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Calculation for generation of OH radicals in N2 plasma. 

In order to understand the reason for more generation of H2O2, we have to 

understand the generation of OH radicals in N2 plasma. One of the most important reactive 

species in the N2 plasma are the excited nitrogen molecules in a metastable level of 

N2(A3u
+
), which dissociate water molecules generating hydroxyl radicals and hydrogen 

atoms. The excitation energy * of the metastable level is * = 6.8 eV and the excitation 

coefficient N2* of nitrogen molecules by the plasma electrons is given
1 

as:  
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Where vth is the electron thermal speed. For the electron temperature Te = 1 eV, the excitation 

coefficient in Eq. (1) is calculated as N2* = 6.410
-12

cm
3
/s. The nitrogen molecules in the 

excited metastable state will dissociate the water molecules represented as N2(A3u
+
) + H2O 

 OH + H + N2 with dissociation coefficient
2
 of HO = 510

-14
 cm

3
/s and then returning back 

to the ground state of N2. This quenching mechanism of excited molecules is dominant in the 

atmospheric nitrogen in vicinity of abundant water molecules. Therefore, the rate equation of 

the nitrogen molecules in the excited metastable state is  
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Where nN2 and nH2O are nitrogen and water molecular densities, respectively, and np is the 

plasma density. The nitrogen molecules in the metastable state can be estimated in steady-

state with dn/dt = 0 given by nN2* = N2*nN2np/HOnH2O = (6.410
-

13
cm

3
/s)(2.610

19
/cm

3
)(10

12
/cm

3
) /(510

-14
cm

3
/s)/(110

17
/cm

3
) = 3.310

15
/cm

3
 for the plasma 

density of np = 10
12

/cm
3
. This is the estimated number of the nitrogen molecular density in 

the metastable state. There are many ways to eliminate the hydrogen atoms including OH + H 

+ M  H2O + M with its rate coefficient
3 

of H2O = 4.3810
-30

(Tr/T)
2
 cm

6
/mole

2
/s = 1.1410

-

10 
cm

3
/mole/s in air at T= 300 K, which is the most dominant reaction in the N2 gas. Therefore, 

in the steady-state case, assuming that the hydroxyl density is about nOH = 5  10
15

/cm
3
, the 

hydrogen density can be calculated to be  

nH = HOnN2*nH2O/H2O/nOH = (510
-14

cm
3
/s)(3.310

15
/cm

3
)(110

17
/cm

3
)/(1.1410

-

10
cm

3
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15
/cm
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13
/cm
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which gives the estimate of the hydrogen density in the nitrogen plasma. Meanwhile, the OH 

radicals may get disappeared by many ways. The leading reactions of OH eliminations are as: 

OH + OH + M  H2O2 + M with its rate coefficient
4 

of H2O2 = 6.8310
-31

(Tr/T)
0.8

 

cm
6
/mole

2
/s = 1.7810

-11
cm

3
/mole/s in gas at T= 300K. In order to find the OH radical 

density in the steady-state solution, we considered OH generation in N2 plasma using 

N2*nN2np = HOnN2*nH2O = H2O2nOH
2
, which is expressed as nOH

2
 = N2*nN2np/H2O2. 

Therefore, the hydroxyl density estimation is nOH 3.06  10
15

/cm
3
. Therefore, the hydroxyl 

density in the nitrogen plasma is estimated to be several times of 10
15

/cm
3
. It is important to 

investigate the generation of NH radicals. The hydrogen atom density is estimated as nH = 

310
13

/cm
3
. The dissociation coefficient of nitrogen molecules by N2 + e  N + N + e due to 

the electron impact is given by
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which is kN = 110
-12

 cm
3
/s at Te = 1eV. Atomic nitrogen may disappear by forming NH 

which can be represented as, N + H  NH with its reaction coefficient
5
 of NH = 1.3  10

-

12
cm

3
/s. But, the most dominant reaction may be N + OH  NO + H with its reaction 

coefficient
6
 of NO = 4.7  10

-11
cm

3
/s.  
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The rate equation of nitrogen atom is given by  

2 ,N
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whose steady-state solution is nN = kNnN2np/NOnOH = 1.110
14

/cm
3
. This is the approximated 

number of atomic nitrogen for nOH = 5 10
15

/cm
3
. We can see a considerably high atomic 

nitrogen density. These atomic nitrogen and hydrogen atoms combine to form NH radical. 

which may disappear through the reaction of NH + OH forming NH2, or HNO, or H2O with 

its reaction coefficient
3
 of M = 810

-11
cm

3
/s. The rate equation of NH radical is expressed as 

NH
NH H N M NH OH

dn
n n n n

dt
  

                          (5) 

whose steady-state solution with dnNH/dt = 0 is given by nNH = NHnHnN/MnOH = 

1.0710
10

/cm
3
. The density of NH radical in comparison with the hydroxyl density was found 

to be very low. However, discharge plasma in the nitrogen gas mixed with water molecules 

generates the NH radicals, but the density of NH radicals is 5 orders in magnitude less than 

the hydroxyl density. This suggests that hydroxyl radicals are the dominating species in the 

nitrogen plasma and which in turn react with each other to form hydrogen peroxides.  
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Figure Captions 

Fig. S1. Conversion of TA to HTA using different feeding gases plasma for 3 min using 

fluorescence spectroscopy.  

Fig. S2. The emission spectra of atmospheric-pressure plasma jet (APPJ) with Air as feeding 

gas. 

Fig. S3. The emission spectra of atmospheric-pressure plasma jet (APPJ) with N2 as feeding 

gas. 

Fig. S4. The emission spectra of atmospheric-pressure plasma jet (APPJ) with Ar as feeding 

gas. 

Fig. S5. The emission spectra of atmospheric-pressure plasma jet (APPJ) for NO/N2 at 337 

nm in all feeding gases plasma.  

Fig. S6. (a) pH and (b) Temperature for all feeding gases plasma for 3 min treatment. All 

values are expressed as ± SD in triplicates. Students’t-test was performed to control (* 

denotes P<0.05, ** denotes P<0.01). 

Fig. S7. Far-UV CD spectra analysis of (a) Hb and (b) Mb at different concentration of H2O2. 

The data points are average values of at least six determinations, the error bars indicating ± 

mean deviation. 

Fig. S8. Melting temperature determination of Hb using the differential scanning calorimetry 

(DSC). The data points are average values of at least three determinations. 

Fig. S9. Melting temperature determination of Mb using the differential scanning calorimetry 

(DSC). The data points are average values of at least three determinations. 

Fig. S10. Melting temperature determination of Hb using the circular dichroism (CD). The 

data points are average values of at least three determinations. 

Fig. S11. Melting temperature determination of Mb using the circular dichroism (CD). The 

data points are average values of at least three determinations. 

Fig. S12. Fluorescence analysis of (a) Hb and (b) Mb at different concentration of H2O2. The 

data points are average values of at least six determinations. 

Fig. S13. Gel electrophoresis of Hb and Mb.  

Fig. S14. UV-vis spectroscopy of (a) Hb in different feeding gases; (b) Mb in different 
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feeding gases; (c) Hb in different concentration of H2O2 and (d) Mb in different concentration 

of H2O2. The data points are average values of at least three determinations. 

Fig. S15: 
1
H NMR of Hb (blue) and Hb with 60 μM of H2O2 (red). 

Fig. S16: 
1
H NMR of Mb (blue) and Mb with 60 μM of H2O2 (red). 

Fig. S17. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Glycine, Glycine + Ar, Glycine + Air and Glycine + N2. 

Fig. S18. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Glutamic acid, Glutamic acid + Ar, Glutamic acid + Air 

and Glutamic acid + N2. 

Fig. S19. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Asparagine, Asparagine + Ar, Asparagine + Air and 

Asparagine + N2. 

Fig. S20. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Arginine, Arginine + Ar, Arginine + Air and Arginine + 

N2. 

Fig. S21. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Alanine, Alanine + Ar, Alanine + Air and Alanine + N2. 

Fig. S22. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Threonine, Threonine + Ar, Threonine + Air and 

Threonine + N2. 

Fig. S23. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Proline, Proline + Ar, Proline + Air and Proline + N2. 

Fig. S24. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-

MS) based qualitative bioanalysis of Lysine, Lysine + Ar, Lysine + Air and Lysine + N2 
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Fig. S1. 
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Fig. S2 
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Fig. S3 
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Fig. S4 
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Fig. S5   
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Fig. S6 
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Fig. S7 

 

 

Fig. S8 
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Fig. S9 
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Fig. S10 
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Fig. S14  
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Fig. S18 
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Fig. S19 
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Fig. S20 
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Fig. S21 
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Fig. S22 
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Fig. S23 
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Fig. S24 
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Table S1: Comparison of the melting temperature between DSC and CD of Hb and Mb.  

Sample DSC Tm/ (
0
C) CD Tm/ (

0
C) 

Hb 66.37 66.20 

Hb + Air plasma 65.10 65.01 

Hb + N2 plasma 59.25 59.10 

Hb + Ar plasma 61.75 61.59 

Mb 84.10 84.20 

Mb + Air plasma 83.70 83.10 

Mb + N2 plasma 80.01 79.60 

Mb + Ar plasma 80.98 81.50 

 

 

Table S2. The variation in the particle size of proteins (Hb and Mb) after the treatment with 

soft plasma jet using different feeding gases. 

Sample Hydrodynamic Diameter (dH) (nm) 

Hb 9.7 ± 5 

Hb + Air plasma 5.8 ± 6 

Hb + N2 plasma 59.2 ± 3 

Hb + Ar plasma 25.4 ± 4 

Mb 1.7 ± 10 

Mb + Air plasma 0.8 ± 9 

Mb + N2 plasma 43.2 ± 4 

Mb + Ar plasma 37.6 ± 3 

 

 


