
 

Figure S1. The hole induced QES in the predicted 

nonthermal melting materials.  

Supplementary Information 

Quantum Hooke’s Law to Classify Pulse Laser Induced Ultrafast 

Melting 

Hao Hu
1,2

, Hepeng Ding
2
 and Feng Liu

2,*
 

1
Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, 

China 

2
Department of Materials Science and Engineering, University of Utah, Salt Lake City, 

UT 84112, USA 

 

1. First principle calculation of hole-induced quantum electronic stress (QES) 

The first-principles calculations 

are based on the density functional 

theory plane-wave method as 

implemented in Vienna ab initio 

simulation package (VASP)
1
. In 

calculating bulk stress induced by 

charge carriers, the projector 

augmented wave (PAW) method
2
 

and the PBE exchange-correlation 

functionals
3
 are used. Tests have 

been done with respect to plane-

wave energy cutoff and k-point 

sampling for each system to ensure convergence. The QES are obtained by calculating 



the difference between the Martin-Nielsen mechanical stress tensor
4 

at the excited or 

perturbed electron density and that at the ground-state density
5
. The values we show in 

Fig. 1 in the main text are the average of the three diagonal components of the stress 

tensor, i.e.  = (xx + yy + zz)/3. For cubic lattice, the QES induced by hole is isotropic, 

i.e. xx=yy=zz; while for other lattice, the QES could be anisotropic. 

 Similarly, figure S1 shows the hole induced QES in the materials that we 

proposed in Table II in the main text.  

2. QES induced by a homogeneous electron gas at T = 0 K 

For a homogeneous electron gas, QES is equal to the degeneracy pressure (DP) coming 

from the Pauli exclusion of electrons
6
. The DP can be calculated from the derivative of 

total energy of the homogeneous electron gas with respect to the volume change. We use 

a numerical model to quantify the QES of homogeneous electron gas. The total energy of 

homogeneous gas can be expressed as 

 E V      ,        (1) 

where V is volume,  is the electron density and () is the total energy per electron of 

homogeneous electron gas with density . It contains terms of kinetic energy, exchange 

energy and correlation energy, 

       T x c          .      (2) 

The kinetic energy and exchange energy at T = 0 K can be expressed analytically: 
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Atomic units are used throughout here unless otherwise specified. Usually for a 

homogeneous electron gas, another variable rs is used instead of  with 
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so the total energy per electron can be expressed as 
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 In general, there is no analytic expression for c(rs), so it is calculated numerically. 

We use the VWN interpolation formula for c(rs), which gives very good results in the 

density range we are interested in
7
: 
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where sx r ,   2X x x bx c   , and 24Q c b  . The parameters A=0.0621814, 

x0=-0.10498, b=3.72744, c=12.9352 give the best fitting to Ceperley and Alder’s 

quantum Monte Carlo results
8
. 

 The QES of homogeneous electron gas can be calculated straightforwardly as 

QE dU
P

dV
    .        (7) 

The negative sign convention means that a positive tensile QES (equivalent to a negative 

internal pressure) tends to shrink the volume, while a negative compressive QES (a 

positive internal pressure) tends to expand the volume. 



 

Figure S2. DP induced by different energy terms 

and the total pressure vs. electron density. Inset 

shows the total DP for an interacting homogeneous 

electron gas (P) and that for a free electron gas (PT) in 

the density range of 0 – 20 nm
-3

. 

 Figure S2 shows the DP induced by different energy terms as well as the total 

pressure. One sees that the kinetic energy always induces positive pressure (PT), tending 

to expand the volume; while both the exchange and correlation energy induce negative 

pressure (Px and Pc), tending to shrink the volume. At very low electron density, the 

exchange and correlation terms dominate (increasing faster with the increasing density); 

at high density, the kinetic term dominates. This gives rise to a minimum total pressure 

within the electron density range 

of our interest (0 – 20 nm
-3

 as 

shown in Fig. 1 in the main text). 

The inset shows the total 

pressure in the density range of 0 

– 20 nm
-3

, which has a minimum 

at relatively low electron density, 

and its magnitude stays less than 

1 GPa. This means that the QES 

of electron gas in the electron-

hole plasma is essentially 

negligible compared to the QES 

induced by the localized valence 

holes. Therefore, we can approximate the QES induced the electron-hole plasma by just 

the QES induced by holes as shown in Fig. 1 in the main text. 

 

 



3. QES of a free electron gas at finite temperature 

When the electron are excited by the pulse laser, it possess high kinetic energy (several 

eV), the temperature of the electron system could be very high, tens of thousands kelvin. 

At finite temperature, the kinetic energy, exchange and correlation energy vary with 

temperature, and so does the DP. Here, for simplicity, we only consider the kinetic term, 

i.e. we calculate the temperature dependent DP of a free electron gas, to see how the 

temperature may affect the QES. 

 For a free electron gas, the density of states is 
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at finite temperature, the electrons obey Fermi-Dirac distribution, the total energy of the 

free electron gas can be expressed as 
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the electron number can also be expressed by the integral as 
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where V is the volume,  is the chemical potential of the free electron gas, which varies 

with temperature. To calculate the total energy vs. T, we need to calculate (T) first. 

 At T = 0 K, the electron number 
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Figure S3. Chemical potential of free electron gas 

 vs. temperature. 
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where F is Fermi energy. 

 Since the electron number does not change with temperature, we have 
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Equation (12) can be expressed in a dimensionless form as 
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where / F   , / FT T T , and 

/F F BT k  is Fermi temperature. 

Using Eq. (13), we can calculate the 

chemical potential vs. temperature 

numerically, as shown in Fig. S3. 

 At any given electron density, 

we can calculate the Fermi energy 

from Eq. (11) as 
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Using Eq. (9), (13) and (14), we can calculate the total energy of free electron gas at 

given electron density and temperature, numerically. The DP of free electron gas at finite 

temperature can be calculated by 



 

Figure S4. DP of free electron gas vs. electron 

density at different temperature. The two curves of 

T = 0 K (black) and T = 300 K (red) are almost 

identical. 

totdE
P

dV
  .         (15) 

Figure S4 shows the calculated DP 

vs. electron density at different 

temperature. We can see that only at 

very high temperature ( >10
4
 K), the 

DP differs notably from that at zero 

temperature; the DP decreases with 

increasing temperature, which is 

probably due to the decreasing of 

chemical potential with increasing 

temperature, so that adding electron 

into the system (increasing electron 

density) increases less energy to the 

total energy. Another way we may understand such behavior is that at higher temperature, 

the electrons distribute quasi-equally in all energy states(<kBT), so the Pauli exclusion 

effect becomes weak, and so does the DP. 
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