SUPPLEMENTARY INFORMATION APPENDIX

The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau

Xingquan Zeng^{a,b,1}, Hai Long^{c,1}, Zhuo Wang^{d,1}, Shancen Zhao^{d,1}, Yawei Tang^{a,b,1}, Zhiyong Huang^{d, 1}, Yulin Wang^{a,b, 1}, Qijun Xu^{a,b}, Likai Mao^d, Guangbing Deng^c, Xiaoming Yao^d, Xiangfeng Li^{d,e}, Lijun Bai^d, Hongjun Yuan^{a,b}, Zhifen Pan^c, Renjian Liu^{a,b}, Xin Chen^c, QiMei WangMu^{a,b}, Ming Chen^d, Lili Yu^d, Junjun Liang^c, DaWa DunZhu^{a,b}, Yuan Zheng^d, Shuiyang Yu^c, ZhaXi LuoBu^{a,b}, Xuanmin Guang^d, Jiang Li^d, Cao Deng^d, Wushu Hu^d, Chunhai Chen^d, XiongNu TaBa^{a,b}, Liyun Gao^{a,b}, Xiaodan Lv^d, Yuval Ben Abu^f, Xiaodong Fang^d, Eviatar Nevo^{g,2}, Maoqun Yu^{c,2}, Jun Wang^{h,i,j,2}, Nyima Tashi^{a,b,2}

^aTibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; ^bBarley Improvement and Yak Breeding Key Laboratory of Tibet Autonomous Region, Lhasa 850002, China; ^cChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China; ^dBGI-Tech, BGI-Shenzhen, Shenzhen 518083, China; ^eCollege of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; ^fProjects and Physics Section, Sapir Academic College, D.N. Hof Ashkelon 79165, Israel; ^gInstitute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel; ^hBGI-Shenzhen, Shenzhen 518083, China; ⁱDepartment of Biology, University of Copenhagen, Copenhagen 2200, Denmark; ^jPrincess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21441, Saudi Arabia

¹These authors contributed equally to this work.

 2 To whom correspondence should be addressed.

Email: Nyima Tashi, [nima_zhaxi@sina.com;](mailto:nima_zhaxi@sina.com) Jun Wang, [wangj@genomics.org.cn;](mailto:wangj@genomics.org.cn) Maoqun Yu, [yumaoqun@cib.ac.cn;](mailto:yumaoqun@cib.ac.cn) or Eviatar Nevo, [nevo@research.haifa.ac.il.](mailto:nevo@research.haifa.ac.il)

Supplementary Information

CONTENTS

I. Note

1 Genome sequencing, assembly and quality assessment

1.1 Whole genome shot-gun sequencing using Illumina technology

Genomic DNA was isolated from an individual of *H. vulgare* L. var. *nudum*, also known as "Qingke" in Chinese and "Ne" in Tibetan, and a landrace of Tibetan hulless barley *Lasa Goumang* (**Fig. S1**). For each short-insert size library, about 5 μg of DNA was fragmented, end-repaired, ligated to Illumina paired-end adapters, size selected at 250,500 and 800 base pairs (bp) on agarose gels, PCR amplified, linked to vector to yield short-insert size libraries. For each large-insert size mate-pair library, 20–60 μg of genomic DNA was sheared to the desired insert size using nebulization for 2 kilobases (kb) or HydroShear for 5 kb, 10 kb, 20 kb and 40 kb. DNA fragments were biotin-labeled, size selected, and circularized. Circular DNA molecules were sheared with Adaptive Focused Acoustic (Covaris) to an average size of 500 bp. Biotinylated fragments were purified on magnetic beads (Invitrogen) and used to construct libraries. All libraries were sequenced on the Illumina sequencing platform. Details of the data amount are shown in **Table S1**.

We performed a stringent filtering process on raw reads before the subsequent analysis as follows: (1) remove reads containing more than 2% Ns or with poly-A structure; (2) remove reads containing 40% or more low-quality bases for short-insert size libraries, and 60% for large-insert size libraries; (3) remove adapter-polluted reads; (4) remove reads with overlap between read1 and read2; (5) remove PCR-duplicated reads. The statistics of high-quality sequencing data are shown in **Table S2**.

1.2 De novo assembly of the Tibetan hulless barley genome

The 17-mer analysis using 133 Gb of high-quality sequencing data indicated that the peak frequency of K_depth was about 26. Therefore, the estimated genome size of Tibetan hulless barley was calculated as 4.48 Gb (**Fig. S2**). Additional K-mer analysis (from 19-mer to 31-mer) showed similar estimated genome size from 4.33 to 4.5 Gb (**Table S3**). A K-mer refers to an artificial oligo nucleotide sequence with length K. A sequencing read with L bases contains (L-K+1) K-mers. The frequency of each K-mer follows a Poisson distribution in a given data set except for a high proportion of low frequency K-mers due to sequencing errors. The genome size G is estimated as $G = K_{num}/K_{depth}$, where K_num is the total number of K-mers, and K_depth is the expected K-mer frequency, which is the peak value of Poisson distribution of K-mer frequencies.

Reads generated by Solexa pipeline have a low proportion of error, while *SOAPdenovo* [\(1,](#page-15-1) [2\)](#page-15-2) is sensitive to sequencing error. Clean data of short-insert sizes (<1 kb) need to be corrected; however, there is no need for large-insert size sequencing data. Sequencing error will lead to low frequency K-mers, so we built a K-mer frequency table and set a cutoff for dividing low and high frequency K-mers. We corrected the error bases by changing the site of the error base to the other base in order to form high frequency K-mers.

The WGS assembly was conducted by *SOAPdenovo* [\(1,](#page-15-1) [2\)](#page-15-2) with the K-mer parameter set to 67. The genome assembly procedure was as follows: (1) Constructed contig: split the short-insert size corrected reads into K-mers, constructed de Bruijn graph, simplified the graph and solved the K-mer path to get the contigs; (2) Constructed scaffold: aligned both short-insert and large-insert size reads onto the contigs, used paired-end relationships to construct the scaffolds. *SSPACE-V1.1* [\(3\)](#page-15-3) was used to further construct scaffold by PE relationships; (3) Filled gap: retrieved the read pairs mapped to the local region around gaps then carried out a local assembly to fill the gaps.

The resulting assembly totaled 4.59 Gb with a contig N50 of 14 kb and a scaffold N50 of 190 kb. The distribution of scaffold lengths identified many short scaffolds less than 200 bp. We assumed that the sequences <200 bp were caused by sequencing errors, or were difficult regions to assemble. We discarded these sequences to obtain the final genome assembly, of which total scaffold length was 3.89 Gb, total contig length was 3.64 Gb, contig N50 size was 18.07 kb, and scaffold N50 size was 242 kb (**Table S4**).

1.3 Evaluation of sequencing depth and GC-depth distribution on the quality of genome assemblies

We calculated the sequencing depth distribution for bases, which shows no more than 2% of the bases have a depth of less than 10 (**Fig. S3a**). Also, we used 10 kb non-overlapping sliding windows and calculated the GC content and average depth among the windows. The filtered reads were aligned onto the assembly genome sequence using *SOAP*. The percentages of bases with different depth frequencies in genomes were calculated (**Fig. S4a**). The GC content distribution of *H. vulgare* is also similar to that of *O. sativa* (**Fig. S4b**).

1.4 Unassembled genome evaluation

We discarded sequences with lengths <200 bp in the assembly results. For the assembled scaffolds in genome sequences with lengths <200 bp, we found that many were repeats and most had a sequencing depth much less than the average sequencing depth, and the peak depth ranged from 20 to 29 (**Fig. S3b**), which suggests that these short assembly sequences with lengths <200 bp are low quality.

We investigated the unmapped reads by aligning the clean data to the assembled genome sequences with *SOAPaligner*. Many of the unmapped reads could be aligned to the genome with megablast and were located in repeat regions of the genome. This may indicate that the unmapped reads exist partly due to the high repeat content in the genome.

1.5 Quality evaluation of the genome assembly

1.5.1 BAC evaluation

The published BAC clone sequences of *H. vulgare* L. cv. Morex were considered reference data. We mapped the assembled genome sequence back to the BAC sequences (*BlastN* -e 1e-5, nucleotide identity >0.97 to check the coverage rate and quality for the assembled genome sequences. The aligning segments not in synteny blocks were detected and filtered by our in-house pipeline (**Fig. S5 and Table S5**). *H. vulgare* scaffolds covered 90.63–97.80% of the BAC sequences with an average identity of 98.83%. The regions that could not be covered were full of repetitive sequences.

1.5.2 Gene coverage evaluation

The clean reads of transcriptome data from three samples were de novo assembled with Trinity [\(4\)](#page-15-4) (**Table S6**), and the resulting unigene (EST) sequences became the query file, mapped to the assembled genome sequence with a threshold of e-value $\langle 1e^{-5} \rangle$ and identity >0.99 to check the gene region coverage rate of the assembly (**Table S7**). The number of RNA sequences that can be covered by genome scaffolds, and the number of RNA sequences with $>90\%$ (or $>50\%$) in one scaffold were calculated.

1.6 Reconstruct chromosomes based on the barley genetic map

Integrated anchoring data sets generated by The International Barley Genome Sequencing Consortium were obtained via FTP download from: [ftp://ftpmips.helmholtz-muenchen.de/plants/barley/public_data/anchoring/.](ftp://ftpmips.helmholtz-muenchen.de/plants/barley/public_data/anchoring/)

This released version of the barley genetic/physical map is composed of various anchoring strategies, and the first two strategies (AC1: FPC_PSEUDO_ANCHORED_280512_AC1.FA and AC2: WGS ANCHORED 280512 AC2.FA) were used as a reference to assign the assembled scaffolds to chromosomes. From these data sets, which created the contig sequences with genetic markers, we can easily assign the assembled scaffold to a particular chromosome according to the sequence homology to the aforementioned anchoring contigs (AC). Sequence alignments of the WGS scaffold against AC data were performed using *BlastN* (minimal sequence hit length of >200 bp, e-value $\langle 1.0 \times 10^{-5} \rangle$, at least 99% identity to AC data) and the best-scoring match was chosen in cases of multiple matches. We anchored 28,374 scaffolds onto seven chromosomes, with a total size of 3.48 G (about 89.34% of the total assembled genome) (**Tables S8–9**).

2 Genome annotation

2.1 Repeat annotation

We identified repetitive elements using a combination of *Repbase*-based and de novo approaches. We used Tandem Repeats Finder (TRF) [\(5\)](#page-15-5) to search for tandem repeats (**Tables S10–12**).

2.1.1 De novo identification of repeat sequences

First, de novo prediction programs *RepeatModeler* [\(6\)](#page-15-6) and *LTR-FINDER* [\(7\)](#page-15-7) were employed to build the de novo repeat library based on the genome, then contamination and multi-copy genes in the library were removed. *LTR_FINDER* was used to search the whole genome for the characteristic structure of the full-length long terminal repeat retrotransposons (LTR) (its \sim 18 bp sequence was complementary to the 3' tail of some tRNA), and then our in-house pipeline was used to filter the low-quality and falsely predicted LTRs. Using this library as a database, *RepeatMasker* was run to find and classify the repeats.

2.1.2 Employment of Repbase for repeat identification

The homology-based approach involves alignment with *Repbase* [\(8\)](#page-15-8) which contains many known repeats, identified from corresponding software such as: *RepeatMasker* and *RepeatProteinMask*, which identify TEs at the DNA and protein level, respectively.

2.1.3 Sequence divergence of TEs

The transposable elements were identified and the sequence divergence was computed by *RepeatMasker* compared to TE libraries. The extent of divergence shows whether the TE repeats were recently produced or anciently produced by transposition. We found that the de novo method could identify more recently-active TE repeats than ancient TEs (**Fig. S6**).

2.2 Gene model prediction and functional annotation

Protein-coding genes were predicted by homolog-based and de novo methods, in combination with the transcriptome sequencing data.

1) De novo prediction

De novo gene prediction was performed on the repeat-masked genome. *AUGUSTUS* [\(9\)](#page-15-9) and *GENSCAN* [\(10\)](#page-15-10) were applied.

2) Homolog-based prediction

Homologous proteins of other species (*A. thaliana, B. distachyon, O. sativa, S. bicolor,* and *Z. mays*) were mapped to the *H. vulgare* genome using *TBlastN* [\(11\)](#page-15-11) with an e-value cutoff of $1e^{-5}$ and a protein similarity cutoff of 50%. The aligned genome sequences and the query proteins were then passed to *GeneWise* [\(12\)](#page-15-12) to search for accurate spliced gene model structures.

3) RNA-Seq based prediction

Three samples of hulless barley landrace *Lasa Goumang*, namely, G2, S1, and Y2 as well as the full length cDNA of cultivated barleys (HvuFLcDNA_rep and HvuFLcDNA23614), were subjected to transcriptome sequencing for evaluation of genome assembly quality and complement of gene prediction, of which, G2 comprised mixed root tissues from 10-day seedlings and mature plants; Y2 comprised mixed leaf samples and stems from same plants of G2; Y2 were young spikes of about 2 cm and 5 cm (**Table S13**).

RNA-Seq method can solve the problem of alternative splicing at one gene locus [\(13\)](#page-15-13). Transcriptome reads were aligned against the genome using *TopHat* [\(14\)](#page-15-14) to identify candidate exon regions and splicing sites. *Cufflinks* [\(14\)](#page-15-14) was performed to assemble the alignments into transcripts. ORFs were predicted on the transcripts by using an HMM-based training parameter.

4) Integration evidence

Gene model evidence generated from the above three methods were integrated by *GLEAN* [\(15\)](#page-15-15) to produce a consensus gene-set (**Table S14–15**). The final gene set had similar gene length, CDS length, exon length and intron length distribution compared to other plant species (**Fig. S7; Table S16**). 93.9% (33,928) genes, which could be linked to chromosomes (**Table S17**).

2.3 Gene function annotation

Gene functions were assigned according to the best match of the alignments using *BlastP* to *SwissProt* and *TrEMBL* databases [\(16\)](#page-15-16). The motifs and domains of genes were determined by *InterProScan* [\(17\)](#page-15-17) against protein databases such as *ProDom, PRINTS, Pfam, SMART, PANTHER,* and *PROSITE*. Gene Ontology [\(18\)](#page-15-18) IDs for each gene were obtained from the corresponding *InterPro* entries. All genes were aligned against *KEGG* [\(19\)](#page-15-19) proteins, and the pathway in which the gene might be involved was derived from the matched genes in *KEGG* (**Table S18**).

3 Comparison with the cultivated barley genome

3.1 Orthologous identification

We aligned the gene set of Tibetan hulless barley and 26,159 high-confidence gene sets of the published Merox genome [\(20\)](#page-15-20) using *BlastP*. Reciprocal best hits were identified with the threshold of e-value<1e-5 and protein identity >60%. A total of 22,673 orthologous genes were identified (**Fig. S8**).

3.2 Mapping cultivars and wild barleys to the Tibetan hulless barley genome

Ten accessions of wild and cultivated Tibetan hulless barleys as well as six published barleys [\(20\)](#page-15-20) were selected. The DNA sequencing data were aligned to the reference genome of Tibetan hulless barley. To reduce the complexity of the Tibetan hulless barley genome and to acquire a high-quality mapping result, we only retained the scaffolds and contigs that were anchored to the seven linkage groups and the contigs with lengths >200 bp as the reference genome (**Table S19**).

3.3 Aligning the genome sequences of the Tibetan hulless barley and Morex barley

BlastN was used to align the genome sequences of the Morex barley to the Tibetan hulless barley genome with the e-value cut off at 1e-5. Next, the in-house pipeline was used to further filter the aligning result. The homologous sequences and specific sequences of Tibetan hulless barley and Morex barley could then be detected (**Table S20-21**).

4 Genome evolution

4.1 Identification of orthologous genes

We identified gene families with OrthoMCL [\(21\)](#page-15-21) methods based on the all-versus-all *BlastP* alignment of protein sequences from 13 species (*H. vulgare, B. distachyon*, *O. sativa, S. bicolor, Z. mays*, *A. thaliana, C. papaya, S. italic* ,*V. vinifera, P. heterocycla, T. urartu, Ae. Tauschii,* and *T. aestivum*) with e-values less than 1e-5. Barley-specific genes were determined by combining genes in barley-specific families and unclustered barley genes (**Fig. S9; Tables S22–23**).

B. distachyon, ftp://ftpmips.helmholtz-muenchen.de/plants/brachypodium/v1.2

O. sativa, IRGSP1.0, http://rapdb.dna.affrc.go.jp/download/irgsp1.html

S. bicolor, ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v7.0/Sbicolor/annotation/

Z. mays, ZmB73_5a, http://ftp.maizesequence.org/release-5a/working-set/

A. thaliana, ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/

C. papaya, ftp://asgpb.mhpcc.hawaii.edu/papaya/annotation

S. italic, ftp://ftp.genomics.org.cn/pub/Foxtail_millet/gene_annotation/*V.*

vinifera,www.genoscope.cns.fr/externe/Download/Projets/Projet_ML/data/12X/annotation/

T. aestivum,

https://urgi.versailles.inra.fr/download/iwgsc/Gene_models/survey_sequence_gene_models_MIPS $_v2.2$ _Jul2014.zip

4.2 Phylogenetic analysis

4.2.1 Species tree construction

We identified 153 single-copy orthologuous genes in the previous step and used them to build a phylogentic tree for species including *H. vulgare, B. distachyon*, *O. sativa, S. bicolor, Z. mays*, *A. thaliana, C. papaya, S. italic*, *V. vinifera, P. heterocycla, T. urartu, Ae. Tauschii,* and *T. aestivum*. We aligned CDS sequences from each single-copy family guided by *MUSCLE* [\(22\)](#page-15-22) alignments of protein sequences, and then concatenated the aligned CDS to one super gene for each species. We extracted 4D sites from the CDS sequences and reconstructed the phylogenetic tree using *PhyML* [\(23,](#page-15-23) [24\)](#page-15-24) under the GTR+gamma model. We used aLRT values to assess branch reliability (**Fig. S10a**).

4.2.2 Divergence time estimation

We took the same set of 4D sequences to estimate divergence times. Fossil calibration times were set, as presented in **Table S24**. We used the PAML mcmctree program (PAML version 4.5) [\(25\)](#page-15-25) to determine split times using the approximate likelihood calculation method and the "Correlated molecular clock" and "REV" substitution models. The shape and scale parameters were set according to the substitution rate per time unit computed by PAML basem [\(25\)](#page-15-25). The alpha parameter was also set, as computed by PAML baseml. The MCMC process of PAML mcmctree was set to sample 200,000 times with the sample frequency set to 2 after a burn-in of 40,000 iterations. The fine-tuned parameter r was set to make the acceptance proportions fall in the interval (20%, 40%). The other parameters were set at the default values.

When the multidivtime program was used to calculate split time, the MCMC chain was run for 40,000 generations as burn-in and approximately 400,000 generations to calculate posterior distributions. Other parameters were set as suggested in the manual. For r8s, the maximum likelihood trees inferred by PhyML (with branch lengths) were used as input to calculate split times in the global molecular clock with default settings. Tracer $(v1.5.0)$ [\(26\)](#page-15-26) was applied to check convergence, and two independent runs were performed to confirm convergence **(Fig. S10b).**

4.3 Genome synteny and whole genome duplication analysis

Genome synteny between Tibetan hulless barley and other species were analyzed based on syntenic blocks. All-versus-all *BlastP* (e-value less than 1e-5) was used to detect orthologous genes between species. Then, syntenic blocks were detected using Mcscan [\(27,](#page-15-27) [28\)](#page-15-28) (**Table S25;** Figs. S11–15). The 4DTv values [\(29\)](#page-16-0) (deviation at the 4-fold degenerate third codon position) of the blocks were calculated and revised in the HKY model. 4DTv distribution was used to analyze whether whole genome duplication (WGD) events occurred.

Among the *H. vulgare* L. var. *nudum*, *B. distachyon*, and *O. sativa* genomes, chromosomes 1H, 3H of *H. vulgare*, Bd2 of *B. distachyon* and Os5, Os10, Os1 of *O. sativa* have collinear relationships, while 2H is collinear to Bd5, Os7, Os4; 4H is collinear to Bd1, Os3; 5H is collinear to Bd4, Os8, Os9, Os12; 6H and 7H is collinear to Bd3, Os6, Os11 (**Figs. S11, S14**). Similar collinearity was found between *H. vulgare*–*S. bicolor* and *H. vulgare*–*S. italica* genomes (**Figs. S12, S14**). These results are similar to a previous report [\(30\)](#page-16-1), which provides a more detailed view of genome collinearity among Poaceae species.

Chromosome rearrangement exists extensively in grass genomes and evolved from the reconstructed Poaceae ancestral genome containing five chromosomes, intermediated by the 12 chromosome ancestor [\(31\)](#page-16-2). Since *O. sativa* retained 12 chromosomes, we used it as the reference to investigate the evolutionary pattern of *H. vulgare* chromosomes. The collinear relationship between *H. vulgare* and *O. sativa* chromosomes is evidence that at least four major nested chromosome fusions (NCF) occurred in *H. vulgare* from the intermediate ancestor. The 1H of *H. vulgare* originated from ancestral chromosomes 10 and 5, while 2H came from ancestral chromosome 7 and 4. 1H and 2H each contain one nested insertion to the centromeric region to form the *H. vulgare* chromosomes. And the two NCFs in 5H of *H. vulgare* originated from ancestral chromosomes 3, 9, and 12. There are also two minor syntenic disruptions presented in 4H and 7H of the *H. vulgare* genome. (**Fig. S15**)

4.4 Gene family expansion and contraction

We used *CAFÉ*[\(32\)](#page-16-3) software to study gene gain and loss across the phylogenetic tree of 12 species under a random birth and death model. The λ (lambda) parameter, which described both gene birth (λ) and death ($\mu = -\lambda$) rate across all branches, was estimated to be 0.00771358 using maximum likelihood. For families with conditional P-values less than the threshold (0.05), we also computed Viterbi P-values for each branch. The expanded and contracted gene family numbers in *H. vulgare* were 2,185 and 5,631, respectively (**Fig. S16; Table S26**). The *H. vulgare* significantly expanded gene families were enriched in the functions of gene regulation and stress resistance (**Table S27**). Cold-related gene and AP2/TF families were expanded in the Tibetan hulless barley lineage (**Table S28**).

4.5 Positively selected gene identification

We calculated pairwise Ka, Ks between *H. vulgare* L. var. *nudum* and *H. vulgare* L. cv. Morex, *B. distachyon, O. sativa, A. tauschii, T. urartu* by KaKs_Calculator [\(33\)](#page-16-4)*.* The Ka/Ks dot chart was then drawn for orthologous gene pairs of species. From the Ka-versus-Ks figure, the evolutionary process of Tibetan hulless barley diverging from Morex barley had more positively selected genes (Ka/Ks >1) than the other species (**Fig. S17**). KEGG pathway analysis indicated that many of the positively selected genes are involved in pathways related to environmental responses and adaptation (**Table S29**).

5 Genetic diversity in landrace and wild progenitor

5.1 Re-sequencing ten cultivars and wild barleys

We selected ten accessions to investigate diversity in the barleys. Of these lines, five are considered cultivated and five are wild barleys (**Table S30**). Re-sequencing the ten barley genotypes yielded 7.12 G 90-bp paired-end reads, which comprised 641.12 Gb of high-quality clean data, with a sequencing depth of more than 15X for each line. To reduce the complexity of the Tibetan hulless barley genome and to acquire a high-quality mapping result, we only retained the scaffolds and contigs that were anchored to the seven linkage groups and the contigs with lengths >200 bp as the reference genomes.

5.2 Individual SNP and InDel calling

The clean reads (the reads with deleted adapter and low-quality reads removed (quality value \leq 5 (E) is ≥50% of the reads) were mapped in the reference genome using BWA software [\(34\)](#page-16-5). The detailed parameters were as follows: "bwa aln -m 10000 -o 1 -e 10 -i 15 -L -I -t 4 -n 0.04" and "bwa sampe -a 800". Due to the high content of repeats in the Tibetan hulless barley genome, some short reads (90 bp) had multiple hits in the reference genome. We only kept reads with mapping quality \geq 20 for further analysis. The alignment results were merged and indexed as BAM files with potential PCR duplicates removed using the *SAMtools* package [\(34\)](#page-16-5).

We used the Genome Analysis Toolkit (GATK) [\(35\)](#page-16-6) that uses a realignment algorithm to minimize the number of mismatched bases across all reads for the SNP and InDel calling. The raw SNP or InDel calling results were filtered based on the following criteria: 1) Confidence score of SNP or InDel calling >50, 2) Minimum number of required reads supporting each SNP or InDel \geq 3, 3) Distance of SNPs or InDels must be at least 5 bp from each other, and 4) The threshold of SNPs calling was set to 20 for base quality (**Table S31**).

5.3 Population re-sequencing analysis

To get SNPs and InDels in a population with ten accessions, the individual realignment results were used by GATK. The final SNPs or InDels dataset in the population was selected and then filtered under the following requirements: 1) Confidence score of SNP or InDel calling >50 ; 2) Base quality >20; 3) Total depth between 30X and 272X retained, and 4) Reads supporting each individual SNP or InDel should be ≥3 (**Table S32**). R version 2.15.0 and EIGENSOFT version 3.0 [\(36\)](#page-16-7) were used in the principal component analysis (PCA). FRAPPE version 1.1 [\(37\)](#page-16-8) was used in the population structure analysis (**Figs. S18–20**).

5.4 Selective sweep analysis

To investigate the genome regions under selective sweeps due to the plateau environment, re-sequencing samples were classified into two different groups: the plateau group (wild and cultivated Tibetan hulless barleys) and the non-plateau group (cultivated barley). We used Tajima's D (test to distinguish between a DNA sequence evolving randomly and one evolving under a non-random process [\(38\)](#page-16-9)) and F_{st} (measure of genetic differentiation between two groups [\(39\)](#page-16-10)) in every 50 kb genome window to measure whether some regions were under selective sweep. Genome regions with $F_{st} > 0.5$ (or 5% top F_{st} windows) between the two groups and Tajima's D <–2 within the plateau group were considered under selective sweeps (**Tables S33-35, Fig. S21**).

5.5 Correlation analysis

The graph in **Fig. 3d** shows correlations between environmental stress variables that appear in groups B1-B10 and randomly selected genes from **Table S34** (**Table S36**). The environmental stress variables include salinity, oxygen, (low and high), solar radiation, CO2, drought, temperature (low and high), day length (short and long), and dormancy. This correlation, which was done by Matlab software[\(40\)](#page-16-11), used algorithms that take each of the genes found in **Table S34** and correlated them to environmental stress variables, which were described above and were found in wheat and barley. If the effect is direct, the correlation value is high; if the correlation is indirect, the value is lower [\(41,](#page-16-12) [42\)](#page-16-13).

6 References

- 1. Li R*, et al.* (2010) The sequence and *de novo* assembly of the giant panda genome. *Nature* 463(7279):311-317.
- 2. Li R*, et al.* (2010) *De novo* assembly of human genomes with massively parallel short read sequencing. *Genome Res* 20(2):265-272.
- 3. Boetzer M, Henkel CV, Jansen HJ, Butler D, & Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. *Bioinformatics* 27(4):578-579.
- 4. Grabherr MG*, et al.* (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat Biotechnol* 29(7):644-652.
- 5. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. *Nucleic Acids Res* 27(2):573-580.
- 6. Smit, A.F.A. & Hubley, R. (2004), RepeatModeler. [http://www.repeatmasker.org.](http://www.repeatmasker.org/)
- 7. Xu Z & Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. *Nucleic Acids Res* 35(Web Server issue):W265-268.
- 8. Jurka J*, et al.* (2005) Repbase Update, a database of eukaryotic repetitive elements. *Cytogenet Genome Res* 110(1-4):462-467.
- 9. Stanke M*, et al.* (2006) AUGUSTUS: ab initio prediction of alternative transcripts. *Nucleic Acids Res* 34(Web Server issue):W435-439.
- 10. Burge C & Karlin S (1997) Prediction of complete gene structures in human genomic DNA. *J Mol Biol* 268(1):78-94.
- 11. Altschul SF*, et al.* (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 25(17):3389-3402.
- 12. Birney E, Clamp M, & Durbin R (2004) GeneWise and Genomewise. *Genome Res* 14(5):988-995.
- 13. Trapnell C*, et al.* (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol* 28(5):511-515.
- 14. Trapnell C*, et al.* (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature biotechnology* 28(5):511-515.
- 15. Elsik CG*, et al.* (2007) Creating a honey bee consensus gene set. *Genome Biol* 8(1):R13.
- 16. Bairoch A & Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. *Nucleic Acids Res* 28(1):45-48.
- 17. Zdobnov EM & Apweiler R (2001) InterProScan--an integration platform for the signature-recognition methods in InterPro. *Bioinformatics* 17(9):847-848.
- 18. Ashburner M*, et al.* (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 25(1):25-29.
- 19. Kanehisa M & Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res* 28(1):27-30.
- 20. Mayer KF*, et al.* (2012) A physical, genetic and functional sequence assembly of the barley genome. *Nature* 491(7426):711-716.
- 21. Li L, Stoeckert CJ, Jr., & Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. *Genome Res* 13(9):2178-2189.
- 22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* 32(5):1792-1797.
- 23. Guindon S & Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Syst Biol* 52(5):696-704.
- 24. Guindon S*, et al.* (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst Biol* 59(3):307-321.
- 25. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol* 24(8):1586-1591.
- 26. Rambaut, A. & Drummond, A.J. Tracer v1.4.<http://beast.bio.ed.ac.uk/Tracer> (2007).
- 27. Tang H*, et al.* (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. *Genome Res* 18(12):1944-1954.
- 28. Tang H*, et al.* (2008) Synteny and collinearity in plant genomes. *Science* 320(5875):486-488.
- 29. Huang S*, et al.* (2009) The genome of the cucumber, *Cucumis sativus* L. *Nat Genet* 41(12):1275-1281.
- 30. Anonymous (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. *Nature* 463(7282):763-768.
- 31. Salse J*, et al.* (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. *Plant Cell* 20(1):11-24.
- 32. De Bie T, Cristianini N, Demuth JP, & Hahn MW (2006) CAFE: a computational tool for the study of gene family evolution. *Bioinformatics* 22(10):1269-1271.
- 33. Zhang Z*, et al.* (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. *Genomics, proteomics & bioinformatics* 4(4):259-263.
- 34. Li H*, et al.* (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25(16):2078-2079.
- 35. McKenna A*, et al.* (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* 20(9):1297-1303.
- 36. Price AL*, et al.* (2006) Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet* 38(8):904-909.
- 37. Tang H, Peng J, Wang P, & Risch NJ (2005) Estimation of individual admixture: analytical and study design considerations. *Genet Epidemiol* 28(4):289-301.
- 38. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123(3):585-595.
- 39. Akey JM, Zhang G, Zhang K, Jin L, & Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. *Genome Research* 12(12):1805-1814.
- 40. MATLAB 8.0 and Statistics Toolbox 8.1, The MathWorks, Inc., Natick, Massachusetts, United States.
- 41. Liu Z, Sun F, Braun J, McGovern D, & Piantadosi S (2014) Multilevel Regularized Regression for Simultaneous Taxa Selection and Network Construction with Metagenomic Count Data. *Bioinformatics*.
- 42. Nasilowski K, Awrejcewicz J, & Lewandowski D (2014) Kinematic analysis of the finger exoskeleton using MATLAB/Simulink. *Acta of Bioengineering and Biomechanics / Wroclaw University of Technology* 16(3):129-134.
- 43. Matsumoto T*, et al.* (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. *Plant Physiol* 156(1):20-28.
- 44. Wikstrom N, Savolainen V, & Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. *Proc Biol Sci* 268(1482):2211-2220.
- 45. Arakaki M*, et al.* (2011) Contemporaneous and recent radiations of the world's major succulent plant lineages. *Proc Natl Acad Sci U S A* 108(20):8379-8384.

II. Tables

Table S1 Statistics of raw sequencing data

Table S2 Statistics of high-quality sequencing data

	Correct K-mer	Peak	Genome			Reads
K-mer	number		size (Gb)	Repeat	Hete	coverage
17	$1.16E+11$	26	4.48		$\overline{}$	29.72
19	$1.91E+11$	44	4.35	81.10%	0.50%	54.92
21	$1.87E + 11$	43	4.34	78.20%	0.41%	55.25
23	$1.82E+11$	42	4.34	75.59%	0.36%	55.53
25	$1.79E + 11$	41	4.38	82.18%	0.42%	55.24
27	$1.75E + 11$	39	4.50	82.46%	0.31%	53.97
29	$1.71E + 11$	39	4.39	82.43%	0.37%	55.49
31	$1.67E + 11$	38	4.40	82.53%	0.36%	55.62

Table S3 Genome size estimation by K-mer analysis

We estimated the genome size of Tibetan hulless barley of 4.48 Gbp by 17-mer analysis using about 30X of short-insert size sequencing data. We tested the K-mer analysis with Jellyfish software⁸⁰ under different K-mers with more sequencing data to check genome size, repeat content (Repeat) and heterozygous rate (Hete) of the genome. Please note that the K-mer analysis usually gets the most accurate genome size estimates at about 30X of sequencing data.

Table S4 Statistics of de novo assembly of Tibetan hulless barley genome

Table S5 Comparison of assembled scaffolds with five BAC sequences of cultivated barley

	Sample	Total number	Total length (nt)	Mean length (nt)	N50
Contig	G ₂	105,943	36,702,894	346	583
	S ₁	101,213	35,759,482	353	577
	Y2	99,185	37,787,189	380	685
Unigene	G ₂	54,625	36,577,502	669	969
	S ₁	56,989	36,510,457	640	890
	Y2	56,496	40,922,106	724	1,061

Table S6, Statistics of de novo transcriptome assembly result

Table S7 Assessment of sequence coverage of the genome assembly by homologous search with de novo assembled transcriptome data

				Covered		With >90% sequence		With $>50\%$ sequence
			Total	by		in one scaffold	in one scaffold	
Samples*	Dataset	No.	length (M \mathbf{b}	assembly		Percent		Percent
				$(\%)$	No.	(%)	No.	$(\%)$
G2	>0 bp	52,753	35,523,701	90.60	40,390	76.56	45,674	86.58
	>200 bp	52,753	35,523,701	90.60	40,390	76.56	45,674	86.58
	>500 bp	23,735	26,486,011	94.66	17,850	75.21	21,264	89.59
	>1000 bp	10,842	17,330,445	95.70	7,942	73.25	9,795	90.34
S ₁	>0 bp	55,799	35,795,745	95.60	44,449	79.66	50,563	90.62
	>200 bp	55,799	35,795,745	95.60	44,449	79.66	50,563	90.62
	>500 bp	24,498	26,068,131	96.47	18,255	74.52	22,110	90.25
	>1000 bp	10,225	15,958,209	96.15	7,188	70.30	9,159	89.57
Y2	>0 bp	56,496	40,922,106	91.78	43,650	77.26	49,567	87.74
	>200 bp	56,496	40,922,106	91.78	43,650	77.26	49,567	87.74
	>500 bp	27,537	31,901,061	92.68	20,205	73.37	24,271	88.14
	>1000 bp	13,135	21,604,344	92.71	9,236	70.32	11,591	88.25

* The three samples G2, S1, Y2 came from root, immature spike, leaf and stem, respectively. Transcriptome was assembled to unigenes by Trinity.

Inform	Total length (Gb)	% Scaf	$%$ Chrom		Scaf no. Gene no.	$%$ of gene no.
Scaffold	3.89	100	$\qquad \qquad \blacksquare$	169.831	39.197	100
Chrom	3.48	89.41	100	28.374	36,566	93.29
With Order*	3.48	89.34	99.93	28,339	$\overline{}$	-

Table S8 Statistics for linkage groups construction

* If the scaffold direction cannot be deduced, it keeps the original order. Therefore, the percentage of scaffold with order may be over-estimated. Chrom, chromosome; Scaf, Scaffold

Chromosome	Length (Mb)	Scaffold number	% of genome
1H	425.00	3,601	12.21
2H	562.09	4,776	16.15
3H	525.90	4,384	15.11
4H	501.49	3,347	14.4
5H	476.44	4,063	13.69
6H	468.32	3,739	13.45
7H	522.19	4,464	15

Table S9 Statistics for each pseudo-chromosomes

Table S10 General statistics of repeats in genome

Type	Repeat size (bp)	Percentage of genome $(\%)$
TRF	150,343,089	3.86
RepeatMasker	2,637,091,676	67.78
RepeatProteinMask	926, 152, 304	23.80
De novo	3,040,288,155	78.14
Total	3,166,813,964	81.39

	RepBase TEs			TE proteins		De novo		Combined TEs	
	Length (bp)	Percentage of genome $(\%)$	Length (bp)	Percentage of genome $(\%)$	Length (bp)	Percentage of genome	Length (bp)	Percentage of genome $(\%)$	
DNA	245,017,883	6.30	84,574,833	2.17	249,631,774	6.42	306, 362, 537	7.87	
LINE	48,169,246	1.24	53,296,750	1.37	41,652,506	1.07	74,507,684	1.91	
SINE	413,423	0.01	$\overline{0}$	0.00	$\boldsymbol{0}$	0.00	413,423	0.01	
LTR	2,353,883,601	60.50	788,297,959	20.26	2,340,407,773	60.15	2,656,980,324	68.29	
Other	8,703	0.00	0	0.00	θ	0.00	8,703	0.00	
Unknown		0.00	152,001	0.00	432,152,063	11.11	432,304,064	11.11	
Total	2,637,091,676	67.78	926,152,304	23.80	3,016,748,833	77.54	3,121,892,234	80.24	

Table S11 TEs content in the assembled genome

The above data are the combined statistics results from *RepeatMasker* and *RepeatProteinMask* based on the assembled genome sequences with >200 bp scaffolds included.

Table S13 Statistics of transcriptome sequencing data in different samples

Table S14 General statistics of predicted protein-coding genes

.

Full length cDNA: 23,614 full length cDNAs, obtained from Matsumoto et al. [\(43\)](#page-16-14), were taken as query sequences. Cultivated barley transcriptome: downloaded from NCBI SRA, ERP001573 and ERP001600.

*: 6,892 additional potential gene models could be predicted from flcDNA and cultivated barley transcriptome.

	\geq 20% overlap			$\geq 50\%$ overlap	$\geq 80\%$ overlap	
	No.	Ratio $(\%)$	No.	Ratio $(\%)$	No.	Ratio $(\%)$
H (single)	30	0.08	154	0.43	292	0.81
H (more)	76	0.21	240	0.66	353	0.98
P (single)	$\boldsymbol{0}$	0.00	1,490	4.12	5,558	15.37
P (more)	$\boldsymbol{0}$	0.00	1,605	4.44	2,040	5.64
C (single)	5	0.01	45	0.12	142	0.39
C (more)	3	0.01	16	0.04	154	0.43
HC	1,359	3.76	1,826	5.05	2,336	6.46
PC	3,087	8.54	3,047	8.43	3,333	9.22
PH	9,369	25.92	8,315	23.00	5,836	16.14
PHC	22,222	61.47	19,127	52.91	14,462	40.00

Table S15 Summary of evidence for the GLEAN gene models

P: *ab initio* prediction; H: homology-based prediction; C: cDNA or transcriptome-based prediction; single: with one gene source; more: with two or more gene sources.

		Average	Average	Average	Average	Average
Gene set	Number	gene length	CDS length	exon per	exon length	intron
		(bp)	(bp)	gene	(bp)	length (bp)
$H.$ vulgare*	36,151	4825.52	1080.97	4.41	245.10	1098.02
Ae. tauschii	32.645	2865.48	1241.75	5.06	245.53	400.19
T. urartu	34,862	3204.34	1080.58	4.68	230.86	577.71
B. distachyon	26,413	2862.71	1286.47	5.04	255.18	390.02
sativa Ω	35,402	2177.38	998.58	3.8	262.69	420.79
S. bicolor	27,159	2942.1	1261.01	4.85	259.9	436.44
S. <i>italica</i>	38,801	2522.24	1087.33	4.25	256.1	442.1

Table S16 Statistics of gene structures of five grass genomes

* *H. vulgare* L. var. *nudum*

Table S17 Statistics of gene number for each pseudo-chromosomes

		Number	Percent $(\%)$
Total		36,151	
Annotated	InterPro	24,255	67.09
	GO	18,494	51.16
	KEGG	17,474	48.34
	Swissprot	22,434	62.06
	TrEMBL	24,821	68.66
Annotated (Total)		29,730	82.24
	Unannotated	6,421	17,76

Table S18 Statistics of function annotation

Samples	Coverage depth	Covered bases	Coverage rate						
Non-Tibetan barleys									
Morex	17.84	3,384,433,849	92.89%						
Bowman	16.42	3,459,979,441	94.96%						
Barke	11.15	3,093,169,493	84.89%						
H. spontaneum	8.50	3,375,440,279	92.64%						
HarunaNijo	6.41	3,000,452,695	82.35%						
Igri	4.17	3,241,897,402	88.97%						
Tibetan barleys									
W ₁	16.89	3,548,508,189	97.39						
W ₂	14.57	3,429,783,574	94.13						
W ₃	12.85	3,530,158,350	96.89						
W4	15.13	3,559,398,267	97.69						
W ₅	16.90	3,489,453,407	95.77						
C1	15.32		96.44						
C ₂	15.41	3,507,826,619	96.27						
C ₃	16.57		96.66						
C ₄	16.54	3,525,201,697	96.75						
C ₅	14.46	3,538,395,436	97.11						

Table S19 Genome coverage depth, coverage rate of Non-Tibetan barleys and Tibetan barleys

Non-Tibetan barleys: downloaded from NCBI SRA, Morex (ERP001435), Bowman (ERP001449), Barke (ERP001450), *H. spontaneum* (ERP001434), ERP001451 (HarunaNijo), Igri (ERP001433). Tibetan barleys: W1, W2, W3, W4, W5, Tibetan wild barley; C1, C2, C3, C4, C5, Tibetan hulless barley.

* effective size is the genome size excluding gaps

sequences

percent mean the proportion of the length compared to effective size

Table S21 Kegg enrichment of genes are involved in Tibetan hulless barley specific

Species	Genes	Genes in	Unclustered	Family	Unique	Average genes
	number	families	genes	number	families	per family
H. vulgare	36,151	28,303	7,848	18,849	789	1.5
A. thaliana	26,637	22,887	3,750	13,240	805	1.73
C. papaya	25,599	18,080	7,519	12,972	577	1.39
O. sativa	35,402	25,369	10,033	18,682	778	1.36
V. vinifera	25,329	19,012	6,317	12,828	720	1.48
S. bicolor	27,159	24,417	2,742	18,475	95	1.32
Z. mays	75,347	49,552	25,795	22,929	4,965	2.16
B. distachyon	26,413	23,524	2,889	17,794	216	1.32
S. italica	38,801	31,389	7,412	18,941	675	1.66
P. heterocycla	25,719	19,375	6,344	13,323	146	1.45
T. urartu	30,023	24,061	5,962	17,804	263	1.35
Ae. tauschii	32,645	26,421	6,224	19,347	188	1.37
T. aestivum	111,982	68,801	43,181	23,353	2,582	2.95

Table S22 Statistics of orthologous gene numbers in 13 species

Unclustered genes refer to species-specific genes; unique families refer to species-specific gene families.

	H <i>vul</i>	0 .sat	S.bic	Z.may	B.dis	S.ita	P.het	T.ura	Ae.tau	T.aes	A.tha	C _p ap	V.vin
1:1:1	153	153	153	153	153	153	153	153	153	153	153	153	153
N:N:N	7,382	7,214	7,449	8,818	7,277	7,572	8,061	7,280	7,621	21,225	7,935	6,184	7,035
Poaceae	1,260	1,144	1,160	1,213	1,142	1,248	1,159	1,439	1,536	2,892	$\mathbf{0}$	$\overline{0}$	$\boldsymbol{0}$
Dicotyledoneae	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{0}$	$\mathbf{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\mathbf{0}$	1,034	770	875
Other	16,730	14,857	15,425	20,319	14,372	17,266	9,683	14,610	16,692	35,826	10,720	8,620	8,674
SD	2,778	2,001	230	19,049	580	5,150	319	579	419	8,705	3,045	2,353	2,275
ND	7,848	10,033	2,742	25,795	2,889	7,412	6,344	5,962	6,224	43,181	3,750	7,519	6,317
Total	36,151	35,402	27,159	75,347	26,413	38,801	25,719	30,023	32,645	111,982	26,637	25,599	25,329

Table S23 Statistics for different types of orthologous genes in 13 species

1:1:1, single-copy orthologs, N:N:N, multi-copy orthologs, Poaceae, Poaceae-specific orthologs, Dicotyledoneae, Dicotyledoneae-specific orthologs, SD, duplicated species-specific genes, ND, species-specific genes. *H. vul, T.ura, T.aes, Ae. tau, B. dis, P.het, O. sat, S. bic, Z. may, S. ita, C. pap, A. tha,* and *V. vin* represent *H. vulgare, T. urartu , T.aestivum, Ae. tauschii , B. distachyon*, *P. heterocycla, O. sativa, S. bicolor, Z. mays*, *S. italic, C. papaya, A. thaliana,* and *V. vinifera*, respectively.

	Species 1	Species 2	Lower bound (Mva)	Upper bound (Mva)	Reference
(1)		H. vulgare A. thaliana	139	156	Wikström et al. (44)
(2)	H. vulgare	O. sativa	34	$\qquad \qquad =$	Arakaki et al. (45)

Table S24 Calibration time points used in split time estimation

* Hulless barley represents *H. vulgare* L. var. *nudum*, Morex barley represents *H. vulgare* L. cv. Morex.

Table S26 Number of expanded and contracted gene families

Note: *T.aestivum*|*T.urartu* means the branch lead to the most recent common ancestor node of *T.aestivum* and *T.urartu*.

Table S27 Gene gain in *H. vulgare* **branch (FDR<0.05)**

BP: Biological Process; CC: Cellular Component; MF: Molecular Function Total of 104 families, comprising 1,945 genes, were significantly (P<0.05) expanded in Tibetan hulless barley lineage.

		AP2/ERF		ratio				
	Soloist	RAV	AP2	ERF	DREB	Total	ERF/DREB	Cold-related
Tibetan								
Hulless	1	5	21	95	37	159	2.57	230
barley								
Morex	$\mathbf{1}$	τ	14	64	35	121	1.83	219
Ae. tauschii	1	1	24	48	35	109	1.37	216
T. urartu	1	$\mathfrak{2}$	20	36	24	83	1.5	182
B.								
distachyon	1	$\overline{4}$	25	65	58	153	1.12	164
O. sativa	1	5	29	87	58	180	1.5	132
Z. mays	$\,1$	3	31	96	90	221	1.07	148
A. thaliana		6	17	65	56	145	1.16	209

Table S28 Number of gene members in cold-related and AP2 TF families

Table S29 Kegg pathways of genes with Ka/Ks >1 in hulless Morex pairwise kaks calculation

Table S30 Information of barley accessions collected on Tibetan Plateau re-sequenced in this study

Group	ID	Accessions	Growth habit	Species
Wild	W1	ZYM00963	spring	H. vulgare ssp. agriocrithon
	W ₂	ZYM01262	spring	H. vulgare ssp. spontaneum
	W ₃	ZYM01288	spring	H. vulgare ssp. agriocrithon
	W ₄	ZYM01375	spring	H. vulgare ssp. agriocrithon
	W ₅	ZYM03251	spring	H. vulgare ssp. spontaneum -
Cultivated	C ₁	Linzhiheiliuleng	spring	H. vulgare L. var. nudum
	C ₂	Z0237	spring	H. vulgare L. var. nudum
	C ₃	Z0414	spring	H. vulgare L. var. nudum
	C ₄	Z ₀₆₉₉	spring	H. vulgare L. var. nudum
	C ₅	Ailibai	spring	H. vulgare L. var. nudum

Genotypes	No. of SNP	Homo	$1H-7H(SNP)$	Scaffold (SNP)	Percent in 1H-7H $(\%)$ (SNP)	No. of InDel	$1H-7H$ (InDel)	Scaffold (InDel)	1H-7H rate $(\%)(InDel)$
W ₁	9,206,608	6,282,956	8,328,963	877,645	90.47	424,148	384,395	39,753	90.63
W ₂	15,759,191	15,217,207	14,282,306	1,476,885	90.63	730,330	666,397	63,933	91.25
W ₃	12,396,204	8,161,457	11,272,379	1,123,825	90.93	458,848	418,369	40,479	91.18
W4	12,560,313	7,041,767	11,431,772	1,128,541	91.02	500,685	456,863	43,822	91.25
W ₅	9,268,837	8,804,341	8,356,983	911,854	90.16	467,124	422,796	44,328	90.51
C ₁	5,436,423	5,074,957	4,810,232	626,191	88.48	270,970	241,937	29,033	89.29
C ₂	6,827,268	6,447,694	6,096,296	730,972	89.29	330,889	296,494	34,395	89.61
C ₃	6,614,414	6,194,737	5,914,618	699,796	89.42	330,410	295,477	34,933	89.43
C ₄	6,465,945	6,067,573	5,776,439	689,506	89.34	327,828	294,597	33,231	89.86
C ₅	5,692,681	5,332,031	5,072,079	620,602	89.10	262,113	234,184	27,929	89.34
Mean value	9,022,788	7,462,472	8,134,207	888,582	90.15	410,335	371,151	39,184	90.23

Table S31 Statistics of SNPs and InDels in each of the re-sequenced genotypes

Homo: No. of homozygous SNPs.

Table S32 Statistics of population SNPs number in wild & cultivated barleys

Chr	Total size	Sweep size	$\%$	Gene number
1H	425,002,292	3,850,000	0.91	35
2H	562,091,317	4,600,000	0.82	56
3H	525,897,205	2,750,000	0.52	19
4H	501,487,783	4,275,000	0.85	40
5H	476, 442, 955	4,225,000	0.89	73
6H	468, 321, 367	950,000	0.20	16
7H	522,188,531	16,625,000	3.18	179
total	3,481,431,450	37,275,000	1.07	418

Table S33 Statisics of selective sweeps of Tibetan hulless barleys population

Table S34 Genes under selective sweeps of plateau environment

Hyulgare_10055794	Os08g0500300	Probable protein phosphatase 2C 66
Hvulgare_10055796	Bud13	BUD13 homolog
Hyulgare_10056304	NA	NΑ
Hyulgare_10056305	vitV	Putative esterase yitV

Table S35 Kegg pathway of genes involved in selective sweeps

(a)	
Name in the	Gene
graph	
A ₁	Enoyl-CoA hydratase 2, peroxisomal
A2	Peroxidase 4
A ₃	DNA (cytosine-5)-methyltransferase DRM2
A ₄	Putative calcium-binding protein CML19
A ₅	Probable leucine-rich repeat receptor-like protein kinase At1g68400
A ₆	Stress-associated endoplasmic reticulum protein 2
A7	Tyrosine N-monooxygenase
A ₈	Cycloeucalenol cycloisomerase
A ₉	Protein TRANSPARENT TESTA 1
A10	Auxin-responsive protein IAA23
A11	Serine/threonine-protein kinase HT1
A12	CDPK-related protein kinase
A13	DUF21 domain-containing protein At2g14520
A14	Homeobox protein knotted-1-like 4
A15	Serine/threonine-protein phosphatase PP2A-2 catalytic subunit
A16	Galacturonokinase
A17	Probable histone acetyltransferase HAC-like 3
A18	CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3-sialyltransferase
	$\overline{2}$
A19	Alcohol dehydrogenase 1
A20	Uridine kinase-like protein 3
A21	DAG protein, chloroplastic
A22	Probable L-ascorbate peroxidase 6, chloroplastic
A23	Chlorophyll a-b binding protein 4, chloroplastic
A24	Histidine kinase 5
A25	Mitogen-activated protein kinase kinase 4
A26	Peroxidase 1
A27	Probable serine/threonine-protein kinase yakA
A28	Poly [ADP-ribose] polymerase 1
A29	Serine carboxypeptidase-like 40
A30	Glucan endo-1,3-beta-glucosidase 5
A31	Protein argonaute PNH1

Table S36 50 genes randomly collected from Table S34 and 10 stressful environmental variables for correlation analysis

III. Figures

Fig. S1, The Tibetan hulless barley is the main crop for people living in Tibet, China. The relative sea level of Tibet is more than 3,100 m.

Fig. S2, Distribution of 17-mer frequency in the sequencing reads. 133 Gb data was retained for 17-mer analysis, the peak of distribution is about 26X coverage; the genome size can be estimated as 4.48 Gb (Genome Size=K-mer number/Peak depth).

a

Fig. S3, Sequencing depth distribution for bases of whole genome (a) and scaffolds with length less than 200 bp (b). X-axis is depth and Y-axis is proportional to the base number divided by total bases.

Fig. S4, GC content and sequencing depth. a, GC_depth distribution of Tibetan hulless barley. X-axis represents GC content; Y-axis represents average depth. b, Comparison of GC content distributions in Tibetan hulless barley and rice genomes.

HVVMRXALLmA0257K17_c1 (Genbank ID: AC250041.1)

Fig. S5, Comparison of assembled scaffolds with five BAC sequences of cultivated barley

Fig. S6, Divergence rate distribution of different types of TE predicted with *Repbase* **(a, c) and de novo (b, d) methods. Divergence rate computed between predicted TE sequence in genome and consensus sequence in the Repbase or de novo predicted TE library. The above figures show that most of the de novo predicted repeats are recently transposed repeats, which are active in the genome. The Copia and Gypsy subfamily of TE repeats are the most enriched in** *H. vulgare* **genome.**

Fig. S7, Comparison of length distribution of gene, exon, intron, and CDS in Tibetan hulless barley (*H. vulgare)* **and four other species. Window means the length of every point in the horizontal ordinate.**

Fig. S8, Comparison between the genes of Tibetan hulless barley and Morex. a. Protein similarity distribution of 22,673 Tibetan hulless barley and Morex orthologous. 7,224

(31.86%) gene pairs had identical aligned sequences and 17,840 (78.68%) had protein similarity higher than 95%. b, The CDS and gene body (CDS + intron) length ratio of Tibetan hulless barley versus Morex barley for their common 22,673 orthologous gene pairs. Orthologous gene pairs were identified by reciprocal best hit of *BlastP* **alignments.**

Fig. S9, Stacked bar chart showing orthologous gene numbers among 13 plant genomes. 1:1:1, single-copy orthologs, N:N:N, multi-copy orthologs, Poaceae, Poaceae-specific orthologs, Dicotyledoneae, Dicotyledoneae-specific orthologs, SD, duplicated species-specific genes, ND, species-specific genes.

Fig. S10, Phylogenetic tree (a) and divergence time (b) for 13 plant species. a, Phylogenetic tree constructed with orthologous genes on 4-fold degenerate sites by maximum likelihood method. Branch length represents the neutral divergence rate. b, Estimation of divergence time and substitution rate. Blue numbers on the nodes are the divergence time from present (million years ago, Mya). The calibration time H , *vulgare* $-A$, *thaliana* divergence (139~156) **million years ago), and** H **.** $vulgare - O$. *sativa* divergence (at least 34 million years ago) is **derived from previously published papers [\(44,](#page-16-15) [45\)](#page-16-16).**

Fig. S11, Syntenic blocks for *H. vulgare–B. distachyon* **(left) and** *H. vulgare–O. sativa* **(right) chromosomes**

Fig. S12, Syntenic blocks for *H. vulgare–S. bicolor* **(left) and** *H. vulgare–S. italic* **(right) chromosomes**

Fig. S13, Syntenic blocks for *T. urartu–H. vulgare* **(left) and** *H. vulgare–A. tauschii* **(right) chromosomes. Chromosomes for** *H. vulgare* **are named as 1H, 2H, etc. Chromosomes for** *T. urartu* **are named as 1A, 2A, etc. Chromosomes for** *A. tauschii* **are named as 1D, 2D, etc.**

Fig. S14, Syntenic blocks for *B. distachyon–H. vulgare–O. sativa* **(up) and** *S. bicolor–H. vulgare–S. italic* **(down) chromosomes**

Fig. S15, Chromosome fusion and evolution among four Poaceae species. It shows the Poaceae ancestor contains five chromosomes, then duplicates to 12 chromosomes in the intermediate ancestor. We found four main NCF for *H. vulgare* **chromosomes compared to the intermediate ancestor, while 0 NCF, 7 NCF, and 3 NCF events occurred from the intermediate ancestor to generate the** *O. sativa***,** *B. distachyon,* **and** *S. italica* **chromosomes. NCF represents the nested chromosome fusion event.**

Fig. S16, Expansion and contraction of gene families of barley compared to other plant species. Numbers below branches indicate the number of expanded (green) and contracted (red) gene families. There were 38,976 gene families involved in the analysis, which is shown as MRCA (most recent common ancestor).

Fig. S17, Ka-vs-Ks dot plot distribution for *H. vulgare* **L. var.** *nudum* **–** *H. vulgare* **L. cv. Morex gene pairs and** *H. vulgare* **L. var.** *nudum – B. distachyon, T. urartu, A. tauschii, O. sativa* **orthologous gene pairs. hulless, Morex, wheatA, wheatD,** *Brachypodium***, rice represents** *H. vulgare* **L. var.** *nudum, H. vulgare* **L. cv. Morex,** *T. urartu, A. tauschii, B. distachyon,***and** *O. sativa,* **respectively.**

Fig. S18, The $1st$, $2nd$ (a), $3rd$, and $4th$ (b) elements of PCA analysis for 10 Tibetan hulless **barley individuals including five wild type and five cultivated barleys.**

Fig. S19. The first and second eigenvectors of the PCA analysis of barleys. The green circles indicate Non-Tibetan barleys. The blue circles indicate Tibetan wild barleys. The red circles indicate Tibetan hulless barleys.

Fig. S20. The population structure analysis of barleys. Each color denotes one population in the population structure analysis. Each vertical bar represents one accession in which the percentages of contribution from the ancestral populations are indicated by the lengths of colored segments. The number of clusters (K) was set from 2 to 6.

Fig. S21. The selective sweep of 7H chromosome. Tajima's D, Fst, sweep blocks and selective genes were shown from top to bottom. The QTL of QRwc.TaEr-7H.2 was shown in grey background with the highlighted franking marker BCD1066 and pACP1.