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1 Computing the expected SFS under a variable population size

In this section, we describe the details of computing the quantities E[τn,i] and E[τn], the expected
branch length subtending i leaves and the expected total branch length respectively, when a coales-
cent tree is drawn over n individuals according to Kingman’s coalescent with demographic model
Φ.

Polanski and Kimmel (2003) showed that E[τn,i] and E[τn] can be computed efficiently and
numerically stably using the relations,

E[τn,i] =
n∑

m=2

Wn,i,mcm, (1)

E[τn] =

n∑
m=2

Vn,mcm, (2)

where the coefficients Vn,m are given by (Polanski and Kimmel 2003, Equation 12)

Vn,m = (2m− 1)
n!(n− 1)!

(n+m− 1)!(n−m)!
(1 + (−1)m), 2 ≤ m ≤ n,

and the coefficients Wn,i,m are efficiently computable by the recursions (Polanski and Kimmel 2003,
Equations 13–15):

Wn,i,2 =
6

n+ 1
,

Wn,i,3 = 30
(n− 2i)

(n+ 1)(n+ 2)
,

Wn,i,m+2 = −(1 +m)(3 + 2m)(n−m)

m(2m− 1)(n+m+ 1)
Wn,i,m +

(3 + 2m)(n− 2i)

m(n+m+ 1)
Wn,i,m+1, 2 ≤ m ≤ n− 2.

The coefficients cm in (1) and (2) are given by the integral,

cm =

∫ ∞
0

exp

[
−
(
m

2

)
R(t)

]
dt. (3)
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Assuming R(t) = ω(ln t) (i.e. R(t) grows asymptotically faster than ln t), the coefficients cm are the
expected first coalescence times for a sample of size m drawn at the present time from a population
with demographic model Φ, and R(t) is a time-rescaling function for the coalescent process, given
by the expression,

R(t) =

∫ t

0

Nr

N(τ)
dτ.

In this work, we consider the family of piecewise-exponential population size functions with M
pieces. Any population size function in this family of functions can be described by M − 1 time
points, 0 < t1 < · · · < tM−1 < ∞, where the effective population size at time t ∈ [ti, ti+1),
0 ≤ i ≤ M − 1, is given by N(t) = N(ti) exp(−βi(t − ti)). For notational consistency, we define
t0 = 0 and tM = ∞. The times ti are in units of Nr generations. In the piece corresponding to
time interval [ti, ti+1), exponential population growth (decline) is encoded by βi > 0 (βi < 0), while
βi = 0 represents a constant population. For this family of population models, we can compute the
integrals in (3) as follows. For t ∈ [ti, ti+1), 0 ≤ i ≤M − 1,

R(t)−R(ti) = 1[βi = 0]
Nr

N(ti)
(t− ti) + 1[βi 6= 0]

1

βi

Nr

N(ti)
(exp(βi(t− ti))− 1)

cm =
M−1∑
i=0

∫ ti+1

ti

exp

(
−
(
m

2

)
R(t)

)
dt

=
M−1∑
i=0

exp

(
−
(
m

2

)
R(ti)

){∫ ti+1

ti

exp

(
−
(
m

2

)
(R(t)−R(ti))

)
dt

}

=
M−1∑
i=0

exp

(
−
(
m

2

)
R(ti)

){
1[βi = 0]

∫ ti+1

ti

exp

(
−
(
m

2

)
Nr

N(ti)
(t− ti)

)
dt +

1[βi 6= 0]

∫ ti+1

ti

exp

(
−
(
m

2

)
1

βi

Nr

N(ti)
(exp(βi(t− ti))− 1)

)}

cm =

M−1∑
i=0

1[βi = 0]
1(
m
2

)N(ti)

Nr

{
exp

(
−
(
m

2

)
R(ti)

)
− exp

(
−
(
m

2

)
R(ti+1)

)}

+

M−1∑
i=0

1[βi 6= 0]
1

βi
exp

(
−
(
m

2

)
R(ti)

)
exp

(
1

βi

(
m

2

)
Nr

N(ti)

)
×

{
Ei

(
−
(
m

2

)
Nr

N(ti)

exp(βi(ti+1 − ti))
βi

)
− Ei

(
−
(
m

2

)
Nr

N(ti)

1

βi

)}
, (4)

where Ei(x) is the exponential integral special function, given by,

Ei(x) = −
∫ ∞
−x

e−t

t
dt.

Equation (4) can be further simplified to get

cm =

M−1∑
i=0

1[βi = 0]
1(
m
2

)N(ti)

Nr

{
exp

(
−
(
m

2

)
R(ti)

)
− exp

(
−
(
m

2

)
R(ti+1)

)}
+
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M−1∑
i=0

1[βi 6= 0]
1

βi

{
exp

(
−
(
m

2

)
R(ti+1)

)
exp

((
m

2

)
Nr

N(ti)

exp(βi(ti+1 − ti))
βi

)
×

Ei

(
−
(
m

2

)
Nr

N(ti)

exp(βi(ti+1 − ti))
βi

)

− exp

(
−
(
m

2

)
R(ti)

)
exp

((
m

2

)
Nr

N(ti)

1

βi

)
Ei

(
−
(
m

2

)
Nr

N(ti)

1

βi

)}
. (5)

We evaluate terms of the form exp(x)Ei(−x) that appear in (5) for large values of x using the
following asymptotic expansion,

exp(x)Ei(−x) = −1

x

∞∑
k=0

(−1)k
k!

xk
. (6)

For the results described in the main text, we truncated the divergent expansion (6) after 10 terms
for x ≥ 45.

2 Supplementary figures

Figures S1-S5 are supplementary figures referred to in the main text.

3 Impact of the SFS binning procedure on inference accuracy

For the results reported in the main text, when computing the likelihood of a given demographic
model, we used the first k entries of the observed SFS which account for a fraction f = 90% of the
segregating sites in the observed data while collapsing the remaining n − k − 1 SFS entries into
one class. To test the sensitivity of our inference procedure to this fraction f , we simulated 100
datasets under Scenario 1 with a growth duration of 100 generations and per-generation growth
rate of 6.4%. We ran our inference algorithm with several different values of f (Figure S6). As
expected, using a larger fraction f of entries of the SFS in the inference procedure leads to less
variance in the parameter estimates. However, the reduction in this variance quickly tapers off with
this fraction f . As seen in Figure S6, the violin plot for the inferred parameters look very similar
for f = 96% and f = 97%. At the same time, the number of leading entries of the SFS which
account for a given fraction of the total number of segregating sites rapidly increases with this
fraction f . In particular, while the first 41 entries of the SFS account for 96% of the segregating
sites, an additional 130 entries are needed to account for 97% of the segregating sites. In general, it
seems that one can trade inference accuracy for computational cost, and more research is needed to
theoretically characterize the informativeness of the individual entries of the SFS for demographic
inference.

4 Impact of errors in the SFS on inference accuracy

In large sample sizes sequenced at low coverage, various biases and errors in the genotype calling
procedure can lead to low frequency segregating variants being missed. Similarly, sequencing errors
can cause monomorphic segregating sites to be called as polymorphic. More generally, various
known and unknown sources of error can lead to an SFS that differs from the true SFS of the
sample under consideration, and it would be interesting to understand the effect of such errors on
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demographic inference (both for our specific method, and for an arbitrary algorithm). While we
do not have a rigorous way to analyze this dependence of demographic inference on uncertainty in
the SFS, we empirically examine the effect of errors on our demographic estimates for one of the
scenarios considered in the main text. Since the proportion of rare variants is strongly influenced by
the parameters of exponential growth in the effective population size (Keinan and Clark 2012), we
consider the effect of overestimating or underestimating the true number of singletons for Scenario
1 with a growth rate of 6.4% per gen for 100 gens. Using a mutation rate of 2.5× 10−8 per bp per
gen per haploid, we simulated 100 datasets of 100 loci of 10kb each according to Scenario 1 with
a growth rate of 6.4% per gen for the most recent 100 gens. To simulate missed singleton variants,
we removed a fraction of the singleton sites and added them to the set of monomorphic sites.
Figure S7 shows the inferred demographic parameters as a function of the proportion of singleton
variants that are missed. As the fraction of singletons missed increases, the inferred duration
and rate of growth both decrease. To simulate the effect of incorrect singleton variant calls, we
removed a fraction of the monomorphic sites and called them as singletons. Figure S8 shows the
inferred demographic parameters as a function of the proportion of monomorphic variants that are
misclassified as singletons, potentially due to sequencing errors. As this proportion of incorrectly
called singletons increases, the inferred duration and rate of growth both increase due to the excess
of singletons observed. These inferred parameters also depend on the mutation rate; a higher
mutation rate will lead to less sites being monomorphic, and thus decrease the impact of such
errors on the inferred demographic parameters.

5 Details of the optimization procedure

The parameter optimization for the results reported in the main text were performed using the non-
linear optimization program IPOPT (Wächter and Biegler 2006). The gradient of the log-likelihood
function with respect to the demographic parameters were calculated through automatic differen-
tiation (AD) using the C++ library ADOL-C (Walther and Griewank 2012). A description of AD
can be found in the main text. IPOPT can approximate the Hessian matrix of the Lagrangian of the
optimization problem using the supplied gradient information and the L-BFGS algorithm. Hence,
we do not explicitly compute the exact Hessian matrix even though this is possible in principle
using AD. To deal with local optima in the likelihood landscape, we performed the optimization
for each of the simulated demographic models in Scenarios 1 and 2 by starting the optimization
from 10 randomly chosen initialization points for the demographic parameters for each dataset.
We found that for most of the datasets, the inferred demographic models did not depend on the
starting point, suggesting that these likelihood landscapes have a unique local optimum. For the
neutral regions dataset of Gazave et al. (2014) and the exome-sequencing dataset of Nelson et al.
(2012), we performed the optimization with 100 random initialization points for the demographic
parameters. For these datasets as well, most values of the initialization points resulted in the same
inferred demographic parameters.

6 Comparison with the inference method of Gutenkunst et al.

Gutenkunst et al. (2009) developed a diffusion-based method, ∂a∂i, that can infer the joint demog-
raphy of multiple subpopulations with changing population sizes and complex patterns of migration
between subpopulations. ∂a∂i computes the expected SFS of a given demographic model by solving
the Kolmogorov forward PDE for the density of derived mutations as a function of allele frequency
and time. It solves this PDE using numerical methods that discretize the allele frequency and time
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dimensions using suitably chosen grid points, and by performing extrapolation of an increasing se-
quence of discretization grid points. Excoffier et al. (2013) performed extensive comparisons of their
coalescent simulation based method, fastsimcoal, with ∂a∂i for several demographic scenarios.
Here, we briefly compare the efficiency and inference accuracy of ∂a∂i with our method for very
large samples using several simulated datasets generated under Scenario 1 where the population
size grew exponentially at a rate of 6.4% per generation for the last 100 generations (see Figure 1A
in the main text). Averaged over 10 simulated datasets with 20,000 haploid individuals each, ∂a∂i
estimated a mean exponential growth rate of 7% per generation lasting for about 70 generations.
We used ∂a∂i with 500 discretization grid points for these comparisons, and the average runtime
on these datasets was 80 CPU minutes (compared to an average of about 1 CPU minute for our
method). Using ∂a∂i with 20,000 discretization grid points took almost 3 CPU days and did not
improve the inference accuracy. To investigate the above bias in parameter inference, we used
∂a∂i to compute the expected SFS of the true demographic model in Scenario 1 for samples
of size 20, 200, 2,000, and 20,000 haploids. Figure S9 shows the first few leading entries of the
expected SFS for the above demographic model, computed in three ways — using ∂a∂i, using our
method, and using coalescent simulations with the ms program. The expected SFS computed by
our method agrees with the empirical SFS from ms simulations very closely. On the other hand,
∂a∂i seems to err in computing the number of singletons and doubletons, with this discrepancy
getting worse as the sample size increases. For these expected SFS computations, we used ∂a∂i
with 200,000, 300,000, and 400,000 grid points, and applied ∂a∂i’s extrapolation procedure to
estimate the entries of the SFS as the number of grid points goes to infinity.
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Figure S1: Joint and marginal distributions of the inferred duration and rate of exponential growth
for several parameter settings in Scenario 1. Each point in each plot represents a simulated
dataset with 100 unlinked loci of length 10 kb each over 10,000 diploid individuals. The green
vertical and horizontal lines denote the true simulation parameter values for the duration and rate
of exponential population growth. In Scenario 1, the present population size is 512 times larger
than the ancestral population size. The solid red curves (dashed red curves) in each plot are the
combinations of parameter values which have this same ratio (resp., higher and lower by 25%) of
present to ancestral population size. (a) t1 = 100 gens, r1 = 6.44% per gen, (b) t1 = 300 gens,
r1 = 2.10% per gen, (c) t1 = 500 gens, r1 = 1.26% per gen, (d) t1 = 600 gens, r1 = 1.05% per gen.
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Figure S2: Joint distribution of the inferred growth onset time and growth rate in Scenario 2
for (a) epoch 1 with t1 = 100 gens and r1 = 4% per gen, and for (b) epoch 2 with t2 = 400
gens and r2 = 1% per gen. These plots were generated using 100 simulated datasets with 100
unlinked loci of 10 kb each over 10,000 diploid individuals. The green lines indicate the true values
for the simulation parameters. In Scenario 2, the population expands about 50-fold and 20-fold
in epochs 1 and 2, respectively. The solid red curves are the combinations of parameter values
which have these same population expansion factors in epochs 1 and 2, while the dashed red curves
are the combinations of parameter values which are higher and lower by 25% compared to the
true population expansion factors in each epoch. The inferred parameter combinations reflect the
population expansion factors very well.
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Figure S3: Violin plots of the inferred mutation rates for each of the six simulation parameter
combinations of Scenario 1, and for Scenario 2. Each plot represents 100 simulated datasets
with 100 unlinked loci of 10 kb each over 10,000 diploid individuals. All loci were simulated using a
mutation rate of 2.5×10−8 per bp per gen per haploid. The uncertainty in the inferred mutation rate
is significantly higher for Scenario 2 due to the higher uncertainty in the demographic parameters
being simultaneously estimated (see Figures 2C and 2D in the main text).
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Figure S4: Demographic model inferred by our program on the neutral regions dataset of Gazave
et al. (2014). We inferred a model with three parameters: the rate and onset of recent exponential
growth, and the population size just before the onset of exponential growth. The ancient bottlenecks
were fixed to those inferred by Keinan et al. (2007).

10



0 5000 10000 15000 20000

Time t, in generations

100

101

102

103

104

105

106

107

Po
pu

la
ti

on
si

ze
N

(t
),

in
di

pl
oi

ds

Figure S5: Demographic model of recent population expansion inferred by our program on the CEU
exome-sequencing dataset of Nelson et al. (2012). The ancient demographic model before the epoch
of exponential growth was fixed to that inferred by Schaffner et al. (2005). The two population
bottlenecks 2,000 and 3,500 generations in the past correspond to the European-Asian population
split and the out-of-Africa bottleneck, respectively. Our method infers an epoch of exponential
population growth beginning 372 generations in the past resulting in the effective population size
expanding from 7,700 individuals to 1.9 million individuals at a rate of 1.5% per generation.
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Figure S6: Violin plots of the (a) duration and (b) rate of exponential growth in the population
size as a function of the fraction f of entries of SFS that are used in the inference procedure, for
100 simulated datasets of 100 loci of 10kb length under Scenario 1 with a growth duration of
t1 = 400 gens and a growth rate of r1 = 1.6% per gen. The green lines indicate the true values for
the simulation parameters. When computing the log-likelihood function, we used the first k entries
of the SFS which account for an f fraction of the number of segregating sites, while collapsing the
remaining n− k− 1 segregating sites into one class. The x-axis labels correspond to the fraction f
used, with the numbers in parentheses giving the average value of k (over the simulation replicates)
such that the leading k entries of the SFS account for an f fraction of the segregating sites.
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Figure S7: Violin plots of the (a) duration and (b) rate of exponential growth as a function of
the fraction of singletons that are missed, when the data is simulated according to Scenario 1
with a growth rate of 6.4% per gen lasting for the most recent 100 generations. As the fraction of
singletons missed increases, the rate and duration of inferred growth are smaller.
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Figure S8: Violin plots of the (a) duration and (b) rate of exponential growth as a function of the
fraction of monomorphic sites that are incorrectly classified as singletons, when 100 loci of 10kb
each are simulated according to Scenario 1 with a growth rate of 6.4% per gen lasting for the
most recent 100 generations, and a mutation rate of 2.5× 10−8 per bp per gen. As the fraction of
monomorphic sites incorrectly classified as singletons increases, the rate and duration of inferred
growth are larger due to the perceived excess of singletons.
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Figure S9: The first few entries of the expected SFS for a sample of (a) 20, (b) 200, (c) 2,000, and (d)
20,000 randomly sampled haploid individuals under the demographic model in Scenario 1, where
the population has recently expanded for 100 generations at 6.4% per generation. The bars denote
the entries of the SFS computed using the program ∂a∂i (Gutenkunst et al. 2009) (blue) and by our
method fastNeutrino (green), and the empirical SFS from datasets simulated using the coalescent
simulator ms (red). We used ms to simulate 106 unlinked loci of 100 bp each to empirically estimate
the expected SFS. The entries of the expected SFS computed by our method agree with those from
the mssimulations very closely. On the other hand, the proportion of singletons computed by ∂a∂i
deviates significantly from these values for large sample sizes.
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