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Bang-Bang Control of Wright–Fisher Evolution
Consider the Wright–Fisher model of evolution of a biallelic
population of finite size N � 1 with (symmetric) mutation rate
μ=Nμ0 ≥ 0 and (intrinsic) selection coefficient σ =Ns> 0. In the
diffusion approximation (1, 2), the probability distribution Pðx; tÞ
for the allele frequency x≡ nA=N of the A allele changes in time
according to the following Fokker–Planck equation (3):

∂tPðx; tÞ=
�
−∂xðσ   xð1− xÞ+ μð1− 2xÞÞ+ 1

2
∂2x xð1− xÞ

�
  Pðx; tÞ;

[S1]

with boundary condition Pðx; 0Þ= δðx− x0Þ. In the limit μ→ 0, con-
sider now the control task of maintaining an initial polymorphism
0< x0 < 1 for as long as possible by linearly changing the selection
coefficient instantaneously in response to and as a function of xt:

σ→ σ + uðxtÞ; u∈ ½−uc; 0�;   uc > σ: [S2]

The optimal control strategy uðxÞ can also be expected to max-
imize the average survival time of the polymorphism,

u= argmax
u

D
Tð0;1Þ

E
x0
; [S3]

where h. . .ix0 is the average over trajectories starting at x0 and the
maximization is over all functions u : ½0; 1�→ ½−uc; 0�;   xauðxÞ. In
this setting, using control itself does not incur a cost and does not
enter the maximization objective. It can be shown (4) that maximi-
zation is then to be carried out in the smaller function space
u : ½0; 1�→ f−uc; 0g, where only the extremal control values are
used. This type of control is called bang-bang. It is also evident that
the optimal control strategy will be a piecewise constant function
with a single step at a threshold xc ∈ ð0; 1Þ,

uðxÞ≡
�
0; x< xc
−uc; x≥ xc

: [S4]

If both the intrinsic selection coefficient σ and the control strength
uc are given, then we need to optimize only a single parameter, the
threshold xc.

Hamilton–Jacobi–Bellman Equation for Wright–Fisher Evolution. In
the diffusion approximation, the above Fokker–Planck evolution
equation for the Wright–Fisher model follows from the discrete
time Master equation by a controlled expansion in the population
size N (1). In the very same way, the cost-to-go recurrence relation
in Eq. 2 leads to the Hamilton–Jacobi–Bellman equation [3], as we
will show in the following. In the cost-to-go equation [2]

Jðnt; tÞ= min
ut

XN
n′=0

J
�
n′; t+ 1

�
 W
�
n′jnt; ut

�
; [S5]

the transition probability W is given by the binomial update rule,
where we expand the rate in «= 1=N � 1

W
�
n′jn�=�N

n′

�
½pðxÞ�n′   ½1− pðxÞ�N−n′; x=

n
N
; [S6]

pðxÞ= ð1+ s+ u0Þx
1+ ðs+ u0Þx= x+ «  f ðxÞ+O�«2�; [S7]

f ðxÞ= ðσ + uÞxð1− xÞ; with σ ≡N   s;   u≡N   u0: [S8]

In the cost-to-go equation, we also switch to continuous variables
and rescale J by

Jðn; tÞ→~Jðx; τÞ≡ 1
N
  J
	
Nx;

t
N



; [S9]

~Jðxτ; τÞ= min
uτ

X
Δx

~Jðxτ +Δx; τ+ «ÞW ðΔxjxτ; uτÞ: [S10]

We drop the tilde, set xτ = x, and perform an expansion of above
equation in «:X

Δx
Jðx+Δx; τ+ «Þ W ðΔxjx; uτÞ [S11]

=
�
1+ «∂τ +O�«2��X∞

l=0

1
l!

	
∂ðlÞx Jðx; τÞ


X
Δx

Δxl  W ðΔxjx; uτÞ:

[S12]

The last term is the lth moment of the jump distribution and can
be found via the moment generating function of the binomial
distribution:

alðx; uÞ≡
X
Δx

Δ  x lW ðΔxj x; uÞ= ∂ðlÞz jz=0
X
Δx

ezΔxW ðΔxjx; uÞ [S13]

= ∂ðlÞz jz=0exp
�
«

�
z  f ðx; uÞ+ z2

2
xð1− xÞ

�
+O�«2��: [S14]

Only the first two moments remain to leading order in «.

a1ðx; uÞ= «  f ðx; uÞ+O�«2�; [S15]

a2ðx; uÞ= «  xð1− xÞ+O�«2�; [S16]

ak≥3ðx; uÞ=O�«2�: [S17]

Altogether, we have for the expansion above

Jðx; τÞ= min
uτ

P
Δx

Jðx+Δx; τ+ «ÞW ðΔxjx; uτÞ

= min
uτ

�
1+ «

�
∂τ + f ðx; uτÞ  ∂x + 1

2
xð1− xÞ∂ð2Þx

�

+O�«2��Jðx; τÞ;
[S18]

and with that the Hamilton–Jacobi–Bellman equation for the
Wright–Fisher process in the diffusion limit, i.e. to lowest
order in e:

−∂τ Jðx; τÞ= min
uτ

�
f ðx; uτÞ∂x + 1

2
xð1− xÞ∂ð2Þx

�
Jðx; τÞ: [S19]
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If the control strength u only appears linearly in the drift term
f ðx; uÞ and is bounded, then the minimum is attained at one of
the extremal values, i.e. is of bang-bang type.

Analytical Evaluation of the Mean First Passage Time. Under bang-
bang control, the effective selection coefficient σ + u is fre-
quency dependent but still piecewise constant. For σ > 0 and
σ − uc < 0, the population experiences an upward drift for
x< xc and a downward drift for x> xc. If the drift forces in both
domains are strong (σ � 1 and σ − uc � − 1), then a typical
population that is still polymorphic will most likely be in
the vicinity of xc at any one point in time (see also Fig. 1A in
the main text). One can then try to calculate the mean first
passage time for trajectories starting at xc. The formula can
be found using standard theory of stochastic processes (2). Let
us momentarily reinsert an arbitrary initial frequency x0,

with ψðzÞ≡ exp½2σz− 2uc   ðz− xcÞΘðz− xcÞ�: [S21]

The mean first passage time depends on the initial point x0, which
can be either below or above xc. This will affect all of the inte-
grals, so let us write

hTix0 = hTi+x0Θðx0 − xcÞ+ hTi−x0Θðxc − x0Þ; [S22]

with hTi±x0 =
I±0; x0   J

±
x0 ;1 − I±x0 ;1   J

±
0; x0

1
2
  I0;1

: [S23]

The integrals in this ratio can now be computed one by one. They
all have analytical solutions.

I0;x0 ≡
Zx0
0

dy
ψðyÞ= I+0;x0Θðx0 − xcÞ+ I−0;x0Θðxc − x0Þ; [S24]

I−0;x0 =
1
2σ
�
1− e−2σx0

�
; [S25]

I+0;x0 =
1
2σ
�
1− e−2σxc

�
+

e−2ucxc

2ðσ − ucÞ  
	
e−2ðσ−ucÞxc − e−2ðσ−ucÞx0



;

[S26]

Ix0 ;1 ≡
Z1
x0

dy
ψðyÞ= I+x0;1Θðx0 − xcÞ+ I−x0;1Θðxc − x0Þ; [S27]

I−x0 ;1 =
1
2σ
�
e−2σx0 − e−2σxc

�
+

e−2ucxc

2ðσ − ucÞ  
	
e−2ðσ−ucÞxc − e−2ðσ−ucÞ



;

[S28]

I+x0;1 =
e−2ucxc

2ðσ − ucÞ  
	
e−2ðσ−ucÞx0 − e−2ðσ−ucÞ



; [S29]

Jx0 ;1 ≡
Z1
x0

dy′
ψðy′Þ

Zy′
0

dz  ψðzÞ
zð1− zÞ= J+x0;1Θðx0 − xcÞ+ J−x0 ;1Θðxc − x0Þ; [S30]

J−x0;1 = ðGðx0; σÞ−Gðxc; σÞÞ−Fð0; σÞ
2σ

�
e−2σx0 − e−2σxc

�
+ e−2ucxc   ðGðxc; σ − ucÞ−Gð1; σ − ucÞÞ+ e−2ucxc

2ðσ − ucÞ
3
	
e−2ðσ−ucÞxc − e−2ðσ−ucÞ



ðFðxc; σÞ−Fð0; σÞ−Fðxc; σ − ucÞÞ;

[S31]

J+x0;1 =
e−2ucxc

2ðσ − ucÞ
	
e−2ðσ−ucÞx0 − e−2ðσ−ucÞ



 

× ðFðxc; σÞ−Fð0; σÞ−Fðxc; σ − ucÞÞ
+ e−2ucxc   ðGðx0; σ − ucÞ−Gð1; σ − ucÞÞ; [S32]

J0;x0 ≡
Zx0
0

dy′
ψðy′Þ

Zy′
0

dz  ψðzÞ
zð1− zÞ= J+0;x0Θðx0 − xcÞ+ J−0;x0Θðxc − x0Þ;

[S33]

J−0;x0 = ðGð0; σÞ−Gðx0; σÞÞ−Fð0; σÞ
2σ

�
1− e−2σx0

�
; [S34]

J+0;x0 = ðGð0; σÞ−Gðxc; σÞÞ−Fð0; σÞ
2σ

�
1− e−2σxc

�
+ e−2ucxcðGðxc; σ − ucÞ−Gðx0; σ − ucÞÞ

+
e−2ucxc

2ðσ − ucÞ
	
e−2ðσ−ucÞxc − e−2ðσ−ucÞx0



 

3ðFðxc; σÞ−Fð0; σÞ−Fðxc; σ − ucÞÞ: [S35]

The solutions include the following functions:

Fðx; σÞ≡Eið2σxÞ− e2σEið−2σð1− xÞÞ; [S36]

Gðx; σÞ≡  
e−2σx

2σ
Fðx; σÞ+ 1

2σ
log
�
1− x
x

�
; [S37]

EiðzÞ≡ −
Z∞
−z

dt 
e−t

t
; [S38]

hTix0 =

�Z x0

0

dy
ψðyÞ

�Z 1

x0

dy′
ψðy′Þ

Z y′

0

dz  ψðzÞ
zð1− zÞ−

�Z 1

x0

dy
ψðyÞ

�Z x0

0

dy′
ψðy′Þ

Z y′

0

dz  ψðzÞ
zð1− zÞ

1
2

Z 1

0

dy
ψðyÞ

; [S20]
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where we also used the following identities:

Fðx; σÞ=−e−2σFð1− x; − σÞ and Gðx; σÞ=Gð1− x; σÞ: [S39]

Finally, hTix0=xc can be evaluated numerically and maximized with
respect to xc to find this critical control switch frequency. The
result is shown in Fig. S1 and is compared with the corresponding
numerical result of the cost-to-go backward iteration for the discrete
system.

Finite Mutation Rate. The control objective for the Wright–Fisher
model is to avoid the boundaries at x= 0 and x= 1, which are
absorbing in the absence of mutation. For very small values of
mutation rate μ � 1, these boundaries are still “sticky” in the
sense that populations spend on the order of 1=μ generations at
a boundary and need N=μσ generations to escape the drift-
dominated boundary region. Interestingly, the value of the
control switch frequency xc, found by numerical integration of
the cost-to-go backward iteration, is almost unaffected by a
symmetric mutation rate for values of μ up to 10 (Fig. S2). At
that point the original control task ceases to be meaningful be-
cause typical populations are almost never at the boundaries for
more than a single generation. A more interesting situation can
be observed when mutation rates are asymmetric: μAB ≠ μBA. An
extreme situation is constructed in Fig. S2, Lower, where initially
xc ≈ 0:9 without mutation and moves toward x= 0 with increasing
μBA while keeping μAB = 0. This makes the (repulsive) lower
boundary at x= 0 an increasingly safer place to be.

Minimal Model of Drug Resistance in Cancer
The qualitative aspects of the minimal cancer model introduced
in the main text can be analyzed using a system size expansion (1),
with the carrying capacity K as a large parameter. It is important
to note that in this diffusion limit the details of the microscopic
model are not important. For example, the effects of selection or
carrying capacity could be included in the death rates, without
changing the qualitative aspects of the model. By definition, the
stochastic dynamics of the model is encoded in the following
update rule for the probability distribution Pðns; nr; tÞ of the
number of drug-sensitive and drug-resistant cells

Pðns; nr; t+ 1Þ=
X
ns′;nr′

W ðns; nrjns′; nr′Þ  Pðns′; nr′; tÞ; [S40]

where the matrix W of transition probabilities factorizes over cell
types

W ðns; nrjns′; nr′Þ=W ðnsjns′Þ W ðnrjnr′Þ: [S41]

Because negative cell number counts are impossible, care needs
to be taken for the boundary terms of the transition probability.

W ðnijni′Þ=
�
Skellamðni − ni′;   Biðns; nrÞ;  Diðns; nrÞÞ; ni > 0
CDFðSkellamÞð−ni′;   Biðns; nrÞ;  Diðns; nrÞÞ; ni = 0

[S42]

with the Skellam probability mass function defined below in Eq.
S57 and cell birth and death rates defined in Eq. 5 in the main
text (CDF denotes the cumulative density function). The system
size (or diffusion) expansion entails the parameter scaling

K →∞ with γ ≡Kg;   α≡Ka;   μ≡Kμ0;   ϕs;r ≡Kfs;r const:;

[S43]

together with a scaling of time via τ= t=N (with t measured in
generations, i.e. population updates via Eq. S40). The relevant
relative scales of the model parameters are

K � ϕ > γ � α;   μ≥ 0: [S44]

The expansion of birth and death rates in carrying capacity K is
as follows:

Bsðxs; xrÞ=  
ðK + γ + αÞ  K   xs

K + γðxs + xrÞ+ α  xs
+ μðxr − xsÞ

=   K   xs + γ   xsð1− xs − xrÞ+ α  xs   ð1− xsÞ
+ μðxr − xsÞ+O�K−1�

≡   K   xs + bsðxs; xrÞ+O�K−1�;
[S45]

Brðxr; xsÞ=   K   xr + γ   xr   ð1− xs − xrÞ− α  xs   xr + μðxs − xrÞ+O�K−1�
≡   K   xr + brðxs; xrÞ+O�K−1�;

[S46]

DsðxsÞ= K   xs + u  ϕs   xs ≡ K   xs + dsðxsÞ; [S47]

DrðxrÞ= K   xr + ð1− uÞϕr   xr ≡ K   xr + drðxrÞ: [S48]

The differential growth rate α and the drug-related death rates
ϕs;r break the symmetry of the model, such that there is no closed
growth law for the total population size N = ns + nr alone: even
ignoring boundary terms (at ns = 0 and nr = 0) the tumor size
would evolve according to

ΔN ∼ SkellamðBs +Br;Ds +DrÞ; [S49]

hΔNi=   Bs +Br −Ds −Dr = bs + br − ds − dr
=   γ   xð1− xÞ+ α  xsð1− xÞ− u  ϕs   xs − ð1− uÞϕr   xr +O�K−1�;

[S50]

with x≡ xs + xr =N=K . The role of K as carrying capacity (for
u= 0;   ϕr = 0) is now apparent via hΔNiðx= 1Þ= 0.
The Fokker–Planck equation for this model follows by the

same logic and the same procedure from the generation update
model Eq. S40 as in the Wright–Fisher model above. In the
variables ðxs; xrÞ it is given by [with P=Pðxs; xr; τÞ]

∂τ   P=
h
−∂xsðbs − dsÞ−∂xr ðbr − drÞ+

	
∂2xs + ∂2xr



ðxs + xrÞ

i
  P;

[S51]

bs − ds = ðγ + αÞxsð1− xsÞ− γ   xs   xr + μðxr − xsÞ− u  ϕsxs; [S52]

br − dr = γ   xrð1− xrÞ− ðγ + αÞ  xs   xr + μðxs − xrÞ− ð1− uÞϕr   xr;
[S53]

with τ measuring time on the scale of K generations. One im-
portant observation is that the control strength again appears only
linearly in the drift term. This is also true for the corresponding
Hamilton–Jacobi–Bellman equation, such that control would be of
bang-bang type. For the risk-sensitive control objective in the main
text, this is true to leading order in the metastasis rate ν0 (5).
The form of the birth and death rates above suggests a trans-

formation of variables:

ðxs; xrÞ→
�
x≡ xs + xr;   y≡

xs
xs + xr

�
⇒ ðxs = x  y;   xr = xð1− yÞÞ:

[S54]

Fischer et al. www.pnas.org/cgi/content/short/1409403112 3 of 8

www.pnas.org/cgi/content/short/1409403112


The time evolution of the mean values of these new variables is
now given by (1)

∂τhxi= hbs + br − ds − dri
= hðγ + αyÞxð1− xÞ− xðuϕsy+ ð1− uÞϕrð1− yÞÞi; [S55]

∂τhyi=
�
1− y
x

ðbs − dsÞ− y
x
ðbr − drÞ

�
= hðα− uϕs + ð1− uÞϕrÞ  yð1− yÞ+ μð1− 2yÞi:

[S56]

The evolution of the mean relative fraction hyi of sensitive cells
is equivalent to the evolution of the mean value of the poly-
morphism frequency within the controlled one-locus two-allele
Wright–Fisher model discussed earlier (Eq. S1).

Numerical Test of the Cost-To-Go Calculation. An optimal control
strategy fulfilling Eq. 8 in the main text can be found numerically
by backward iteration of the cost-to-go recurrence Eq. 9 using
the exact discrete propagator W ðns′; nr′jns; nrÞ defined by the
Skellam distribution implicit in Eq. 7. To test the resulting
profile uðxs; xrÞ, we can evaluate the associated cost function
directly using a large ensemble of forward simulations. It should
be noted that due to memory and time limitations, the backward
iteration can only be performed with a rather small system size
on the order of maxðns; nrÞ≤ 103. For the forward simulations,
only the milder time restriction holds, such that K ∼Oð104Þ is
possible. To make the two results comparable, it is necessary to
use the same scaled parameters α=Ka, etc. In Fig. S5, we
compare the probability that metastasis has not yet occurred by
time T =K=ν generations (the control objective to be maxi-
mized) as predicted by the cost-to-go calculation with the direct
observation of this event in 103 forward simulations with K = 104

in the parameter setting of Fig. 2A in the main text.

Uniform Expansion of the Skellam Distribution. The probability mass
function of the Skellam distribution with parameters ðμ1; μ2Þ is
given by

n1 ∼Poisðμ1Þ; n2 ∼Poisðμ2Þ⇒ n≡ n1 − n2 ∼ Skellamðμ1; μ2Þ; n∈Z

with Skellamðnjμ1; μ2Þ= e−μ1−μ2
�
μ1
μ2

�n=2

  Ijnj
�
2
ffiffiffiffiffiffiffiffiffi
μ1μ2

p �
: [S57]

The modified Bessel function InðzÞ could, in principle, be eval-
uated for fixed z via the following recurrence relation:

In−1ðzÞ− In+1ðzÞ= 2n
z
InðzÞ: [S58]

However, due to a lack of numerical stability of this recurrence,
here we have used the uniform expansion of the Bessel function
instead (6),

IνðνzÞ���!ν→∞ eνηffiffiffiffiffiffiffiffi
2πν

p ð1+ z2Þ1=4
 

�
1+O

�
1
ν

��
; [S59]

with η≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1+ z2

p
+ lnðzÞ− ln

	
1+

ffiffiffiffiffiffiffiffiffiffiffiffi
1+ z2

p 

: [S60]

This expansion has the additional benefit that we can simply use
it for the logarithm of the Skellam distribution,

log  SkellamðnÞ≈ a+ b  n+ kðn; zÞk− 1
2
logkðn; zÞk

+ jnjlog z
jnj+ kðn; zÞk; [S61]

with a≡ − ðμ1 + μ2Þ−
1
2
logð2πÞ;

b≡
1
2
log
�
μ1
μ2

�
;

z≡ 2 ffiffiffiffiffiffiffiffiffi
μ1μ2

p
;

kðn; zÞk≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 + z2

p
:

The quality of this approximation is also implicit in the sim-
ulation test results shown in Fig. S5.

Including a Control Cost to the Cancer Model. In the main text, the
control objective for the cancer model was to avoid a next-stage
mutation. Eqs. 8 and 9 describe the situation when control itself
is free of cost. One way to introduce an implicit cost of using the
drug is by assuming that each application of the drug ðu= 1Þ
carries a finite but small probability β0 per generation that the
patient dies as a result of this dose. We consider here only (u= 0
or 1), i.e. on–off application of the drug. The equations then
generalize to

u0:Tðns0; nr0Þ= argmax
u0:T

exp

 
−ν0

XT
t=0

ðnst + nrtÞ− β0
XT
t=0

ut

!
;

[S62]

Jðns; nr; tÞ= e−ν0ðns+nrÞ max
u∈f0;1g

e−β0uhJðt+ 1;   uÞi: [S63]

The numerical solution to the recurrence relation can be seen in
Fig. S4 below for the parameter sets of main text Fig. 2 C and D
and increasing values of β=Kβ0.

Control with Limited Information (N only). The optimal control
profiles shown in Fig. 2 in the main text are only applicable with
perfect information of the tumor composition ðns; nrÞ. If only the
total population size N can be measured, then there is a different
strategy to make a control decision: compute the reduced
propagator W ðNτ+ΔτjNτ−Δτ; uτ−Δτ;Nτ; uτÞ and derive a new con-
trol profile that depends on the last two measurements and the
last applied control. This is clearly an approximation, such that
the resulting control protocol cannot be considered optimal in
the mathematical sense. In deriving the reduced propagator, we
use the shorthand notation N′=Nτ+Δτ, N =Nτ, M =Nτ−Δτ,
u= uτ, v= uτ−Δτ, and n= ns.

W
�
N′jN;M; v; u

�
=
PN′

n′=0

PN
n=0

PM
m=0

W
�
n′;N′− n′jn;N − n; u

�
× . . .

⋯×Pðn;N − njm;M −m;N; vÞ
×Pðm;M −mjM;N; vÞ:

[S64]

The first term on the right-hand side is the microscopic propaga-
tor, expressed as the product of the two Skellam distributions
for ns and nr . The second term is the probability to go from
ðm;M −mÞ to ðn;N − nÞ under control v, given that the final
population size is N,
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Pðn;N − njm;M −m;N; vÞ= W ðn;N − njm;M −m; vÞPN
k=0W ðk;N − kjm;M −m; vÞ:

[S65]

The last term is the probability that the system was at ðm;
M −mÞ, given that a transition took place from M to N under
control v,

Pðm;M −mjM;N; vÞ=
PN

n=0W ðn;N − njm;M −m; vÞPM
k=0
PN

n=0W ðn;N − njk;M − k; vÞ:

[S66]

All these conditional probabilities can be approximated using the
logarithmic expansion of the Skellam distribution above. For the
parameter setting of Fig. 2C in the main text, the resulting con-
trol profile is shown in Fig. S6.
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Fig. S1. Control-switch frequency xcðuc ,σÞ found by maximizing the analytical expression for the mean survival time (solid lines) and by backward iteration of
Eq. 2 in the main text. Note that xcð−2σ,σÞ= 0:5.
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Fig. S2. Control-switch frequency xc found by backward iteration of Eq. 2 in the main text for finite mutation rates. For both panels, σ= 10 and σ −uc =−100.
(Upper) The symmetric mutation rate does not greatly change the initial value of xc ≈ 0:9 (u=−uc in the gray area and u= 0 in the white area). (Lower) μAB = 0
such that the upper boundary is still absorbing while the lower boundary becomes safer for increasing values of μBA.

Fig. S3. For finite time Δ between consecutive measurements, the preemptive control aims for a safe position xsafe away from the boundaries (boundary
between blue and orange) by switching to a neutral regime ðu=−σÞ after a certain waiting time (see color bar on the right). At xsafe, the waiting time to
neutral is zero, i.e. the system is immediately set to neutral. As Δ becomes bigger, xsafe moves from xc ≈ 0:64 to 0.5 and the control strategy shifts from playing-
to-win to playing-not-to-lose.
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Fig. S4. Influence of a control cost on the perfect information control profiles as seen in main text Fig. 2. (A–D) The finite control cost reduces the area where
the drug is applied (u= 1, gray area). In the lower row (E–H), the increasing control cost actually increases the area of drug application. However, the typical
time that the drug is applied is reduced because controlled trajectories tend to spend more time at the edges.

Fig. S5. Comparison of the predicted probability that metastasis has not yet occurred by time T =K=ν generations in a cancer cell population optimally
controlled according to the profile (and parameters) shown in main text Fig. 2A to the measured fraction of 104 forward simulations with that property. The
prediction follows from the cost-to-go dynamic programming calculation (see Eq. 9 in the main text) performed numerically with K = 500 and N≤ 750. The
forward simulations were carried out with K = 104, N≤ 1:5K.
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Fig. S6. Control of a tumor via its total size. In the parameter setting of Fig. 2C, a majority rule would be optimal with perfect information. However, when
only the total population size N=ns +nr can be measured, the needed information is not directly available. The control profile above tries to estimate the inner
composition of the tumor indirectly from the immediate response Nðτ−ΔτÞ→NðτÞ to the presence [uðτ−ΔτÞ= 1, gray areas] or absence of the drug
[uðτ−ΔτÞ= 0, white areas]. A controlled trajectory is shown on top of the control profile, where thick lines indicate a response big enough to continue the
current drug regimen. (Upper) The same trajectory as a function of time is shown as a stacked area plot (Lower). The color of the background corresponds to
the current control setting.
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