Supporting Information

Influence of reactive species on the modification of biomolecules generated from the soft plasma

Pankaj Attri¹ , Naresh Kumar¹ , Ji Hoon Park¹ , Dharmendra Kumar Yadav² , Sooho Choi³ , Han S. Uhm¹ , In Tae Kim⁴ , Eun Ha Choi1* , Weontae Lee3*

1 Plasma Bioscience Research Center / Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Korea 139-701. ² Laboratory of Nanoscale Characterization & Environmental Chemistry, Department of *Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791,Korea ³Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 120-749, Korea ⁴Department of Chemistry, Kwangwoon University, Seoul, Korea 139-701*

Calculation for generation of OH radicals in N² plasma.

In order to understand the reason for more generation of H_2O_2 , we have to understand the generation of OH radicals in N_2 plasma. One of the most important reactive species in the N_2 plasma are the excited nitrogen molecules in a metastable level of $N_2(A_3\Sigma_u^+)$, which dissociate water molecules generating hydroxyl radicals and hydrogen atoms. The excitation energy ε^* of the metastable level is $\varepsilon^* = 6.8$ eV and the excitation

coefficient
$$
\alpha_{N2^*}
$$
 of nitrogen molecules by the plasma electrons is given¹ as:
\n
$$
\alpha_{N2^*}(T_e) = \frac{2}{\sqrt{\pi}} q v_{th} (\varepsilon^* + 2T_e) \exp\left(-\frac{\varepsilon^*}{T_e}\right)
$$
\n(1)

Where v_{th} is the electron thermal speed. For the electron temperature $T_e = 1$ eV, the excitation coefficient in Eq. (1) is calculated as $\alpha_{N2^*} = 6.4 \times 10^{-12} \text{cm}^3/\text{s}$. The nitrogen molecules in the excited metastable state will dissociate the water molecules represented as $N_2(A_3\Sigma_u^+) + H_2O$ \rightarrow OH + H + N₂ with dissociation coefficient² of $\alpha_{HO} = 5 \times 10^{-14}$ cm³/s and then returning back to the ground state of N_2 . This quenching mechanism of excited molecules is dominant in the atmospheric nitrogen in vicinity of abundant water molecules. Therefore, the rate equation of the nitrogen molecules in the excited metastable state is

$$
\frac{dn_{N2^*}}{dt} = \alpha_{N2^*} n_{N2} n_p - \alpha_{HO} n_{N2^*} n_{H2O},\tag{2}
$$

Where n_{N2} and n_{H2O} are nitrogen and water molecular densities, respectively, and n_p is the plasma density. The nitrogen molecules in the metastable state can be estimated in steadystate with $dn/dt = 0$ given by $n_{N2^*} = \alpha_{N2^*} n_{N2} n_p / \alpha_{H0} n_{H20} = (6.4 \times 10^{-7})$ 13 cm³/s)(2.6×10¹⁹/cm³)(10¹²/cm³)/(5×10⁻¹⁴cm³/s)/(1×10¹⁷/cm³) = 3.3×10¹⁵/cm³ for the plasma density of $n_p = 10^{12} / \text{cm}^3$. This is the estimated number of the nitrogen molecular density in the metastable state. There are many ways to eliminate the hydrogen atoms including $OH + H$ $+ M \rightarrow H_2O + M$ with its rate coefficient³ of $\alpha_{H2O} = 4.38 \times 10^{-30} (T_r/T)^2$ cm⁶/mole²/s = 1.14×10⁻³ ¹⁰ cm³/mole/s in air at *T*= 300 K, which is the most dominant reaction in the N₂ gas. Therefore, in the steady-state case, assuming that the hydroxyl density is about $n_{OH} = 5 \times 10^{15} / \text{cm}^3$, the hydrogen density can be calculated to be

$$
n_H = \alpha_{H0} n_{N2} * n_{H2O} / \alpha_{H2O} / n_{OH} = (5 \times 10^{-14} \text{cm}^3/\text{s})(3.3 \times 10^{15} / \text{cm}^3)(1 \times 10^{17} / \text{cm}^3)/(1.14 \times 10^{-10} \text{cm}^3/\text{s})(5 \times 10^{15} / \text{cm}^3) = 3 \times 10^{13} / \text{cm}^3
$$

which gives the estimate of the hydrogen density in the nitrogen plasma. Meanwhile, the OH radicals may get disappeared by many ways. The leading reactions of OH eliminations are as: OH + OH + M \rightarrow H₂O₂ + M with its rate coefficient⁴ of $\alpha_{H2O2} = 6.83 \times 10^{-31} (T_r/T)^{0.8}$ cm⁶/mole²/s = 1.78×10⁻¹¹cm³/mole/s in gas at *T*= 300K. In order to find the OH radical density in the steady-state solution, we considered OH generation in N_2 plasma using $\alpha_{N2} * n_{N2}n_p = \alpha_{HO}n_{N2} * n_{H2O} = \alpha_{H2O2}n_{OH}^2$, which is expressed as $n_{OH}^2 = \alpha_{N2} * n_{N2}n_p/\alpha_{H2O2}$. Therefore, the hydroxyl density estimation is $n_{OH} \approx 3.06 \times 10^{15} / \text{cm}^3$. Therefore, the hydroxyl density in the nitrogen plasma is estimated to be several times of $10^{15}/\text{cm}^3$. It is important to investigate the generation of NH radicals. The hydrogen atom density is estimated as n_H = $3\times10^{13}/\text{cm}^3$. The dissociation coefficient of nitrogen molecules by N₂ + e \rightarrow N + N + e due to the electron impact is given by

$$
k_N(T_e) = 4.26 \times 10^{-10} \sqrt{T_e} (10 + 2T_e) \exp\left(-\frac{10}{T_e}\right),\tag{3}
$$

which is $k_N = 1 \times 10^{-12}$ cm³/s at $T_e = 1$ eV. Atomic nitrogen may disappear by forming NH which can be represented as, $N + H \rightarrow NH$ with its reaction coefficient⁵ of $\alpha_{NH} = 1.3 \times 10^{-10}$ ¹²cm³/s. But, the most dominant reaction may be N + OH \rightarrow NO + H with its reaction coefficient⁶ of $\alpha_{NO} = 4.7 \times 10^{-11} \text{cm}^3/\text{s}$.

The rate equation of nitrogen atom is given by

$$
\frac{dn_N}{dt} = k_N n_{N2} n_P - \alpha_{NO} n_N n_{OH},\qquad(4)
$$

whose steady-state solution is $n_N = k_N n_{N2} n_p / \alpha_{N0} n_{OH} = 1.1 \times 10^{14} / \text{cm}^3$. This is the approximated number of atomic nitrogen for $n_{OH} = 5 \times 10^{15} / \text{cm}^3$. We can see a considerably high atomic nitrogen density. These atomic nitrogen and hydrogen atoms combine to form NH radical. which may disappear through the reaction of $NH + OH$ forming $NH₂$, or HNO, or H₂O with its reaction coefficient³ of $\alpha_M = 8 \times 10^{-11} \text{cm}^3/\text{s}$. The rate equation of NH radical is expressed as

$$
\frac{dn_{NH}}{dt} = \alpha_{NH} n_H n_N - \alpha_M n_{NH} n_{OH}
$$
\n(5)

whose steady-state solution with $dn_{NH}/dt = 0$ is given by $n_{NH} = \alpha_{NH}n_{H}n_{N}/\alpha_{M}n_{OH} =$ $1.07\times10^{10}/\text{cm}^3$. The density of NH radical in comparison with the hydroxyl density was found to be very low. However, discharge plasma in the nitrogen gas mixed with water molecules generates the NH radicals, but the density of NH radicals is 5 orders in magnitude less than the hydroxyl density. This suggests that hydroxyl radicals are the dominating species in the nitrogen plasma and which in turn react with each other to form hydrogen peroxides.

References

- 1. Uhm, H. S. *et al.* Dissociation and excitation coefficients of nitrogen molecules and nitrogen monoxide generation. *Phys Plasmas* **29**, 083502-083506 (2013).
- 2. Herron, J. T. Evaluated chemical kinetics data for reactions of N(2D), N(2P), and $N_2(A_3\Sigma_u^+)$ in the gas phase. *J Phys Chem Ref Data* 28, 1453–1483 (1999).
- 3. Baulch, D. L. *et al.* Evaluated Kinetic Data for Combustion Modeling: Supplement II. *J Phys Chem Ref Data* **21**, 411–429 (1992).
- 4. Forster, R. *et al.* High pressure range of the addition of HO to HO, NO, NO2, and CO. I. Saturated laser induced fluorescence measurements at 298 K. *J Chem Phys* **103**, 2949 (1995).
- 5. Brown, R. L. A Measurement of the Rate of the Reaction $N + H + M \rightarrow NH + M$. *Int J Chem Kinet* **5**, 663-668 (1973).

6. Baulch, D. L. *et al.* Evaluated kinetic data for combustion modeling. Supplement I. *J Phys Chem Ref Data* **23**, 847– 1033 (1994).

Figure Captions

Fig. S1. Conversion of TA to HTA using different feeding gases plasma for 3 min using fluorescence spectroscopy.

Fig. S2. The emission spectra of atmospheric-pressure plasma jet (APPJ) with Air as feeding gas.

Fig. S3. The emission spectra of atmospheric-pressure plasma jet (APPJ) with N_2 as feeding gas.

Fig. S4. The emission spectra of atmospheric-pressure plasma jet (APPJ) with Ar as feeding gas.

Fig. S5. The emission spectra of atmospheric-pressure plasma jet (APPJ) for NO/N₂ at 337 nm in all feeding gases plasma.

Fig. S6. (a) pH and (b) Temperature for all feeding gases plasma for 3 min treatment. All values are expressed as \pm SD in triplicates. Students't-test was performed to control (* denotes P<0.05, $**$ denotes P<0.01).

Fig. S7. Far-UV CD spectra analysis of (a) Hb and (b) Mb at different concentration of H_2O_2 . The data points are average values of at least six determinations, the error bars indicating \pm mean deviation.

Fig. S8. Melting temperature determination of Hb using the differential scanning calorimetry (DSC). The data points are average values of at least three determinations.

Fig. S9. Melting temperature determination of Mb using the differential scanning calorimetry (DSC). The data points are average values of at least three determinations.

Fig. S10. Melting temperature determination of Hb using the circular dichroism (CD). The data points are average values of at least three determinations.

Fig. S11. Melting temperature determination of Mb using the circular dichroism (CD). The data points are average values of at least three determinations.

Fig. S12. Fluorescence analysis of (a) Hb and (b) Mb at different concentration of H_2O_2 . The data points are average values of at least six determinations.

Fig. S13. Gel electrophoresis of Hb and Mb**.**

Fig. S14. UV-vis spectroscopy of (a) Hb in different feeding gases; (b) Mb in different

feeding gases; (c) Hb in different concentration of H_2O_2 and (d) Mb in different concentration of H_2O_2 . The data points are average values of at least three determinations.

Fig. S15: ¹H NMR of Hb (blue) and Hb with 60 μ M of H₂O₂ (red).

Fig. S16: ¹H NMR of Mb (blue) and Mb with 60 μ M of H₂O₂ (red).

Fig. S17. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Glycine, Glycine + Ar, Glycine + Air and Glycine + N_2 .

Fig. S18. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Glutamic acid, Glutamic acid + Ar, Glutamic acid + Air and Glutamic acid $+ N_2$.

Fig. S19. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Asparagine, Asparagine + Ar, Asparagine + Air and Asparagine + N_2 .

Fig. S20. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Arginine, Arginine + Ar, Arginine + Air and Arginine + $N₂$.

Fig. S21. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Alanine, Alanine + Ar, Alanine + Air and Alanine + N_2 .

Fig. S22. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Threonine, Threonine + Ar, Threonine + Air and Threonine + N_2 .

Fig. S23. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Proline, Proline + Ar, Proline + Air and Proline + N_2 .

Fig. S24. Liquid Chromatograph /Capillary Electrophoresis- Mass Spectrometer (LC/CE-MS) based qualitative bioanalysis of Lysine, Lysine + Ar, Lysine + Air and Lysine + N_2

Fig. S1.

Fig. S2

 N_2 plasma

Fig. S3

Fig. S4

Fig. S5

Fig. S9

Fig. S10

Fig. S12

Fig. S13

Glycine Control

Glutamic acid (Glu)

Glutamic acid + Air

Asparagine control

21

Arginine control

23

Alanine control

Threonine control

Lysine control

Sample	DSC T _m / (^0C)	CD $T_m/(^0C)$
Hb	66.37	66.20
$Hb + Air plasma$	65.10	65.01
$Hb + N_2$ plasma	59.25	59.10
$Hb + Ar$ plasma	61.75	61.59
Mb	84.10	84.20
$Mb + Air plasma$	83.70	83.10
$Mb + N2 plasma$	80.01	79.60
$Mb + Ar$ plasma	80.98	81.50

Table S1: Comparison of the melting temperature between DSC and CD of Hb and Mb.

Table S2. The variation in the particle size of proteins (Hb and Mb) after the treatment with soft plasma jet using different feeding gases.

Sample	Hydrodynamic Diameter (dH) (nm)
Hb	9.7 ± 5
$Hb + Air plasma$	5.8 ± 6
$Hb + N_2$ plasma	59.2 ± 3
$Hb + Ar$ plasma	25.4 ± 4
Mb	1.7 ± 10
$Mb + Air plasma$	0.8 ± 9
$Mb + N2 plasma$	43.2 ± 4
$Mb + Ar$ plasma	37.6 ± 3