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S| Methods

Behavioral Task and Stimulus Presentation. Two female macaque
monkeys (monkeys “SI” and “EV”; Macaca fuscata; weighing
5.3-6.2 kg) were seated in a primate chair with their heads fixed
and facing the screen of a cathode ray tube monitor (frame rate:
100 Hz; Totoku Electric) situated at a distance of 57 cm from the
monkeys. The monkeys were required to fixate on a small white
spot (visual angle: <0.1°) at the center of the display (1.5-2.2°
window). Eye position was monitored using an infrared eye
camera system (ISCAN). Visual stimuli were presented on the
monitor using a graphics board (VSG; Cambridge Research
Systems) and calibrated with a colorimeter (CS200; KONICA
MINOLTA). Image resolution was 800 x 600 pixels (20 pixels/®).
A trial started with the presentation of the fixation spot, after
which stimuli were presented five to six times within a trial. Each
stimulus presentation lasted 200 ms with 200-ms blank intervals.
Each stimulus was repeated at least five times and usually eight
times in a session.

Electrophysiological Recording. Neuronal activity was recorded
from the dorsal part of V4, in the prelunate gyrus. Under aseptic
conditions and general anesthesia, a recording chamber was
surgically attached to the skull at 0-5 mm posterior and 24-29 mm
lateral (the stereotaxic coordinates). The electrical activity of well-
isolated single neurons was recorded extracellularly using tungsten
microelectrodes (200 pm in diameter, 1-2.5 MQ at 1 kHz; FHC or
Unique Medical). Receptive fields were manually plotted using
small geometric stimuli, and their centers and sizes were de-
termined. For cells that did not respond to the small stimuli, only
the centers of the receptive fields were determined using a texture
(6.4° x 6.4°). We recorded from 109 neurons that selectively re-
sponded to the presented 250-500 textures (P < 0.0001, Kruskal-
Wallis test). Of these, 90 neurons (53 from SI and 37 from EV)
were selected as samples for further analyses, based on their
sparseness indices (<0.75) (1). This was defined as follows:

sparseness index = {1— (Z%)Z/Z(g)}/(l—%), [S1]

where r is the firing rate to the stimulus and #n is the number of
stimuli. We used this criterion because neurons with high sparse-
ness indices (>0.75) tended to respond only to a tiny fraction of
the stimuli (on average, 2.0% of stimuli evoked more than the
half-maximum response), which prohibits meaningful interpreta-
tion of quantitative analysis based on any model. Responses were
computed using the mean firing rates during a 200-ms period
beginning 50 ms after stimulus onset. We subtracted baseline
activities, which were defined as the firing rates during the
300 ms before the onset of the first stimulus averaged across all
trials in a session.

Generation of Control Images. In addition to the main textural
stimuli, we also presented several control stimuli (Fig. 64) for all
recorded neurons. After at least five generations of adaptive
sampling, we selected five textures from the presented stimuli
sampled equally based on the evoked firing rates under the
constraint that the images were included in the 4,400 non-
interpolated images. From each of these five textures, we pre-
pared five control stimuli, including the original stimulus: the
Scramble image was generated by randomizing the phase of
Fourier transform; the Rotation image was generated by rotating
the original image by 90°; the Same image was synthesized using
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the same PS parameters as the original texture but from different
random noise; and the Photo image was the photograph used to
extract the synthesis parameters for the original image.

Analysis of the Efficiency of Adaptive Sampling. In Results, we de-
termined whether the adaptive sampling successfully generated
stimuli around the optimal textures for each neuron (Fig. 2E).
To do this, we first defined the optimal textures as those evoking
responses larger than 90% of the maximum for each neuron. The
number of optimal textures was, on average, 2.4 + 1.6. We then
computed the Euclidean distance between each pair of stimuli
and the nearest optimal texture in the seven-dimensional space
for each stimulus. The average of the distances of all stimuli
presented up to a given generation is plotted as the “Data” in
Fig. 2E. As a control, we considered the case of simulated
neurons that had the same level of selectivity for textures but
whose preferred textures were randomly distributed in the
sampling space (“Random tuning model” in Fig. 2E). To gen-
erate this control, we first randomly reassigned the response
evoked by each stimulus in each neuron to all possible textures
(n = 10,355) and produced the corresponding pseudoneural re-
sponses. We then simulated the same adaptive sampling exper-
iment for these pseudoneurons and conducted exactly the same
analysis with the simulated data. The results for these pseudo-
neurons are plotted as Random tuning model in Fig. 2E.

Classification of Neurons Based on the Tolerance to Control
Manipulations. To determine whether the fitting weights of neu-
rons obtained using the minPS explained the responses to those
control stimuli (Fig. 7), we classified neurons into those tolerant
of the image manipulations performed under each control con-
dition or those intolerant of the manipulations. To do this, we first
determined whether each of the 29 parameters in the minPS was
tolerant of the manipulations of the controls. We computed the
minPS parameters for our 10,355 textures and those for the
control stimuli (Scramble or Rotation) corresponding to each
texture and calculated the correlation coefficients between the set
of values for each parameter in the minPS. When the correlation
was greater than 0.4, we regarded the parameter as tolerant of the
manipulations. Typical tendencies of the tolerance for each group
of parameters are summarized in Fig. 7G. It should be noted that,
because we defined the tolerance based on the correlation, exact
values could be changed by the manipulations, even for param-
eters assigned as tolerant. For each neuron, we summed up the
absolute values of weights for tolerant and intolerant parameters
separately. When the summed weight for tolerant parameters
was larger than that for intolerant ones, we categorized the
neuron as tolerant of that image manipulation.

Computation of the Neuronal Sensitivity to Textures. The number of
neurons tuned to each group of statistical parameters (Fig. 4F) is
related to, but is not directly comparable to, the contribution of
each group to the human sensitivity to the textures estimated in
Freeman et al. (2). In that study, perceptual sensitivity to a par-
ticular texture was psychophysically determined as the discrimi-
nation threshold between the textural image and a spectrally
matched noise image. Those investigators measured perceptual
sensitivities to 500 textures and linearly fitted them using the PS
statistics to specify which group of PS statistics was incorporated
into images showing high perceptual sensitivity. Here, we con-
sidered reproducing these results using our neuronal data. We
first computed the predicted firing rates of recorded neurons for
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each of our 10,355 textures and their spectrally matched noise
images using the weights obtained by the fitting to the minPS.
From them, we were able to estimate the sensitivity of a neuron
to a given texture (d’) using Eq. S2:

(FR,—FR,)*

d'= ) [S2]

O

where FR, and FR,, indicate the predicted firing rates for the
texture and its corresponding noise, and ¢~ indicates the variance
of the neuron’s responses computed by averaging the trial-by-
trial variances of the firing rates of that neuron. We then used
Eq. S3 to sum up d’ for all neurons showing significant fit to the
minPS (n = 83):

di= > (d)?, [83]

1

where the d; indicates the sensitivity of the population of neu-
rons to a particular texture ¢, and dj; indicates the sensitivity of

1. Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex
during natural vision. Science 287(5456):1273-1276.

2. Freeman J, Ziemba CM, Heeger DJ, Simoncelli EP, Movshon JA (2013) A functional and
perceptual signature of the second visual area in primates. Nat Neurosci 16(7):974-981.
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neuron i to texture t. Here, we assumed the independent sum-
mation of information from individual neurons. We supposed
that the population sensitivity, d;, corresponds to the perceptual
sensitivity to each texture. Next, the obtained population neural
sensitivity was linearly regressed using the PS statistics, and the
contribution of each group of parameters was computed using
the so-called averaging-over-orderings procedure (3), which ba-
sically computes a difference in the R? of the fit before and after
inclusion of a particular group of parameters as a measure of the
amount of contribution of that group. Because this differential
R? depends on the order in which the group is added, the method
repeats all possible orders of additions and averages over them.
This yields the average percent contributions of individual
groups among the R* computed using all parameters (Fig. 84).
This is the same procedure that was done for the psychophysical
sensitivity in Freeman et al. (2). We used a Pearson correlation
coefficient to assess the similarity between our physiological data
and the data obtained in Freeman et al. (2), and the statistical
significance was tested using a permutation test. In that test, we
shuffled the fitting weights of individual neurons and repeated
the same analysis 2,000 times to obtain the correlation coeffi-
cients for the perceptual sensitivity.

3. Gréomping U (2007) Estimators of relative importance in linear regression based on
variance decomposition. Am Stat 61(2):139-147.
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Fig. S1. Procedure used to generate the sampling space and its validation. (A) Examples of synthesized texture stimuli. Each texture originated from pho-
tographs of one of the eight material categories (bark, sand, fabric, fur, leather, stone, water, and wood). Frame colors indicate the corresponding material
categories. (B) Method for generating the sampling space and stimuli for the adaptive sampling procedure. We first computed the synthesis parameters (PS
statistics) of all 4,400 images (740 parameters). We then normalized individual parameters across the 4,400 images, denoised them using principal-component
analysis (PCA), and finally projected them into a seven-dimensional space using Fisher’s linear discriminant analysis (LDA). The middle panel depicts the dis-
tribution of textures in the first two dimensions of the resulting seven-dimensional sampling space (the same as in Fig. 1A). Textures in the same category
tended to aggregate within this space. Because the density of the sampling was not uniform, we interpolated stimuli between neighboring textures through
linear interpolation of the PS statistics. The rightmost panel shows the distribution of samples, including the interpolated ones. (C) When the dimension
reduction was performed using PCA instead of LDA, no clear segregations of categories were observed. (D) When the tags of categories assigned to textures
were shuffled, categories were not segregated, even with LDA. This indicates that the categorical segregation in B originated from the intrinsic structure
hidden in the synthesis parameters. (E) Cross-validation of the categorical segregation in LDA. LDA coefficients were calculated using one-half of the stimuli
(training set), whereas the other half (test set) was visualized using the obtained coefficients. The distributions of textures and categories were consistent
between the training and test sets.
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Fig. S2. Examples of the texture preferences of neurons. (A) Five most preferred textures for four different neurons. The preferred textures of each neuron
shared common appearance, whereas different neurons preferred textures with different appearances. (B) To evaluate the dependency of the obtained se-
lectivity on the first generation selected for the adaptive sampling, we conducted the adaptive procedure twice using different first generations with a subset
of neurons (n = 13). The panels show the obtained best 10 textures with different first sets for two example neurons. The appearances of the preferred textures
in the two sets were quite similar. The frame colors indicate firing rates evoked by the textures. (C) Tests for position and size invariances performed in a subset
of neurons (n = 26 for position and n = 22 for size tests). For these control tests, five textures were selected for each cell, and they were equally sampled based
on the evoked firing rates. For the position invariance test, we examined the neural responses to stimuli at five different retinal positions (0°, +1°, +2°) shifted
horizontally (Left) or vertically (Middle) in the visual field for each of the five textures. For the size invariance test (Right), we examined five images of different
size generated by rescaling the original images for each of the five textures. In all panels, colored lines indicate the responses to textures ranked according to
the evoked firing rates in the main experiment. The firing rates are normalized by the maximum response of each cell. (D) To examine whether two in-
dependent samplings (lineages) starting from different first generations converged to the same peak, we determined the optimal stimuli of a given cell for one
lineage and computed the average distance between the points corresponding to these optimal stimuli and points corresponding to all sampled stimuli in the

Legend continued on following page
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other lineage. The panel shows the average distance between all of the textures up to a given generation in one lineage and the optimal stimuli identified in
the other lineage (“first vs. second,” black line; n = 13). As a control, we also examined the case in which the relationships between two lineages were shuffled
across cells (“Shuffled,” blue line; n = 13). As expected, the stimuli did not converge to the peak in the shuffled condition. The actual data (first vs. second)
showed significant departures from the shuffled condition in generations 2-10, indicating that the two lineages measured from a single cell converged to the
similar points in the space. For reference, the distance between the stimuli and the optimal stimuli extracted from the same lineage is shown (“first vs. first,”
orange line; n = 90). The plot is the same with that in Fig. 2E (Data; orange line). *P < 0.05, **P < 0.01.
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Fig. $3. Comparison of fitting performance achieved with minPS and other models. (4) The fitting performances by various models describing image features.
These include models describing textures (Texton Hist, LBP, GLCM), those describing objects or scenes (gist, SIFT, HOG), and those previously used to describe
neuronal activities of V4 (Spectral RF). All of these models explicitly compute the statistical properties of images. White numbers in the bars indicate the
number of parameters for each model. The error bars indicate SEM across the neurons. *P < 0.05, ***P < 0.001, Wilcoxon test. Although a recent study showed
that biologically plausible hierarchical network models achieve good fitting performance to the neural responses in V4 (1), we did not include them because
the models do not explicitly represent the statistical parameters to compute, and the image features that evoked the neuronal responses are not shown. (B)
Lists of features (columns) of the models (rows) arranged in the order of their fitting performance. “Non local” means that features computed in a given model
do not depend on the particular spatial positions in an image. The triangle in Non local indicates that features are partially localized. “Spectral” means that
a model computes features related to spatial frequency components such as Gabor-like filters. “Higher order” means that a model also incorporates features
related to the correlations among different spatial frequency components. Models with good fitting performances had all three of these characteristics.
Implementation of the models: We implemented the models essentially as in the original papers. We implemented or made use of available codes of many
existing models and computed their statistical parameters for all presented textures. Because each model has several variants and some hyperparameters, we
will briefly describe how we implemented the models. “Texton histogram” (2) is the model that describes the co-occurrence of subband features as a texton
and counts up the numbers of occurrences of individual textons in an image. The number of textons is up to the users, and we set it at 80. “Gist” (3) is a model
that concatenates the spatial frequency components of subregions of an image. We split an image into four by four subregions. “Spectral RF” (4) is introduced
to explain the V4 responses to spatial frequency components. We simply computed the amplitudes of Fourier transforms in a range of spatial frequencies from
the DC component to the 10 cycles per image components. Because we intended to compute the fitting performance, we did not take into account the intrinsic
correlations between pairs of spectral channels in the stimuli, as was done in the paper (4). “SIFT” (5) is the model that captures the local gradient pattern. To
do so, the model first finds several salient key points in an image and computes the local orientations of gradients around each key point. To describe an
image, the model counts up the numbers of occurrences of several dominant local patterns. The number of dominant local patterns is up to the users, and we
set it as 48. Similarly, “LBP” (6) counts up the numbers of occurrences of several dominant local patterns, but the way of representing local patterns is different.
"HOG" (7, 8) computes the local gradients in subregions of an image. We split an image into three by three subregions. “GLCM" (9) first computes the
autocorrelations of pixels and extracts several features describing the autocorrelations. We specifically extracted features called “Contrast,” “Energy,”
“Homogeneity,” and “Entropy.”

Yamins DLK, et al. (2014) Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc Nat/ Acad Sci USA 111(23):8619-8624.

Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1-2):61-81.

Oliva A, Torralba A (2001) Modeling the shape of the scene: A holistic representation of the spatial envelope. Int J Comput Vis 42(3):145-175.

David SV, Hayden BY, Gallant JL (2006) Spectral receptive field properties explain shape selectivity in area V4. J Neurophysiol 96(6):3492-3505.

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91-110.

Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24
(7):971-987.

Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Comput Vis Pattern Recog 1:886-893.

Ludwig O, Delgado D, Goncalves V, Nunes U (2009) Trainable classifier-fusion schemes: An application to pedestrian detection. 12th International IEEE Conference on Intelligent
Transportation Systems (IEEE, St. Louis), pp 1-6.

Haralick RM, Shanmuga K, Dinstein | (1973) Textural features for image classification. IEEE Trans Syst Man Cybern Syst SMC3(6):610-621.

oA wWwN =

© N

b

Okazawa et al. www.pnas.org/cgi/content/short/1415146112 50f 8


www.pnas.org/cgi/content/short/1415146112

081 n=go
== Original == Original

EmmE Scramble = Rotation

0.4 0.4

ENAS
\ A
Normalized firing rate >
o ™
(o)

0 0
0 200 400 0 200 400
Time (msec) Time (msec)
Cc
o 08 0.8
© === Original === Original
o = Same === Photo
=
=
o 04 0.4
(]
N
©
S
—
(@]
Z o0 0
0 200 400 0 200 400
Time (msec) Time (msec)

Fig. S4. Time courses of the responses to the control images. (A-D) Each panel corresponds to the indicated control condition. For an explanation of each
control condition, see S/ Methods. For each condition, five stimuli were presented and the time courses show the responses averaged across all stimuli. The time
courses were computed by counting spikes in a sliding, nonoverlapping, 10-ms window. The amplitudes were normalized to each neuron’s maximum response
across the five stimuli in the original condition and across the time points. The line thicknesses indicate SEM across the neurons. Horizontal bars below the PSTH
indicate the timing of the stimulus presentation.
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Fig. S5. Distributions of prediction performances for the responses to control stimuli. From the fitting weights obtained in the main adaptive sampling
experiment (Fig. 4B), we estimated the predicted firing rate for each control stimulus based on the PS statistics of the image. For each neuron, the per-
formances were evaluated as the Pearson correlation coefficients between the observed and predicted firing rates elicited by five texture images in each
control condition. Numbers shown at the top of each panel indicate the median correlation coefficients across all neurons.

Table S1. Number of parameters in PS and minPS statistics

Group Equation to derive no. parameters No. parameters In minPS
Spectral N*K + 2 18 4
Marginal 34+ (N + 1)*27 13 1
Linear cross position N+ 1) * (M? + )2 125 4
Linear cross scale 2*K*K*(N-1) 96 4
Energy cross position N* K * (M + 1)/2 400 6
Energy cross orientation N * ((K* (K-1)/2+K) 40 6
Energy cross scale K*K*(N-1) 48 4
Total 740 29

N, number of filter scales (N = 4); K, number of filter orientations (K = 4); M, number of spatially neighboring
pixels used to compute “Position” statistics (M = 7); No. parameters, number of parameters in each group in the
PS statistics; In minPS, number of parameters in each group in the minPS statistics.

T"Marginal" includes skewness and kurtosis, but does not include mean, SD, minimum, and maximum because
those parameters were equated across textural images. It also includes the variance of high-pass residual.
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Table S2. Summary of minPS statistics

s
&

z

°

Scale Ori
Group Description F C \% H Figs.

1 Spectral Fine, vertical @) @) 5A, 7A

2 Fine, horizontal @) @)

3 Coarse, vertical (@) @)

4 Coarse, horizontal @) @)

5 Marginal Skewness 5B, 7B
" 6 Linear cross position PC1

7 PC2 5C, 7C
m 8 PC3

9 PC4

10 Linear cross scale Fine, vertical @) @)

11 Fine, horizontal @) @)

12 Coarse, vertical @) @)

13 Coarse, horizontal @) O

14 Energy cross position Vertical, PC1 O

15 Horizontal, PC1 @) 5D, 7D

16 Vertical, PC2 (@)

17 Horizontal, PC2 O

18 Vertical, PC3 O

19 Horizontal, PC3 @)

20 Energy cross orientation Fine, vertical vs. oblique O O

21 Fine, vertical vs. horizontal @) @) @) S5E, 7E

22 Fine, horizontal vs. oblique @) @)

23 Coarse, vertical vs. oblique @) @)

24 Coarse, vertical vs. horizontal (e} O (@)

25 Coarse, horizontal vs. oblique @) @)

26 Energy cross scale Fine, vertical O O 5F, 7F

27 Fine, horizontal @) @)

28 Coarse, vertical (e} O

29 Coarse, horizontal @) @)

C, coarse; F, fine; H, horizontal; Ori, orientation; PC, principal component; V, vertical. “Figs.” indicates figure
numbers showing a representative neuron weighted on the parameter.
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