge where photoreceptor neurons are eliminated (Figures 1U

and 1V). This expression was confirmed with another reporter

line, azot{KO; gfp}, where gfpwas directly inserted at the azot lo-

cus using genomic engineering techniques (Huang et al., 2009)

(Figures 1W–1Y).

From these results, we conclude that Azot expression is acti-

vated in several contexts where suboptimal and viable cells are

normally recognized and eliminated.

Azot Is Required to Eliminate Loser Cells and Unwanted
Neurons
To understand Azot function in cell elimination, we generated

azot knockout (KO) flies, whereby the entire azot gene was

deleted (Figure 1W). Next, we analyzed Azot function using
all pictures, Azot::dsRed reporter (A) is in red, and merges show outcompeted

lowing genotypes were analyzed: (B and C) azot:dsRed and (D–F) tub>dmyc

ted as shown in (D) and analyzed 48 hr ACI. (G and H) tub>dmyc background

aspase inhibitor (UASp35). Forty-eight hourr ACI. (I–M) Flip-out clones (green)
Lose-B (UASfweLose-B) (L and M), or mfwe3 (UASmfwe3).

e actin promoter as shown in (N).

analysis of Azot (red), using Azot::dsRed, in peripheral photoreceptors at 40 hr

r the generation of azot knockout (KO) flies. (X and Y) GFP expression (green)
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dmyc-induced competition. In the absence of Azot function,

loser cells were no longer eliminated (Figures 2A–2F), showing

a dramatic 100-fold increase in the number of surviving clones

(Figures 2B and 2E). Loser cells occupied more than 20% of

the tissue 72 hr after clone induction (ACI) (Figures 2B and 2F).

Moreover, using azot{KO; gfp} homozygous flies (that express

GFP under the azot promoter but lack Azot protein), we found

that loser cells survived and showed accumulation of GFP

(Figures S2A and S2B). From these results, we conclude that

azot is expressed by loser cells and is essential for their

elimination.

In addition, clone removal was delayed in an azot heterozy-

gous background (50-fold increase, 15%) (Figures 2E and 2F),

compared to control flies with normal levels of Azot (1-fold,

1%) (Figures 2A, 2E, and 2F). Cell elimination capacity was fully

restored by crossing two copies of Azot::dsRed into the azot�/�

background (0.5-fold, 0.2%) demonstrating the functionality of

the fusion protein (Figures 2C, 2E, and 2F). Silencing azot with

two different RNAis was similarly able to halt selection during

dmyc-induced competition (Figures S2C–S2P). Next, in order

to determine the role of Azot’s EF hands, we generated and over-

expressed amutated isoform of Azot (Pm4Q12) carrying, in each

EF hand, a point mutation known to abolish Ca2+ binding (Maune

et al., 1992). Although overexpression of wild-type azot in nega-

tively selected cells did not rescue the elimination (Figures S2E,

S2I, S2L, and S2P), overexpression of the mutant AzotPm4Q12

reduced cell selection (Figures S2H, S2I, S2O, and S2P), func-

tioning as a dominant-negative mutant. This shows that Ca2+

binding is important for Azot function. Finally, staining for

apoptotic cells corroborated that the lack of Azot prevents cell

elimination, because cell death was reduced 8-fold in mosaic

epithelia containing loser cells (Figure 2D).

Next, we analyzed the role of azot in elimination of peripheral

photoreceptor neurons in the pupal retina using homozygous

azot KO flies (Figures 2G–2L). Pupal retinas undergoing photore-

ceptor culling (44 hr APF) of azot+/+ and azot�/� flies were stained

for the cell death marker TUNEL (Figures 2G and 2I) and the pro-

apoptotic factor Hid (Figures 2H and 2J). Consistent with the

expression pattern of Azot, the number of Hid and TUNEL-pos-

itive cells was dramatically decreased in azot�/� retinas (Figures

2I–2L) compared to azot+/+ retinas (Figures 2G, 2H, 2K, and 2L).

Those results showed that Azot was required to induce cell

death and Hid expression during neuronal culling. Therefore,

we tested if that was also the case in the wing epithelia during

dmyc-induced competition. We found that Hid was expressed
Figure 2. Azot Is Required to Eliminate Loser Cells and Unwanted Neu

(A–F) Analysis of azotKOduring dmyc-induced supercompetition 72 hr ACI. (D) Qu

supercompetition in azot+/+ and azot�/� backgrounds (p < 0.01) 72 hr ACI. (E) Qu

and E) azot+/+, (E) azot+/� (p < 0.01), (B and E) azot�/� (p < 0.01), and (C and E) azo

the (A and F) azot+/+, (F) azot+/�, (B and F) azot�/�, (C and F) azot�/�;+/+.
(G–L) Role of azot during neuronal culling in the pupal retina. (K and L) Quantifica

(red) peripheral photoreceptors, in azot+/+ (G, H, K, and L) and azot�/� (p < 0.01)

(M–Q) Hid expression (red) in loser clones (green) during supercompetition 48 hr

(R–T) Seventy-two hour ACI mfwe3-overexpressing clones (UASmfwe3) in azot+/

(U–W) Analysis of an extra genomic copy of azot during dmyc-induced superc

supercompetition with or without an extra genomic copy of azot. (V and W) Disc

(X) Azot expression is required for cell-competition-mediated apoptosis of loser
in loser cells and that the expression was strongly reduced in

the absence of Azot function (Figures 2M–2Q).

Finally, forced overexpression of FlowerLose isoforms from

Drosophila (Figures S2Q, S2R, and S2T) and mice (Figures 2R–

2T; Figures S2S and S2U) were unable to mediate WT cell elim-

ination when Azot function was impaired by mutation or silenced

by RNAi.

These results suggested that azot function was dose sensitive,

because heterozygous azotmutant flies displayed delayed elim-

ination of loser cells when compared with azot WT flies (Fig-

ure 2E). We therefore took advantage of our functional reporter

Azot::dsRed (Figures 2C and 2E) to test whether cell elimination

could be enhanced by increasing the number of genomic copies

of azot. We found that tissues with three functional copies of azot

were more efficient eliminating loser cells during dmyc-induced

competition and most of the clones were culled 48 hr ACI (Fig-

ures 2U–2W).

From these results, we conclude that azot expression is

required for the elimination of Loser cells and unwanted neurons

(Figure 2X).

Azot Maintains Tissue Fitness during Development
Next, we asked what could be the consequences of decreased

cell selection at the tissue and organismal level. To this

end, we took advantage of the viability of homozygous azot KO

flies. We observed an increase of several developmental aberra-

tions. We focused on the wings, where cell competition is best

studied and, because aberrations were easy to define, which

comprised melanotic areas, blisters, and wing margin nicks (Fig-

ures 3A–3E). Wing defects of azot mutant flies could be rescued

by introducing two copies of azot::dsRed, showing that the phe-

notypes are specifically caused by loss of Azot function (Figures

3A–3E).

Next, we reasoned that mild tissue stress should increase the

need for fitness-based cell selection after damage. First, in order

to generate multicellular tissues scattered with suboptimal cells,

we exposed larvae to UV light (Figure 3F) and monitored Azot

expression in wing discs of UV-irradiated WT larvae, which

were stained for cleaved caspase-3, 24 hr after treatment (Fig-

ures 3G–3K). Under such conditions, Azot was found to be ex-

pressed in cleaved caspase-3-positive cells (Figures 3H–3K).

All Azot-positive cells showed caspase activation and 17% of

cleaved caspase-positive cells expressed Azot (Figure 3G).

This suggested that Azot-expressing cells are culled from the tis-

sue. To confirm this, we looked at later time points (3 days after
rons

antification of cleaved caspase-3 and GFP-positive cells during dmyc-induced

antification of number of clones; the following backgrounds were analyzed: (A

t�/�;+/+ (p > 0.05). (F) Percentage of the wing pouch occupied by the wt cells in

tion of the number of apoptotic (TUNEL-positive, magenta) or Hid-expressing

(I, J, K, and L) flies. DAPI is in blue.

ACI in azot+/+ (M, N, and Q) and azot�/� (O–Q) backgrounds.
+ (R and T) and azot+/� (S and T) backgrounds (p < 0.01).

ompetition. (U) Quantification of the number of clones during dmyc-induced

s analyzed 48 hr ACI in azot+/+ (V) and azot+/+; azot+ (p < 0.01) (W).

cells. Data are represented as mean ± SEM.
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irradiation; Figure S3A) and found that the increase in Azot-pos-

itive cells was no longer detectable (Figures S3B–S3D). The elim-

ination of azot-expressing cells after UV irradiation required azot

function, because cells revealed by reporter azot{KO; gfp}, that

express GFP instead of Azot, persisted in wing imaginal discs

from azot-null larvae (Figures S3E–S3G). We therefore tested if

lack of azot leads to a faster accumulation of tissue defects dur-

ing organ development upon external damage. We irradiated

azot�/� pupae 0 stage (Figures 3L–3P) and compared the num-

ber of morphological defects in adult wings to those in nonirradi-

ated azot KO flies (Figures 3A–3E). We found that aberrations

increased more than 2-fold when compared to nonirradiated

azot�/� flies (Figures 3L–3P).

In order to functionally discriminate whether azot belongs

to genes regulating apoptosis in general or is dedicated to

fitness-based cell selection, we examined if azot silencing

prevented Eiger/TNF-induced cell death (GMR-Gal4,UASeiger)

(Figures S3H–S3N). Inhibiting apoptosis (UASp35) or eiger

(UASRNAieiger) rescued eye ablation, whereas azot silencing

and overexpression of AzotPm4Q12 did not (Figures S3I–S3N).

Furthermore, azot silencing did not impair apoptosis during geni-

talia rotation (Figures S3O–S3R) (Suzanne et al., 2010) or cell

death of epithelial precursors in the retina (Figures S3S–S3V)

(Wolff and Ready, 1991).

The results showed above highlight the consequences of

nonfunctional cell-quality control within developing tissues

(Figure 3Q).

azot Promoter Computes Relative FlowerLose and Sparc
Levels
Next, we performed epistasis analyses to understand at which

level azot is transcriptionally regulated. For this purpose, we

again used the assay where WT cells are outcompeted by

dMyc-overexpressing supercompetitors (Figure 1D). We have

previously observed that azot induction is triggered upstream

of caspase-3 activation and accumulated in outcompeted cells

unable to die (Figures 1G and 1H). Then, we genetically modi-

fied upstream events of cell selection (Figures 4A–4G): silencing

fweLose transcripts by RNAi or overexpressing Sparc, both

blocked the induction of Azot::dsRed in WT loser cells (Figures

4A–4D and 4G). In contrast, when outcompeted WT cells were

additionally ‘‘weakened’’ by Sparc downregulation using RNAi,

Azot is detected in almost all loser cells (Figures 4E–4G)

compared to its more limited induction in the presence of

endogenous Sparc (Figures 1E and 1F and 4G). Inhibiting JNK

signaling with UASpuc (Martı́n-Blanco et al., 1998; Moreno

et al., 2002) did not suppress Azot expression (Figures S4A

and S4B).
Figure 3. Azot Mutants Show Developmental Aberrations

(A–E) Wings of 10- to 13-day-old flies and quantification of developmental abe

azot�/�;azot+/+, (A and D) azot�/� and (A and E) azot+/+;azot+.

(F–K) Azot and cleaved caspase-3 expression upon UV irradiation (2 3 10�2 J

Quantification of the percentage of Azot and cleaved caspase-3-expressing cel

cleaved caspase-3 (green) after UV irradiation, (J) merge, and (K) merge with DA

(L–P) Quantification of developmental aberrations and images of wings from 10- t

(L and M) azot+/+, (L and N) azot�/�;azot+/+, (L and O) azot�/�, and (L and P) azot

(Q) Scheme showing the requirement of azot function for preventing developmen
Next, we analyzed the activation of Azot upon irradiation.

Strikingly, we found that all Azot expression after irradiation

was eliminated when Flower Lose was silenced and also when

relative differences of Flower Lose where diminished by overex-

pressing high levels of Lose isoforms ubiquitously (Figures 4H–

4K; Figure S4C). On the contrary, Azot was not suppressed after

irradiation by expressing the prosurvival factor Bcl-2 or a p53

dominant negative (Brodsky et al., 2000; Gaumer et al., 2000)

(Figures S4C–S4G). Those results show that Azot expression

during competition and upon irradiation requires differences in

Flower Lose relative levels.

Finally, we analyzed the regulation of Azot expression in neu-

rons. Silencing fwe transcripts by RNAi blocked the induction of

Azot::dsRed in peripheral photoreceptors (Figures 4L and 4M;

Figure S4H). Because Wingless signaling induces FlowerLose-B

expression in peripheral photoreceptors (Merino et al., 2013),

we tested if overexpression of Daxin, a negative regulator of

the pathway (Willert et al., 1999), affected Azot levels and found

that it completely inhibited Azot expression (Figures S4H–S4J).

Similarly, overexpression of the cell competition inhibitor Sparc

also fully blocked Azot endogenous expression in the retina (Fig-

ures S4H, S4K, and S4L). Finally, ectopic overexpression of

FlowerLose-B in scattered cells of the retina was sufficient to

trigger ectopic Azot activation (Figures S4M–S4O). Those results

show that photoreceptor cells also can monitor the levels of

Sparc and the relative levels of FlowerLose-B before triggering

Azot expression (Figure S4P).

The results described above suggest that the azot promoter

integrates fitness information from neighboring cells, acting as

a relative ‘‘cell-fitness checkpoint’’ (Figures 4N–4Q).

Cell Selection Is Active during Adulthood
To test if fitness-based cell selection is a mechanism active not

only during development, but also during adult stages, we

exposed WT adult flies to UV light and monitored Azot and

Flower expression in adult tissues (Figures 5A–5T). UV irradiation

of adult flies triggered cytoplasmic Azot expression in several

adult tissues including the gut (Figures 5B–5E; Figures S5A

and S5B) (Lemaitre and Miguel-Aliaga, 2013) and the adult brain

(Figures 5F–5J) (Fernández-Hernández et al., 2013). Likewise,

UV irradiation of adult flies triggered Flower Lose expression in

the gut (Figures 5K–5N) and in the brain (Figures 5O–5T). Irradi-

ation-induced Azot expression was unaffected by Bcl-2 but was

eliminated when Flower Lose was silenced or when relative dif-

ferences of Flower Lose where diminished in the gut (Figures

S5C–S5E) and in the adult brain (Figures S5F–S5H). This sug-

gests that the process of cell selection is active throughout the

life history of the animal. Further confirming this conclusion,
rrations in the wing of each genotype, ** < 0.01. (A and B) azot+/+, (A and C)

irradiation dose during second instar larvae, treatment as shown in F). (G)

ls after UV irradiation. (H) Azot::dsRed expression after UV irradiation (red), (I)

PI (blue).

o 13-day-old flies after UV treatment (23 10�2 J, pupae stage 0) of genotypes
+/+;azot+.

tal aberrations. Data are represented as mean ± SEM.
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Figure 4. The azot Promoter Computes Relative FlowerLose and Sparc Levels

(A–F) Epistasis analysis of the following genotypes during dmyc-induced supercompetition. (A and B) UASRNAifweloseLhp, (C and D) UASsparc, and (E and F)

UASRNAisparc. Azot::dsRed is shown in red (A, C, and E) and merges with GFP in (B, D, and F).

(G) Graph showing the probability of finding Azot expression in a GFP marked clone in several genotypes.

(H–J) Azot::dsRed expression after UV irradiation (red) is suppressed when UASRNAifweloseLhp (H and I) or UASfweLose-B and UASfweLose-A (J and K) are ex-

pressed ubiquitously. Quantified in Figure S4C.

(L andM) Epistasis analysis of Azot expression in theDrosophila retina. Pupal retinas dissected 44 hr APF ofGMR-Gal4; RNAifwe (GD). Azot expression shown in

red (L) and merge with nuclear marker DAPI in blue (M). Quantified in Figure S4H.

(N) Azot is not expressed in cells without FlowerLose isoforms.

(O–Q) Cells expressing FlowerLose but that are either surrounded by cells with equal or higher levels of FlowerLose (O) or express high levels of Sparc (P) also do not

activate azot expression. Cells with higher relative levels of Lose and not enough Sparc induce the expression of azot and are eliminated (Q).
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Figure 5. Expression of Flower Isoforms and Azot in Adult Flies with and without UV Irradiation

(A–E) Expression analysis of Azot (red, B and D) in the midgut without (B and C) and with (D and E) UV-irradiation treatment (as shown in A); (C) and (E) show

merges with DAPI.

(F–J) Expression analysis of Azot using reporter line azot{KO; gfp} in the adult brain without (G and H) and after (I and J) UV-irradiation treatment merges with DAPI

in (H and J).

(K–T) Expression analysis of Flower Lose isoforms Lose A (green) and Lose B (red) (flower Lose-A-GFP, flower Lose-B-RFP). (K and M) In the midgut without (K

and L) and with (M and N) UV-irradiation treatment. (L and N) merges with DAPI. Inset in (M) shows FweLose-A and FweLose-B expression at higher magnification.

(O–T) Expression of Flower Lose isoforms in the adult brain without (O–Q) and after (R–T) UV irradiation, merges with DAPI in (Q and T).
Azot function was essential for survival after irradiation, because

more than 99% of azot mutant adults died 6 days after irradia-

tion, whereas only 62.4% of WT flies died after the same treat-

ment (Figure S5I). The percentage of survival correlated with

the dose of azot because adults with three functional copies of

azot had higher median survival and maximum lifespan than

WT flies, or null mutant flies rescued with two functional azot

transgenes (Figure S5J).
Those results show that in adult tissues external damage can

induce cell-fitness deficits.

Role of Cell Selection during Aging
Lack of cell selection could affect the whole organism by two

nonexclusive mechanisms. First, the failure to detect precancer-

ous cells, which could lead to cancer formation and death of the

individual. Second, the time-dependent accumulation of unfit
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but viable cells could lead to accelerated tissue and organ

decay. We therefore tested both hypotheses.

It has been previously shown that cells with reduced levels for

cell polarity genes like scrib or dlg are eliminated but can give rise

to tumors when surviving (Igaki et al., 2009; Parisi et al., 2014;

Tamori et al., 2010). We therefore checked if azot functions as

a tumor suppressing mechanism in those cells (Figures S6A–

S6M). Elimination of dlg and scrib mutant cells was not affected

by RNAi against azot (Figures S6D–S6M) or when Azot function

was impaired by mutation (Figures S6N–S6R), in agreement

with the absence of azot induction in these mutant cells (Figures

S1O and S6A–S6C). However, azot RNAi or the same azot

mutant background efficiently rescued the elimination of clones

with reduced Wg signaling (Vincent et al., 2011) (Figures S6J–

S6M, S6Q, and S6R).

Moreover, the high number of suboptimal cells produced by

UV treatment did not lead to tumoral growth in azot-null back-

ground (Figures S3E–S3G). Thus, tumor suppression mecha-

nisms are not impaired in azotmutant backgrounds, and tumors

are not more likely to arise in azot-null mutants.

Second, we tested whether the absence of azot accelerates

tissue fitness decay in adult tissues. We focused on the adult

brain, where neurodegenerative vacuoles develop over time

and can be used as a marker of aging (Liu et al., 2012). We

compared the number of vacuoles appearing in the brain of

flies lacking azot (azot�/�), WT flies (azot+/+), flies with one extra

genomic copy of the gene (azot+/+; azot+), and mutant flies

rescued with two genomic copies of azot (azot�/�;azot+/+).
For all the genotypes analyzed, we observed a progressive in-

crease in the number and size of vacuoles in the brain over time

(Figures 6A–6P; Figure S6S). Interestingly, azot�/� brains

showed higher number of vacuoles compared to control flies

(azot+/+ and azot�/�;azot+/+) and a higher rate of vacuole accu-

mulation developing over time (Figures 6N–6P). In the case of

flies with three genomic copies of the gene (azot+/+; azot+),

vacuole number tended to be the lowest (Figures 6E, 6I, and

6M–6P).

Next, we analyzed the cumulative expression of azot during

aging of the adult brain. We detected positive cells as revealed

by reporter azot{KO; gfp}, in homozygosis, that express GFP

instead of Azot. We observed a time-dependent accumulation

of azot-positive cells (Figures 6Q–6W).

From this, we conclude that azot is required to prevent tissue

degeneration in the adult brain and lack of azot showed signs of

accelerated aging. This suggested that azot could affect the

longevity of adult flies (Figures 6X and 6Y). We found that flies
Figure 6. azot Is Required to Prevent Tissue Degeneration in the Adult

(A–P) Brain integrity studies over time. (A) Axial plane of Drosophila WT brain c

brain, counterstained with toluidine blue, showing degenerative vacuoles (white d

azot+/+, and (4) azot+/+; azot+. (N–P) Number of neurodegenerative vacuoles. (N) N

(azot+/+ n = 14, azot�/� [p < 0.01] n = 8, azot�/�;azot+/+ n = 16 and azot+/+; azot+ [p

at 29�C (azot+/+ n = 16, azot�/� [p < 0.01] n = 16, azot�/�;azot+/+ n = 7 and azot+/+; a

14 days at 29�C (azot+/+ n = 7, azot�/� [p < 0.01] n = 3, azot�/�;azot+/+ n = 10 an

(Q–V) Azot-positive cells (green, GFP) in azot{KO; gfp} homozygous flies after 1 d

(W) Number of Azot-positive cells per brain area (503 50 mm) in azot{KO; gfp} hom

(X) Lifespan studies of the same four genotypes at 29�C.
(Y) Lifespan values, including median survival and maximum lifespan, for the fou

Data are represented as mean ± SEM.
lacking azot (azot�/�) had a shortened lifespan with a median

survival of 7.8 days, which represented a 52% decrease when

compared to WT flies (azot+/+), and a maximum lifespan of

18 days, 25% less than WT flies (azot+/+). This effect on lifespan

was azot dependent because it was completely rescued by intro-

ducing two functional copies of azot (Figures 6X and 6Y). On the

contrary, flies with three functional copies of the gene (azot+/+;

azot+) showed an increase in median survival and maximum life-

span of 54% and 17%, respectively.

In conclusion, azot is necessary and sufficient to slow down

aging, and active selection of viable cells is critical for a long life-

span in multicellular animals.

Death of Unfit Cells Is Sufficient and Required for
Multicellular Fitness Maintenance
Our results show the genetic mechanism through which cell se-

lection mediates elimination of suboptimal but viable cells. How-

ever, using flip-out clones and MARCM (Lee and Luo, 2001), we

found that Azot overexpression was not sufficient to induce cell

death in wing imaginal discs (Figures S6T–S6Y). Because Hid is

downstream of Azot, we wondered whether expressing Hid un-

der the control of the azot regulatory regions could substitute for

Azot function.

In order to test this hypothesis, we replaced the whole

endogenous azot protein-coding sequence by the cDNA of

the proapoptotic gene hid (azot{KO; hid} flies; see Figure 7A).

In a second strategy, the whole endogenous azot protein-cod-

ing sequence was replaced by the cDNA of transcription factor

Gal4, so that the azot promoter can activate any UAS driven

transgene (azot{KO; Gal4} flies (Figure 7B). We then compared

the number of morphological aberrations in the adult wings of

six genotypes: first, homozygous azot{KO; Gal4} flies that

lacked Azot; second, azot{KO; hid} homozygous flies that ex-

press Hid with the azot pattern in complete absence of Azot;

third, azot+/+ WT flies as a control; and finally three genotypes

where the azot{KO; Gal4} flies were crossed with UAShid, UAS-

sickle, another proapoptotic gene (Srinivasula et al., 2002), or

UASp35, an apoptosis inhibitor. In the case of UASsickle flies,

we introduced a second azot mutation to eliminate azot func-

tion. Interestingly, the number of morphological aberrations

was brought back to WT levels in all the situations where the

azot promoter was driving proapoptotic genes (azot{KO; hid},

azot{KO; Gal4} 3 UAShid, azot{KO; Gal4} 3 UASsickle, see

Figures 7A–7J) with or without irradiation. On the contrary,

expressing p35 with the azot promoter was sufficient to pro-

duce morphological aberrations despite the presence of one
Brain and to Promote Lifespan

ounterstained with toluidine blue. (B–M) Magnification images of the central

ots) of the following four genotypes over time: (1) azot+/+, (2) azot�/�, (3) azot�/�;
umber of degenerative vacuoles per brain area (703 70 mm) after 1 day at 29�C
< 0.01] n = 11). (O) Number of degenerative vacuoles per brain area after 7 days

zot+ [p < 0.01] n = 20). (P) Number of degenerative vacuoles per brain area after

d azot+/+; azot+ n = 7).

ay (Q and R), 7 days (S and T), and 14 days (U and V) at 29�C. DAPI is in blue.

ozygous flies after 1 day (n = 11), 7 days (n = 15), and 14 days (n = 18) at 29�C.

r genotypes.
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functional copy of azot (Figures S7A–S7H). Likewise, p35-ex-

pressing flies (azot{KO; Gal4}/azot+; UASp35) did not survive

UV treatments (Figure S7I), whereas a percentage of the flies

expressing hid (26%) or sickle (28%) in azot-positive cells

were able to survive (Figure S7I).

From this, we conclude that specifically killing those cells

selected by the azot promoter is sufficient and required to pre-

vent morphological malformations and provide resistance to

UV irradiation.

Death of Unfit Cells Extends Lifespan
Next, we checked if the shortened longevity observed in azot�/

� flies could be also rescued by killing azot-expressing cells

with hid in the absence of Azot protein. We found that azot

{KO; hid} homozygous flies had dramatically improved lifespan

with a median survival of 27 days at 29�C, which represented

a 125% increase when compared to azot�/� flies, and a

maximum lifespan of 34 days, 41% more than mutant flies (Fig-

ures 7K and 7L).

Similar results were obtained at 25�C (Figures 7M and 7N).

We found that flies lacking azot (azot�/�) had a shortened

lifespan with a median survival of 25 days, which represented

a 24% decrease when compared to WT flies (azot+/+), and

a maximum lifespan of 40 days, 31% less than WT flies

(azot+/+). On the contrary, flies with three functional copies of

the gene (azot+/+; azot+) or flies where azot is replaced by hid

(azot{KO; hid} homozygous flies) showed an increase in median

survival of 54% and 63% and maximum lifespan of 12% and

24%, respectively.

Finally, we tested the effects of dietary restriction on longevity

of those flies (Partridge et al., 2005) (Figures S7J and S7K). We

found that dietary restriction could extend both the median sur-

vival and themaximum lifespan of all genotypes (Figures S7J and

S7K). Interestingly, dietary restricted flies with three copies of the

gene azot showed a further increase inmaximum lifespan of 35%

(Figure S7K). This shows that dietary restriction and elimination

of unfit cells can be combined to maximize lifespan.

In conclusion, eliminating unfit cells is sufficient to increase

longevity, showing that cell selection is critical for a long lifespan

in Drosophila.

DISCUSSION

Here, we show that active elimination of unfit cells is required to

maintain tissue health during development and adulthood. We
Figure 7. Culling Azot-Expressing Cells Is Sufficient and Required for

(A and B) Knockin (KI) schemes (A) azot{KO; Gal4} and (B) azot{KO;hid}.

(C–F)Wings from 10- to 13-day-old flies and quantification of developmental aberr

{KO; Gal4}, (C and E) azot{KO;hid}/azot{KO;hid}, (C and F) azot{KO; Gal4}/azot�

(G–J) Wings from 10- to 13-day-old flies and quantification of developmental abe

10�2 J administered during pupal stage 0.

(K and L) Comparative lifespan studies of genotypes azot{KO;hid}/azot{KO;hid} a

(L) Median and maximum survival of genotypes azot{KO;hid}/azot{KO;hid} and a

(M and N) Lifespan studies at 25�C of the following four genotypes: (1) azot+/+, (2

maximum survival of the four genotypes.

(O) Scheme showing that specifically killing Azot-expressing cells with the gener

and rescue azot mutant phenotypes.

Data are represented as mean ± SEM.
identify a gene (azot), whose expression is confined to subopti-

mal or misspecified but morphologically normal and viable cells.

When tissues become scattered with suboptimal cells, lack of

azot increases morphological malformations and susceptibility

to random mutations and accelerates age-dependent tissue

degeneration. On the contrary, experimental stimulation of azot

function is beneficial for tissue health and extends lifespan.

Therefore, elimination of less fit cells fulfils the criteria for a hall-

mark of aging (López-Otı́n et al., 2013).

Although cancer and aging can both be considered conse-

quences of cellular damage (Greaves and Maley, 2012; López-

Otı́n et al., 2013), we did not find evidence for fitness-based

cell selection having a role as a tumor suppressor in Drosophila.

Our results rather support that accumulation of unfit cells affect

organ integrity and that, once organ function falls below a critical

threshold, the individual dies.

We find Azot expression in awide range of ‘‘less fit’’ cells, such

as WT cells challenged by the presence of ‘‘supercompetitors,’’

slow proliferating cells confronted with normal proliferating cells,

cells with mutations in several signaling pathways (i.e., Wingless,

JAK/STAT, Dpp), or photoreceptor neurons forming incomplete

ommatidia. In order to be expressed specifically in ‘‘less fit’’

cells, the transcriptional regulation of azot integrates fitness in-

formation from at least three levels: (1) the cell’s own levels of

FlowerLose isoforms, (2) the levels of Sparc, and (3) the levels of

Lose isoforms in neighboring cells. Therefore, Azot ON/OFF

regulation acts as a cell-fitness checkpoint decidingwhich viable

cells are eliminated. We propose that by implementing a cell-

fitness checkpoint, multicellular communities became more

robust and less sensitive to several mutations that create viable

but potentially harmful cells. Moreover, azot is not involved in

other types of apoptosis, suggesting a dedicated function,

and—given the evolutionary conservation of Azot—pointing to

the existence of central cell selection pathways in multicellular

animals.

EXPERIMENTAL PROCEDURES

In Situ Hybridization

We followed the protocol described in Rhiner et al. (2010). Probe sequences

are available upon request.

Drosophila Genetics

Stocks and crosses were kept at 25�C in standardmedia. The following stocks

were used: ywf;tub > dmyc > Gal4/Cyo;UASgfp; azot::dsRed/TM6B; GMR-

Gal4; azot::dsRed/TM6B; ywf;tub > dmyc > Gal4,azot�/Cyo;UASgfp; ywf;tub
Multicellular Fitness Maintenance

ations of the following five genotypes: (C) azot+/+, (C and D) azot{KO; Gal4}/azot

;UASsickle, and (C) azot{KO; Gal4}/azot+ ;UAShid.

rrations after UV irradiation of the same five genotypes. Irradiation dose of 23

nd azot�/� at 29�C.
zot�/�.
) azot�/�, (3) azot+/+; azot+, and (4) azot{KO;hid}/azot{KO;hid}. (N) Median and

al proapoptotic factor Hid is sufficient to prevent morphological malformations
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> dmyc > Gal4,azot�/Cyo;UASrfp; ywf;act > y+ > gal4,azot�/Cyo;UASgfp;
ywf;act > y+ > Gal4/Cyo;UASRNAiazot; azot{KO;gfp}; azot{KO;hid}; azot{KO;

Gal4}; UASbrk;act > cd2 > Gal4,UASgfp/TM6B; act > y+ > Gal4,UASgfp;azot::

dsRed/TM6B; w;flowerUbi-YFP,flowerLose-A-GFP,flowerLose-B-RFP; ywf;

Ubigfp,MinuteFRT42/Cyo; ywf;FRT42/Cyo; hsFlp,UAS-CD8-GFP;GAL80 FRT

40A/Cyo;tub > G4/TM6B; ywFlp;armZFRT40A/Cyo;MKRS/TM6B; ywf;patched-

Gal4; apterous-Gal4; GMR-Gal4,UASeiger; RNAifweLoselhp (Merino et al.,

2013); ywf;UASmfwe3; ywf;UASsparc/TM6B; UASfweLose-B; UASfweLose-A;

UASfweLose-A,UASfweLose-B; UASp35; UASpuckered; UASdAxin/TM3; UAShid;

UASsickle; UASbax; UASbcl2; UASp53DN; UASRNAifweGD; UASRNAis

parc(16678); UASRNAiazotGD(18166); UASRNAiazotKK(102353); UASRNAis

cribble(Bloomington); UASRNAidlg(Bloomington); UASRNAihopscotch(Bloo-

mington); UASRNAieigerGD; ywf;Cyo/if;UASazot/TM6B; ywf;Cyo/if;UASazot-

HA/TM6B; ywf;Cyo/if;UASazotpm4Q12/TM6B; ywf; UASlacZ; and UASCSK-IR.

Clone Induction

Flip-out clones were generated after heat shock at 37�C between 5 and

15 min. For ubiquitous expression experiments larvae were subjected to

45 min heat shock for all cells to perform flip-out and activate Gal4 under

the control of the actin promoter (act>Gal4).

Azot Reporter: azot::dsRed

The genomic region 3 kb upstream plus the full exon was cloned in pRe-

dStinger vector using XbaI and KpnI restriction sites. Primer sequences are

available upon request.

Overexpressing Constructs

cDNA of azot was fully sequenced and subcloned into the pUASattB vector

using XbaI and KpnI restriction sites. In order to generate N- and C-terminal

HA-tagged forms, the respective cDNAs were amplified with primers contain-

ing the HA sequence and subcloned into KpnI and XbaI sites of pUASattB.

Primer sequences are available upon request.

Azotpm4Q12

Site-directed mutagenesis was used to create point mutations that changed

glutamic acid (E) to glutamine (Q) as shown in Figure S1A. Primer sequences

are available upon request.

Azot Knockout Generation

We followed the genomic engineering strategy described in Huang et al.

(2009); homologous regions are shown in (Figure 1A). Primer sequences are

available upon request.

Knockin Generation

Knockout founder line (Figure 2A) was used for the generation of knockin flies

as described in Huang et al. (2009). cDNA of gfp, hid, andGal4was used for the

generation of azot{KO; gfp}, azot{KO; hid}, and azot{KO; Gal4} knockin lines.

Primer sequences are available upon request.

Immunohistochemistry

Standard immunohistochemistry protocol was used for antibody detection

(Rhiner et al., 2010). For the generation of specific antibodies against Azot,

N-terminal peptide MEDISHEERVLILDTFR was used to immunize rabbits.

Anti-Wingless (ms, 1:50) was from DSHB, anti-caspase-3 (rabbit, 1:100)

was from Cell Signaling Technology, anti-KDEL (rabbit, 1;100) was from Ab-

cam, anti-cytochrome c (mouse, 1:800) was from BD Pharmingen, anti-Hid

(rabbit, 1:50) and anti-HA (rat, 1:250) were from Roche, and anti-bGal

(mouse, 1:200) was from Promega. TUNEL staining performed as described

(Lolo et al., 2012). Confocal images acquired with Leica SP2 and SP5

microscopes.

UV Treatments

Treatments were performed using a UV Stratalinker 2400 machine (UV-B

254 nm). Adult flies were subjected to 2 3 10�2 J dose of UV irradiation

when they were 1–3 days old and analyzed for Azot and Flower isoform

expression 24 hr later. For lifespan experiments after irradiation, a dose of 5

3 10�2 J was used. Larvae and pupae were subjected to 2 3 10�2 J dose of
474 Cell 160, 461–476, January 29, 2015 ª2015 The Authors
UV irradiation, and Azot expression or developmental aberrations were

analyzed.

Longevity Assays

Cohorts of 100 female flies (1–3 days old) of the same genetic background

were collected and kept at 29�C or 25�C on standard food (3.4 l water,

280 g maize, 36 g agar, 120 g yeast, 300 g sugar syrup, 32 g potassium, 6 g

methyl, 20 ml propionic acid). Surviving flies were counted every 2 days (He

and Jasper, 2014).

Dietary Restriction Assays

Cohorts of 100 female flies (1–3 days old) were collected and kept at 29�C on

water-diluted standard food (one to one). Surviving flies were counted every

2 days.

Brain Studies

Brain Integrity

Adult flies kept at 29�C of the selected time points and genotypes were

analyzed for the appearance of neurodegenerative vacuoles over time in the

central brain as previously described (Kretzschmar et al., 1997).

Azot Expression

Adult flies azot{KO; gfp}/azot{KO; gfp} were kept at 29�C. The selected time

points were analyzed for the number of GFP-positive cells in the central brain.

Statistical Analysis

For the rescue assay using azot KO in supercompetition (Figure 2E), rescue

assay in supercompetition with azot RNAi and overexpression of the protein

(Figures S2J–S2P), the rescue assay of clones with apicobasal defects and

the clones with deficient Wg signaling (Figures S6N–S6R), and brain integrity

studies over time (Figures 6A–6P), the data were analyzed with the K indepen-

dent samples test. The post hoc DMS test was then used to detect significant

differences.

For the caspase-positive cells in azot+/+ and azot�/�background (Figure 2D),

the rescue assay in overexpression of Flowerlose isoforms (Figures 2R–2T; Fig-

ure S2T), and azot overexpression in clones (Figures S6T–S6Y), all data were

analyzed with two independent samples test (Mann-Whitney U test). Levene

test was used to analyze number of cleaved caspase-3-positive cells, rescue

assay of FlowerLose isoforms, and number of azot-overexpressing clones.

For the quantification of the number of developmental aberrations before

and after irradiation treatment in azot+/+, azot+/�, and azot�/�, and azot�/�;
azot+/+ background (Figures 3A–3E, 3L–3P, 7C–7J, and S7A–S7H), data

were analyzed with the K independent samples test (Levene), and Levy-Tukey

was used for post hoc analyses.

In the rescue assay in supercompetition using RNAi (24 hr ACI) (Figures

S2C–S2I), the data were analyzed with ANOVA test.

In the quantification of eye size in apoptosis assay (Figures S3H–S3N), the

data were analyzed with ANOVA. Bonferroni post hoc test was used to detect

significant differences among genotypes.

For the functional assays of azot in retinas (Figures 2G–2L), azot dose sen-

sitive (Figures 2U–2W), rescue assay in overexpression of mouse flower3 iso-

form (Figure S2U), and rescue assay of clones with apicobasal defects, and

clones with deficient Wg signaling by azot RNAi (Figures S6D–S6M), all data

were analyzed with Student’s t test.

For the lifespan analysis (Figures 6X, 7K, 7M, and S7J), the log-rank test was

used to study significant differences among the genotypes.
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Figure S1. Azot Is Conserved throughout Evolution and Is Expressed in a Subset of Loser Cells in Cell Competition Scenarios, Related to

Figure 1

(A) Alignment of Azot showing conservation in multicellular animals including humans. Point mutations highlighted for the generation of the pm4Q12 Azot mutant.

(B) Expression profile of different genes induced upon Supercompetition based on microarray data published in Rhiner et al., 2010.

(C) In situ analysis of azot RNA in dmyc-induced supercompetition, azot RNA probe (red), WT clones (green). Arrows show cells expressing azot RNA.

(D and E) HA-tagged Azot protein overexpressed in wing imaginal disc cells with act-Gal4 driver is mainly cytoplasmic, anti-HA in red (D) and merged with DAPI

(E).

(F–U) Expression analysis of Azot. Flip-out overexpressing clones of UASdaxin (Azot::dsRed, red) (F) and RNAihopscotch (Azot::dsRed, red) (G). (H) Minute

heterozygous clones anti-Azot antibody (red). (I and J) Wing imaginal discs ubiquitously expressing Daxin and GFP (act < Gal4; UASdaxin; UASgfp), (I)

Azot::dsRed and merged with GFP (J). (K–O) Flip-out clones marked with GFP and overexpressing: (K) UASlacZ, (L) UAShid, (M) UASeiger, (N) UASbax, and (O)

RNAiscribble. Azot expression revealed with Azot::dsRed from (K)–(O). (P and Q) patched-Gal4; UASgfp; UASCSK-IR, (red, Azot::dsRed). (R–U) Images of pupal

retinas at different developmental time points. Expression analysis of Azot (red), using Azot::dsRed, in peripheral photoreceptors at different time points: 36hr

after pupa formation (APF) (R and S) and 38hr APF (T and U).
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Figure S2. Azot Downregulation in Loser Cells during Cell Competition, Related to Figure 2

(A and B) tub>dmyc background (black) and WT cells marked with RFP (red) in azot{KO; gfp} homozygous background 72hr ACI.

(C–I) Images of wing imaginal discs 24hr ACI in dmyc-induced supercompetition of the following genotypes (C) UASlacZ, (D) UASp35, (E) UASazot, (F) RNAiazot

GD, (G) RNAiazot KK, (H) UASazotpm4Q12 (red, anti-Wingless), and quantification of number of clones at 24hr ACI (I).

(J–P) Quantification and images of WT clones in supercompetition of the following genotypes 72hr after ACI (anti-Wingless, red): (J) UASlacZ, (K) UASp35 (p <

0.05), (L) UASazot, (M) RNAiazot GD (p < 0.01), (N) RNAiazot KK (p < 0.01), and (O) UASazotpm4Q12 (p < 0.01) (red, anti-Wingless).

(Q–U) Flower Lose overexpressing clones (Q and T) UASfweLose-B; UASlacZ, (R and T) UASfweLose-B; RNAiazot (p < 0.05), (S and U) UASmfwe3; RNAiazot (p <

0.01). RNAiazot GD line was used. Data are represented as mean ± SEM.
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Figure S3. Azot Is Required to Eliminate a Subset of Cells after Irradiation but Is Not a General Proapoptotic Factor, Related to Figure 3

(A–G) Azot positive cells detected in wing imaginal discs after UV-treatment (2x10�2J, 3 days after egg laying as shown in A). (B–D) Azot::dsRed functional

reporter (B). Expression in the wing imaginal disc is shown in red (C) andmerge with DAPI (blue, D). (E–G) azot{KO; gfp} reporter in homozygosis (E). Expression in

the wing imaginal disc is shown in green (F) and merge with DAPI (blue, G).

(H–N) Images ofDrosophila eyes and quantification of eye area (pixels), inducing apoptosis withGMR-Gal4, UASeiger in the following genotypes: (H)UASlacZ, (I)

UASp35, (J) RNAieiger, (K) RNAiazot GD, (L) RNAiazot KK, (M) UASazotpm4Q12 and quantification, (N) (* < 0.05 and ** < 0.01).

(O–R) Genitalia rotation assay, using engrailed>Gal4 driver with the following genotypes: (O) UASlacZ, (P) UASp35, (Q) RNAiazot GD, (R) RNAiazot KK.

(S–V) images of Drosophila retina 24hr APF stained for TUNEL (magenta, S and U) and pan-neuronal marker Elav (green, T and V) of the following genotypes: (S

and T) GMR-Gal4; UASlacZ and (U and V) GMR-Gal4; RNAiazot.

Data are represented as mean ± SEM.
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Figure S4. Regulation and Function of Azot, Related to Figure 4

(A and B) Epistasis analysis UASpuc during dmyc induced supercompetition Azot::dsRed is shown in red (A) and merges with GFP in (B).

(C–G) Azot::dsRed expression after UV-irradiation (red) is not suppressed when UASbcl2 and UASp53DN are overexpressed ubiquitously with actin-Gal4. DAPI

in blue.

(H–O) Quantification and epistasis analysis of azot in the retina. (H) Graph showing the probability of Azot expression in each genotype.

(I–L) Images of Drosophila retinas 44hr APF of the following genotypes: (I and J) GMR-Gal4; UASdaxin and (K and L) GMR-Gal4; UASsparc. Azot expression is

shown in red (I and K) and merges with DAPI are shown in (J and L).

(M–O) hsflp; act > y+STOP > Gal4, UASgfp;UASfweLose-B. GFP clones (green, M), Azot::dsRed (red, N) and merge with DAPI nuclear marker in (O).

(P) Scheme representing Azot-mediated elimination of peripheral photoreceptors.

Data are represented as mean ± SEM.
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Figure S5. Expression and Function of Azot after UV Irradiation, Related to Figure 5

(A and B) Subcellular localization of Azot (red, Azot::dsRed) in enterocytes after irradiation co-stained with mitochondrial marker Cytochrome c (green, A) and ER

marker KDEL (green, B). DAPI in blue. Azot does not co-localize with mitochondrial marker and partially co-localize with ER marker.

(C–H) Expression analyses of Azot (red, Azot::dsRed) after irradiation (2x10�2J, 1-3 days old) in the midgut (C-E) and in the adult brain (F–H) using actin-Gal4 to

overexpress the following factors: (C and F) Bcl2 (UASbcl2), (D–G) RNAi against flower lose isoforms (UASRNAiloseLhp) and (E–H) Flower LoseA and LoseB

isoforms (UASfweLose-A, UASfweLose-B). Merges with DAPI (blue) and Azot (red).

(I) Percentage of adult survival 6 days post-irradiation (5x10�2J, 1-3 days old) of the following 4 genotypes: 1) azot+/+, 2) azot�/�; azot+/+, 3) azot�/�, 4) azot+/+;
azot+.

(J) Lifespan studies at 29�C 6 days after the same UV-irradiation treatment of the previous 4 genotypes.
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Figure S6. Expression and Functional Analysis of azot in Cell Cloneswith Defects in Apicobasal Polarity, Vacuole Size, andClone Analysis for

azot Overexpression, Related to Figure 6
All images are wing imaginal discs dissected in third instar larvae.

(A–C) Expression analysis of Azot (48hr ACI) of the following genotypes: hsflp; act > y+STOP > Gal4,UASgfp; UASlacZ (A), hsflp; act > y+STOP > Gal4,UASgfp;

RNAiscribble (B) and hsflp; act > y+STOP > Gal4,UASgfp; RNAidlg (C). Azot expression is shown in red, GFP clones in green.

(D–M) RNAi-mediated silencing of azot in clones with defects in apico-basal polarity and clones deficient for Wg signaling. Quantification and images of GFP

marked clones from the following genotypes: (D and M) hsflp; act > y+STOP > Gal4; RNAiyellow (E andM) hsflp; act > y+STOP > Gal4; RNAi azot; RNAiyellow, (F

andM) hsflp; act > y+STOP >Gal4; RNAidlg, (G andM) hsflp; act > y+STOP >Gal4; RNAiazot; RNAidlg, (H andM) hsflp; act > y+STOP >Gal4; RNAiscribble, (I and

M) hsflp; act > y+STOP > Gal4; RNAiazot; RNAiscribble, (J and M) hsflp; act > y+STOP > Gal4; UASdaxin, (K and M) hsflp; act > y+STOP > Gal4;RNAiazot;

UASdaxin (p < 0.01) and (L and M) hsflp; act > y+STOP > Gal4; UASlacZ. All clones analyzed 72hr ACI.

(N–R) Survival analysis of clones with defects in apico-basal polarity and clones deficient for Wg signaling in azot mutant heterozygote background. Number of

GFP marked clones 72hr ACI of the following genotypes: (N,R) hsflp; act > y+STOP > Gal4,UASgfp,azot-; RNAiyellow, (O,R) hsflp; act > y+STOP > Ga-

l4,UASgfp,azot-; RNAiscribble (p < 0.01), (P,R) hsflp; act > y+STOP > Gal4,UASgfp,azot-; RNAidlg (p < 0.01) and (Q and R) hsflp; act > y+STOP > Ga-

l4,UASgfp,azot-; UASdaxin.

(S) Vacuole size over time of the following 4 genotypes: 1) azot+/+, 2) azot�/�, 3) azot�/�; azot+/+, and 4) azot+/+; azot+. Size of degenerative vacuoles (pixels) after

1 day at 29�C (azot+/+ n = 29, azot�/�N = 31, azot�/�;azot+/+ N = 23 and azot+/+; azot+ N = 21). Size (pixels) of degenerative vacuoles per brain area after 7 days at

29�C (azot+/+ N = 32, azot�/� N = 23, azot�/�;azot+/+ N = 16 and azot+/+; azot+ N = 39). Size (pixels) of degenerative vacuoles per brain area after 14 days at 29�C
(azot+/+ N = 34, azot�/� N = 34, azot�/�;azot+/+ N = 22 and azot+/+; azot+ N = 31).

(T–V) Images of wing imaginal discs dissected in third instar larvae and quantification of GFP marked clones. (T, U) Wing discs of the following genotypes: hsflp;

act > y+STOP>Gal4, UASgfp;UASlacZ (T) and hsflp; act > y+STOP >Gal4, UASgfp;UASazot (U) 72hr ACI. Clones shown in green (GPF) and nuclear marker DAPI

in blue. (V) Graph showing the quantification of the number of clones 72hr ACI. No significant differences were found (student’s t test, p > 0.05).

(W–Y) Images of wing imaginal discs dissected in third instar larvae and quantification of clone size using the MARCM technique. (W and X) Wing discs 72hr ACI.

Size of the clones shown in green (GPF) overexpressing UASazot were compared to MARCM twin clones (black), anti-bGal (red, W) and merge with GFP (X). (Y)

Graph showing the quantification of the size of clones 72hr ACI. No significant differences were found (student’s t test, p > 0.05).

Data are represented as mean ± SEM.
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Figure S7. Developmental Aberrations when Inhibiting Apoptosis of Azot-Positive Cells, Related to Figure 7
(A–D) Quantification andDrosophilawing images of developmental aberrations, before irradiation treatment of the following genotypes: (B)UASsickle, (C)UAShid

and (D) azot{KO; Gal4}/azot+ ;UASp35.

(E–H) Quantification and Drosophilawing images of developmental aberrations, after UV-irradiation of the following genotypes: (F)UASsickle, (G) UAShid and (H)

azot{KO; Gal4}/azot+;UASp35. Irradiation dose of 2x10-2J administered during pupal stage 0. All wings belong to 10-13 days old flies.

(I) Percentage of adult survival 6 days post-irradiation (5x10�2J, 1-3 days old) of the following 3 genotypes: 1) azot{KO;hid}/azot{KO;hid}, 2) azot{KO; Gal4}/azot+;

UASp35 and 3) azot{KO; Gal4}/azot-; UASsickle.

(J and K) Dietary restriction lifespan studies at 29�C of the following 4 genotypes over time: 1) azot+/+, 2) azot�/�, 3) azot+/+; azot+ and 4) azot{KO;hid}/ azot

{KO;hid}. (K) Median and maximum survival of the four genotypes.

Data are represented as mean ± SEM.
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