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Table S1. Compiled data for net O2 production rates measured in situ for diverse benthic microbial ecosystems

Ref. Benthic environment Net O2 (nmol/cm2/s) Environment*

1 Submerged Wadden sea intertidal flats 0.077 1
1 Submerged Wadden sea intertidal flats 0.074 1
1 Submerged Wadden sea intertidal flats 0.056 1
1 Submerged Wadden sea intertidal flats 0.054 1
1 Submerged Wadden sea intertidal flats 0.043 1
1 Submerged Wadden sea intertidal flats 0.020 1
1 Submerged Wadden sea intertidal flats 0.019 1
1 Submerged Wadden sea intertidal flats 0.013 1
1 Submerged Wadden sea intertidal flats 0.003 1
2 Cyanobacterial mats, Guerrero Negro (Mexico) 0.267 1
3 Cyanobacterial mats, Ebro delta (Spain) 0.467 1
4 Brackish intertidal sandy microbial mat 0.240 1
5 Cyanobacterial mats, hypersaline Chiprana lake (Spain) 0.133 1
6 Hypersaline desert lake cyanobacterial mat 0.926 1
7 Cyanobacterial mats, tropical lagoon 0.283 1
7 Cyanobacterial mats, tropical lagoon 0.217 1
7 Cyanobacterial mats, tropical lagoon 0.175 1
8 Carbonate sediments, Great Barrier Reef 0.136 1
9 Shallow marine sediments, brackish water, bacteria, and diatoms 0.419 1
9 Shallow marine sediments, brackish water, bacteria, and diatoms 0.281 1
9 Shallow marine sediments, brackish water, bacteria, and diatoms 0.222 1
9 Shallow marine sediments, brackish water, bacteria, and diatoms 0.009 1
10 Hypersaline desert lake cyanobacterial mat 0.275 1
10 Hypersaline desert lake cyanobacterial mat 0.050 1
11 Cyanobacterial mats, Solar lake (Egypt) 0.100 1
12 Cyanobacterial mats, commercial salt pond 0.700 1
12 Cyanobacterial mats, commercial salt pond 0.400 1
12 Cyanobacterial mats, commercial salt pond 0.300 1
12 Cyanobacterial mats, commercial salt pond 0.250 1
13 Hypersaline cyanobacterial saltern crusts (gypsum) 0.057 1
14 Cyanobacterial mats in ponds on McMurdo Ice shelf, Antarctica 1.183 2
14 Cyanobacterial mats in ponds on McMurdo Ice shelf, Antarctica 1.131 2
14 Cyanobacterial mats in ponds on McMurdo Ice shelf, Antarctica 0.717 2
14 Cyanobacterial mats in ponds on McMurdo Ice shelf, Antarctica 0.703 2
14 Cyanobacterial mats in ponds on McMurdo Ice shelf, Antarctica 0.453 2
14 Cyanobacterial mats in ponds on McMurdo Ice shelf, Antarctica 0.408 2
15 Green algal mats in two acidic mining lakes 0.014 2
16 Green algal mat in acidic mining lake 0.098 2
16 Green algal mat in acidic mining lake 0.002 2
17 Diatom mats in acidic mining lake 0.041 2
17 Diatom mats in acidic mining lake 0.029 2
18 Survey of 20 literature studies of freshwater green algal mats 0.291 2
19 Green algal mat in experimentally acidified lake 0.257 2
20 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.249 3
20 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.244 3
20 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.229 3
20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.221 3
20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.194 3
20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.150 3
20 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.144 3
20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.139 3
20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.132 3
20 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.110 3
20 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.106 3
20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.084 3
20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.063 3
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20 Rapidly flowing freshwater stream, epilithic diatom-dominated mat 0.043 3
21 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.282 3
21 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.262 3
21 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.260 3
21 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.217 3
21 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.139 3
21 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.121 3
21 Epilithic cyanobacterial biofilms, wastewater trickling filter 0.111 3
22 Stream sediment 0.367 3
23 Green algal mat in Alaskan tundra stream 0.004 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.597 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.458 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.411 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.392 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.369 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.253 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.244 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.169 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.108 3
24 Cyanobacterial mats, Antarctic dry valley streambeds 0.086 3
25 Endolithic cyanobacterial in sandstone 0.200 4
26 Cyanobacterial desert crust 0.117 4
26 Cyanobacterial desert crust 0.041 4
27 Cyanobacterial mats under ice covered Lake Hoare, Antarctica 0.015 5
27 Cyanobacterial mats under ice covered Lake Hoare, Antarctica 0.015 5
28 Benthic brown algae (pennate diatoms) under sea ice 0.116 5
29 Cyanobacterial mats under ice covered Lake Hoare, Antarctica 0.014 5
29 Cyanobacterial mats under ice covered Lake Hoare, Antarctica 0.003 5

*Environments: 1-coastal or hypersaline; 2-lacustrine; 3-river/stream; 4-BSC or endolithic; 5-under ice.
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Table S2. Compilation of annual O2 source and sink fluxes (in terms of O2 equivalents) contributing to Earth’s
surface redox balance, with additional values relevant to Precambrian redox evolution

Ref. Process Annual flux O2 equivalents* (Tmol/y)

1 Modern global primary production 8,734
2, 3 Estimated Archean global primary production (∼1/10 modern) 800
4 Upper estimate for Archean CH4 flux 400†

5 Modern CH4 flux 60†

6 Modern organic carbon burial +18.4
6 Modern oxidative weathering and volcanism −17.9
7 Fe(III) burial ca. 2.5 Ga −0.5
8 Sulfate flux from continents at present −3.500
8 Sulfate flux from continents 2.5–1 Ga −2.275
8 Sulfate flux from continents 2.8–2.5 Ga −0.9625
8 Sulfate flux from continents 3.3–2.8 Ga −0.0963
9 Archean atmospheric H2O2 rainout +0.00004

Many are as compiled by Claire et al. (4) however primary references are provided where possible; see also Kastings (10) and Catling
(11) for detailed treatments.
*Fluxes directly determining global redox balance are denoted as sources (+) or sinks (-); values not noted as such do not directly
determine global redox balance and/or are included simply for comparison. O2 equivalents were calculated from sulfate fluxes
conservatively assuming the pyrite oxidation reaction FeS2 + 3.5O2 + H2O → Fe2+ + 2SO4

2- + 2H+.
†Methane production has an indirect positive contribution to atmospheric oxidation by its promotion of hydrogen escape, which itself
is dependent on atmospheric CH4 concentrations [see discussion by Claire et al. (4)]. It is thus included for comparison only.
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