GUIDE TO SUPPLEMENTARY INFORMATION ## **FOR** ## Age-related cancer mutations associated with clonal hematopoietic expansion Mingchao Xie^{1,2*}, Charles Lu^{1*}, Jiayin Wang^{1,2*}, Michael D. McLellan¹, Kimberly J. Johnson³, Michael C. Wendl^{1,4,5}, Joshua F. McMichael¹, Heather K. Schmidt¹, Venkata Yellapantula^{1,2}, Christopher A. Miller¹, Bradley A. Ozenberger^{1,2}, John S. Welch^{2,6}, Daniel C. Link^{2,6}, Matthew J. Walter^{2,6}, Elaine R. Mardis^{1,2,4,6}, John F. Dipersio^{2,6}, Feng Chen^{2,6}, Richard K. Wilson^{1,2,4,6}, Timothy J. Ley^{1,2,4,6}, Li Ding^{1,2,4,6#} ¹The Genome Institute, ²Department of Medicine, ⁴Department of Genetics, ⁵Department of Mathematics, ⁶Siteman Cancer Center, Washington University in St. Louis, MO 63108, USA ³Brown School Master of Public Health Program, Washington University in St. Louis, St. Louis, MO 63130, USA *These authors contributed equally to this work. # Corresponding Author: Li Ding, Ph.D. The Genome Institute Division of Oncology, Department of Medicine Washington University School of Medicine St. Louis, MO 63108 Email: Iding@genome.wustl.edu ## Journal: Nature Medicine | Article Title: | Age-related cancer mutations associated with clonal hematopoietic | |-----------------------|---| | | expansion | | Corresponding Author: | Dr. Li Ding | | Supplementary | Title or Caption | |-------------------------|---| | Item & Number | | | (add rows as necessary) | | | Supplementary Figure 1 | Distribution of blood-specific mutations in <i>DNMT3A</i> , <i>TET2</i> , <i>JAK2</i> , <i>ASXL1</i> , <i>SF3B1</i> , <i>GNAS</i> , and all 31 genes across different age groups. The 91 sites include 77 detected by our processing pipeline and 14 low VAF sites (2 to 10%) identified by read count-based analysis. The total includes all blood-specific mutations in 556 cancer associated genes identified in each age group. | | Supplementary Figure 2 | Distinct and common connections among normal blood samples, MPN, MDS, CLL, and AML cases. A combination of precursor, initiating mutations in the normal blood samples may rarely collaborate with subsequent, progression mutations to develop MPN, MDS, CLL, and/or AML. | | Supplementary Table 1a | Sample IDs for the 2,728 TCGA cases included in this study. | | Supplementary Table 1b | Samples included in the study and their clinical characteristics. | | Supplementary Table 1c | The distribution of germline variants across 2,728 TCGA samples. TCGA Ovarian counts were collected from the previous report. | | Supplementary Table 2 | Somatic mutations in 2,241 TCGA tumor samples included in the study. Somatic mutation data are unavailable for a subset of samples. | | Supplementary Table 3a | Somatic mutations in 3,355 TCGA tumor samples from 12 cancer types used for identifying recurrent mutations. | | Supplementary Table 3b | Recurrent somatic mutations from 12 TCGA cancer types used for hotspot analysis. | | Supplementary Table 4 | 556 cancer-associated genes used in this study. | | Supplementary Table 5a | 77 blood-specific events detected in 2,728 cases using our standard discovery pipeline. | | Supplementary Table 5b | Low-level blood-specific events detected in <i>DNMT3A</i> , <i>JAK2</i> , <i>SF3B1</i> , <i>GNAS</i> , and <i>IDH2</i> in TCGA samples. | | Supplementary Table 5c | Deep-sequencing based validation of low-level blood-specific events detected in <i>DNMT3A</i> , <i>JAK2</i> , and <i>SF3B1</i> in TCGA samples. | | Supplementary Table 6 | Truncation and hotspot variants in four prominent genes (<i>DNMT3A</i> , <i>TET2</i> , <i>JAK2</i> , and <i>ASXL1</i>) involved in HSPC clonal expansion in 6,503 ESP samples. | | Supplementary Table 7 | Rare truncation variants and known hotspot variants detected in <i>DNMT3A</i> , <i>TET2</i> , <i>ASXL1</i> , <i>GNAS</i> , <i>JAK2</i> , <i>SF3B1</i> , <i>IDH1</i> , and <i>IDH2</i> in 557 WHISP samples. | | Supplementary Table 8 | Exome capture sequencing coverage for 11 TCGA cancer types analyzed. | **Supplementary Figure 1** Distribution of blood-specific mutations in *DNMT3A*, *TET2*, *JAK2*, *ASXL1*, *SF3B1*, *GNAS*, and all 31 genes across different age groups. The 91 sites include 77 detected by our processing pipeline and 14 low VAF sites (2 to 10%) identified by read count-based analysis. The total includes all blood-specific mutations in 556 cancer associated genes identified in each age group. **Supplementary Figure 2** Distinct and common connections among normal blood samples, MPN, MDS, CLL, and AML cases. A combination of precursor, initiating mutations in the normal blood samples may rarely collaborate with subsequent, progression mutations to develop MPN, MDS, CLL, and/or AML.