# name	length	av.qual	#-reads	mx.cov.	av.cov	GC%	blast (<10 ⁻⁵)
Galdieria_rep_c807	21716	61	21276	172	85.98	43.94	Mt (full)
Galdieria_rep_c808	13012	60	5631	82	39.74	33.4	Ср
Galdieria_rep_c809	4830	59	1608	52	31.11	29.34	Ср
Galdieria_rep_c812	8374	59	2709	54	31.08	24.6	Ср
Galdieria_rep_c811	16987	59	5320	50	29.88	28.1	Ср
Galdieria_rep_c813	7704	59	2447	60	29.84	26.36	Ср
Galdieria_rep_c815	11901	59	3697	56	29.58	26.58	Ср
Galdieria_rep_c819	17564	60	5566	53	29.53	28.06	Ср
Galdieria_rep_c821	8023	60	2511	45	29.36	29.1	Ср
Galdieria_rep_c831	6154	59	1949	47	29.22	27.48	Ср
Galdieria_rep_c816	11927	59	3670	55	28.88	26.84	Ср
Galdieria_rep_c814	9647	60	3082	50	28.71	29.97	Ср
Galdieria_rep_c850	228	55	65	60	28.67	39.47	Mt (repeat region)
Galdieria_rep_c818	7767	59	2390	51	28.44	29.13	Ср
Galdieria_rep_c828	7084	59	2130	43	28.31	26.89	Ср
Galdieria_rep_c824	3770	59	1122	44	27.58	29.77	Ср
Galdieria_rep_c822	4689	59	1365	45	27.57	25.02	Ср
Galdieria_rep_c825	6138	59	1799	46	27.14	27.34	Ср
Galdieria_rep_c829	2561	59	760	47	27.09	27.72	Ср
Galdieria_rep_c820	421	52	114	54	26.99	24.29	Nc (Gasu_62900)
Galdieria_rep_c834	3273	59	953	41	26.8	28.02	Ср
Galdieria_rep_c844	231	52	65	59	26.75	40.26	Mt (repeat region)
Galdieria_rep_c837	1066	58	294	41	26.41	24.77	Ср
Galdieria_rep_c830	1694	57	472	46	26.41	24.79	Ср
Galdieria_rep_c817	6517	59	1827	48	26.21	24.8	Ср
Galdieria_rep_c833	588	58	170	40	25.97	26.7	Ср
Galdieria_rep_c836	744	59	226	50	25.46	34.81	Nc (Gasu_61090)
Galdieria_rep_c823	1891	57	492	51	24.9	26.6	Nc (Gasu_62020)
Galdieria_rep_c826	1672	58	462	41	23.76	28.83	Ср
Galdieria_rep_c810	2549	54	603	92	22.29	31.83	Nc (Gasu_63970)
Galdieria_c804	1925	58	475	60	21.51	35.45	Nc (Gasu_34410)
Galdieria_rep_c840	317	56	63	33	18.36	36.59	Nc (Gasu_63580)
Galdieria_rep_c862	668	55	126	46	17.94	33.88	Nc (Gasu_63970)
Galdieria_rep_c827	3208	58	626	58	16.87	35.66	Nc (Gasu_64790)
Galdieria_rep_c846	1129	56	209	36	16.23	35.43	Nc (Gasu_62440)
Galdieria_rep_c845	821	59	150	38	16.21	35.32	No Match
Galdieria_c797	714	54	143	39	16.13	32.35	Nc (Gasu_65690)
Galdieria_rep_c848	2512	58	481	43	16.04	32.84	No Match
Galdieria_rep_c861	373	56	66	30	15.96	21.98	Ср
Galdieria_rep_c854	1175	56	203	35	15.4	37.11	Nc (Gasu_42170)
Galdieria_rep_c838	3205	58	557	49	15.23	34.1	Nc (Gasu_61670)
Galdieria_rep_c875	488	48	81	40	15.07	25.41	Nc (Gasu_15650)
Galdieria_c388	203	52	33	28	14.73	19.21	Nc (Gasu_63970)
Galdieria_rep_c835	1232	55	201	51	14.5	35.88	Nc (Gasu_61740)

Table S1 - Contigs >200 bp and >15x coverage from the SRR039878 MIRA assembly

	Cyanidio	phyceae		Bangio	giophyceae Florideophycea			Florideophyceae					
	Cmer	Gsul	Phai	Ppur	Pumb	Pyez	Ccri	Gand	Glem	Gory	Ppul	AA Freq	
А	-1.3	-2.3	1.1	1.1	1.1	1.0	-1.2	1.0	-1.0	-1.0	-1.4	4.9	
С	-1.1	1.0	-1.0	1.1	1.4	-1.1	1.1	-1.1	-1.1	-1.0	1.8	1.3	
D	1.0	-2.0	1.2	1.4	1.2	1.3	-1.0	-1.0	-1.0	-1.1	-1.1	2.3	
Е	-1.0	3.2	1.2	1.3	1.0	1.2	-1.1	-1.0	-1.0	-1.0	-1.2	2.8	
F	1.0	-3.9	-1.2	-1.3	-1.1	-1.3	1.0	1.1	1.0	-1.0	1.1	9.2	
G	-1.2	2.1	1.0	-1.0	1.0	1.0	-1.1	-1.0	-1.0	1.0	-1.1	5.6	
Н	1.0	-1.4	1.0	1.0	-1.0	1.1	-1.1	-1.0	-1.0	1.0	-1.0	2.0	
Ι	1.2	-1.0	-1.0	-1.1	-1.1	-1.1	1.1	-1.0	1.0	1.0	1.2	10.8	
Κ	1.1	-1.2	1.3	1.2	1.1	1.4	-1.0	-1.1	-1.0	-1.1	-1.0	5.1	
L	1.0	-2.2	-1.2	-1.2	-1.1	-1.2	1.0	1.1	1.1	1.0	-1.0	14.1	
М	-1.5	3.6	-1.0	-1.1	-1.0	-1.1	-1.0	1.1	1.1	1.1	1.0	2.6	
Ν	1.3	-2.5	1.1	1.1	-1.1	1.1	1.0	-1.0	-1.0	-1.1	-1.0	4.8	
Ρ	-1.2	-1.4	1.0	1.1	1.0	1.1	-1.0	1.0	-1.0	-1.0	-1.0	3.3	
Q	-1.1	-2.9	1.2	-1.0	1.1	1.1	1.1	1.0	-1.0	-1.0	-1.1	2.5	
R	-1.0	2.3	1.3	1.3	1.2	1.4	-1.0	-1.1	-1.0	-1.1	-1.1	2.7	
S	-1.1	1.1	-1.0	1.1	1.0	1.0	1.1	-1.1	-1.0	-1.0	-1.0	7.7	
Т	-1.2	-2.6	-1.0	1.1	1.1	1.0	1.0	-1.0	-1.0	1.0	-1.3	5.2	
V	-1.1	1.8	-1.0	1.1	1.1	1.0	-1.1	1.0	-1.0	-1.0	-1.1	5.6	
W	-1.2	1.7	-1.1	-1.1	-1.0	-1.1	1.1	1.1	1.0	1.0	-1.0	2.0	
Υ	1.3	-1.0	-1.0	1.0	1.0	-1.1	-1.1	1.0	-1.0	-1.0	1.3	4.5	

Table S2 - Change in amino acid usage among red algal mitochondrial genomes

Х

X >1.5-fold increase relative to the median AA frequency

-X >1.5-fold decrease relative to the median AA frequency

Cmer: Cyanidioschyzon merolae; Gsul: Galdieria sulphuraria; Phai: Pyropia haitanensis; Ppur: Porphyra purpurea; Pumb: Porphyra umbilicalis; Pyez: Pyropia yezoensis; Ccri: Chondrus crispus; Gand: Gracilariopsis andersonii; Glem: Gracilariopsis lemaneiformis; Gory: Gracilariophila oryzoides; Ppul: Plocamiocolax pulvinata.

Table S3A - Protein-coding genes in red algal plastid genomes

		Cvanidiophyceae		Bangiophyceae		Florideophycea		nhycea	e		
Gene name	Synonyms	Ccal	Cmer	Gsul	Phai	Pvez	Pnur	Gten	Ccri	Ctub	Gtai
DNA replication	Cynonyms	ooui	Unici	0501	1 mai	1 902	i pui	Oten	0011	Olub	Olui
dnaB		т.	+	-	-	т	+	+	т	+	т
			•							•	'
											_
nupA	nipA	-		+	-	-	-	-	-	-	-
ntcA	yci28	+	+	+	+	+	+	+	+	+	+
	trmE, thdH	+	+	-	-	-	-	-	-	-	-
rbcR	lysR, ycf30, trsE	+	+	+	+	+	+	+	+	+	+
dfr	ycf26	+	-	ψ	+	+	+	+	-	+	+
Transcription an	d mRNA processing										
rpoA		+	+	+	+	+	+	+	+	+	+
rpoB		+	+	+	+	+	+	+	+	+	+
rpoC1	rpoC	+	+	+	+	+	+	+	+	+	+
rpoC2		+	+	+	+	+	+	+	+	+	+
rpoZ	ycf61, rbp6, orf75	+	+	+	+	+	+	+	+	+	+
rne		-	-	-	+	+	+	+	+	+	+
Ribosomal prote	ins										
rpl1		+	+	+	+	+	+	+	+	+	+
rpl2		+	+	+	+	+	+	+	+	+	+
rpl3		+	+	+	+	+	+	+	+	+	+
rpl4			_	_		_	_	_	_		_
rpl4		, ,		, ,	, ,	, ,		, ,	, ,		, ,
rplG		- T	- T	т 1	- T	т ,	т	- T	т ,	- T	т ,
		Ŧ	Ŧ	- T	- -	- T	- -	- -	- T		- T
rpi9		-	-	+	+	+	+	+	+	+	+
rpi11		+	+	+	+	+	+	+	+	+	+
rpl12		+	+	+	+	+	+	+	+	+	+
rpl13		+	+	+	+	+	+	+	+	+	+
rpl14		+	+	+	+	+	+	+	+	+	+
rpl16		+	+	+	+	+	+	+	+	+	+
rpl18		+	+	+	+	+	+	+	+	+	+
rpl19		+	+	+	+	+	+	+	+	+	+
rpl20		+	+	+	+	+	+	+	+	+	+
rpl21		+	+	+	+	+	+	+	+	+	+
rpl22		+	+	+	+	+	+	+	+	+	+
rpl23		+	+	+	+	+	+	+	+	+	+
rpl24		+	+	-	+	+	+	+	+	+	+
rpl27		+	+	+	+	+	+	+	+	+	+
rpl28		+	+	+	+	+	+	+	+	+	+
rpl29		+	+	+	+	+	+	+	+	+	+
rpl31		+	+	+	+	+	+	+	+	+	+
rpl32			_	_		_	_	_	_		_
rp122		, ,		, ,	, ,	, ,		, ,	, ,		, ,
rp134		- T	- T	Ŧ	- T	т ,	т	- T	т ,	- T	т ,
10134 rp135		- T		-		- T	т	- T	- -		т
10130		+	+	+	+	+	+	+	+	+	+
rpi36	SECX	+	+	+	+	+	+	+	+	+	+
rps1		-	-	-	+	+	+	+	+	+	+
rps2		+	+	+	+	+	+	+	+	+	+
rps3		+	+	+	+	+	+	+	+	+	+
rps4		+	+	+	+	+	+	+	+	+	+
rps5		+	+	+	+	+	+	+	+	+	+
rps6		+	+	+	+	+	+	+	+	+	+
rps7		+	+	+	+	+	+	+	+	+	+
rps8		+	+	+	+	+	+	+	+	+	+
rps9		+	+	+	+	+	+	+	+	+	+
rps10		+	+	+	+	+	+	+	+	+	+
rps11		+	+	+	+	+	+	+	+	+	+
rps12		+	+	+	+	+	+	+	+	+	+
rns13		+	+	+	+	+	+	+	+	+	+
rns14		· -					, +		, -	, +	, ⊥
rps14			T J	т ,		т ,	т ,		T J	т ,	т ,
Ilhaio		+	+	+	+	+	+	+	+	+	Ŧ

rpe17		L +	<u>т</u>	-	L _	<u>т</u>	т	L _	-	т	т
rps17			' -	, ,	, ,	, ,		- -	, ,		
rps10		- T	- -	т 1	- T	- -	т ,	- T	- T	- T	- T
1p519		- T	- -	- -	- T	- -	- -	. T	- -		
rpszu Tranalation initia	tion/olongotion footors	+	+	+	+	+	+	+	+	+	+
Translation Initia	ation/elongation ractors										
		-	+	+	+	+	+	+	+	+	+
infC		+	+	+	+	+	+	+	+	+	+
tsf		+	+	+	+	+	+	+	+	+	+
tufA		+	+	+	+	+	+	+	+	+	+
Posttranslationa	I modification										
clpC		+	+	+	+	+	+	+	+	+	+
dnaK	hsp70, ctp70	+	+	+	+	+	+	+	+	+	+
groEL		+	+	+	+	+	+	+	+	+	+
Protein transport	t										
secA		+	+	+	+	+	+	+	+	+	+
secG	ycf47, orf71c	-	-	+	+	+	+	+	+	+	+
secY		+	+	+	+	+	+	+	+	+	+
tatC	ycf43	+	+	+	+	+	+	+	+	+	+
Energy production	on (Phycobilisome)										
apcA		+	+	+	+	+	+	+	+	+	+
apcB		+	+	+	+	+	+	+	+	+	+
apcD		+	+	+	+	+	+	+	+	+	+
apcE		+	+	+	+	+	+	+	+	+	+
apcF		+	+	+	+	+	+	+	+	+	+
cpcA	pcvA	+	+	+	+	+	+	+	+	+	+
cpcB	pcyB	+	+	+	+	+	+	+	+	+	+
cpcG	cncC	+	+	+	+	+	+	+	+	+	+
cped	rpeA	_			_	_	_		_	_	
cpeA	rpoR		_	_	, ,						
	Грев			_	, ,	, ,		- -	, 		
	vof19	-	-	-	т 	т 	т 	т 	т 	т 	т _
Enorgy production	on (Photosynthosis)	Ŧ	т	т	т	т	т	-	т	т	т
	of (Filolosynthesis)										
CDDX	CIXQ, CIXX, OIT3U1	+	+	+	+	+	+	+	+	+	+
petA		+	+	+	+	+	+	+	+	+	+
petB		+	+	+	+	+	+	+	+	+	+
petD		+	+	+	+	+	+	+	+	+	+
pet⊦		+	+	+	+	+	+	+	+	+	+
petG		+	+	+	+	+	+	+	+	+	+
petJ	_	+	+	+	+	+	+	+	+	+	+
petL	ycf7	+	+	+	+	+	+	+	+	+	+
petM	ycf31	+	+	+	+	+	+	+	+	+	+
petN	ycf6, rbp6, orf75	+	+	+	+	+	+	+	+	+	+
psaA		+	+	+	+	+	+	+	+	+	+
psaB		+	+	+	+	+	+	+	+	+	+
psaC		+	+	+	+	+	+	+	+	+	+
psaD		+	+	+	+	+	+	+	+	+	+
psaE		+	+	+	+	+	+	+	+	+	+
psaF		+	+	+	+	+	+	+	+	+	+
psal		+	+	+	+	+	+	+	+	+	+
psaJ		+	+	+	+	+	+	+	+	+	+
psaK		+	+	+	+	+	+	+	+	+	+
psaL		+	+	+	+	+	+	+	+	+	+
psaM		+	+	+	+	+	+	+	+	+	+
psbA		+	+	+	+	+	+	+	+	+	+
psbB		+	+	+	+	+	+	+	+	+	+
psbC		+	+	+	+	+	+	+	+	+	+
psbD		+	+	+	+	+	+	+	+	+	+
nshF		+	+	+	+	+	, +	+	+	+	+
nshE									-		۔ ب
psbl			 -	+ ,	- T	+	- ,		- -	τ	
hanu		1	+	+		+	+	1	+	+	+
psbl		†	+	+	+	+	+	+	+	+	+
pspJ		1	+	+	+	+	+	+	+	+	+
pspk		+	+	+	+	+	+	+	+	+	+
psbl		+	+	+	+	+	+	+	+	+	+

nehN		L _	Ŧ	-	L _	т	-	L +	-	т.	т
psbl	vcf8			, ,			, ,		, ,	, T	
pspi	ycið	T	- T	-	T	.		T	- T		- T
psbV		+	+	+	+	+	+	+	+	+	+
psbW	psb28, ycf79	+	+	+	+	+	+	+	+	+	+
psbX		+	+	+	+	+	+	+	+	+	+
psbY	ycf32	+	+	+	+	+	+	+	+	+	+
, nshZ	vcf9	+	+	+	+	+	+	+	+	+	+
pob2	vof12		_			_		· -		_	
psubo		- T	т	т	т	т	т	- T	т	т	т
rDCL	IDCA	+	+	+	+	+	+	+	+	+	+
rbcS		+	+	+	+	+	+	+	+	+	+
Energy producti	on (Respiration)										
atpA		+	+	+	+	+	+	+	+	+	+
atpB		+	+	+	+	+	+	+	+	+	+
atoD		+	+	+	+	+	+	+	+	+	+
atpD atpC			÷				:	1		:	÷
aip⊨		+	+	+	+	+	+	+	+	+	+
atp⊢		+	+	+	+	+	+	+	+	+	+
atpG		+	+	+	+	+	+	+	+	+	+
atpH		+	+	+	+	+	+	+	+	+	+
atol		+	+	+	+	+	+	+	+	+	+
odnA	ndhA	+	+	+	+	+	+	+	+	+	+
oupA a de D	paint		÷				:	1		:	÷
оарв	ринь	+	+	+	+	+	+	+	+	+	+
pgmA		-	-	-	+	+	+	+	+	+	+
Detoxification											
bas1	ahpC, ycf42, orf199	-	-	-	+	+	+	+	+	+	+
Amino acid meta	abolism										
araB		+	+	+	+	+	+	+	+	+	+
argb		÷	÷			÷	÷		÷	÷	÷
		+	+	+	+	+	+	+	+	+	+
cysl	mbpY	-	+	+	-	-	-	-	-	-	-
cysW		-	+	+	-	-	-	-	-	-	-
glmS		+	+	-	-	-	-	-	-	-	-
alnB		+	-	-	+	+	+	-	-	-	-
altB	alsF	+	+	+	+	+	+	+	+	+	+
gitD bio∐	gior		÷					·	•		
		-	Ŧ	Ŧ	-	-	-	-	-		-
syn	hisS	-	-	-	+	+	+	+	+	+	+
ilvB		+	+	+	+	+	+	+	+	+	+
ilvH		+	+	+	+	+	+	+	+	+	+
leuC		-	-	-	-	-	-	+	-	-	-
leuD		_	-	-	-	-	-	+	-	-	-
ovfB		_	_	_	-	+	+	· ·	+	+	+
Sylb					. T	т	т	- T	т	т	т
trpA		+	+	+	+	+	+	+	+	+	+
trpG		+	+	+	+	+	+	+	+	+	+
tilS	ycf62, orf327	+	+	+	+	+	+	+	+	+	+
Lipid metabolisr	n										
accA		+	+	+	+	+	+	+	+	+	+
accR				_		_	÷				
acce		- T	т	т	т	т	т	- T	т	т	т
accD	ycf11, dedB, zfpA	+	+	+	+	+	+	+	+	+	+
acpP	acpA	+	+	+	+	+	+	+	+	+	+
desA	crtR	+	+	+	-	-	-	-	-	-	-
lpxA		+	+	+	-	-	-	-	-	-	-
lpxC		+	+	-	-	-	-	-	-	-	-
Cofactor metabo	olism	-									
	wofE0										
acsr	yci59	+	+	+	+	+	+	+	+	+	+
ccsA	ycf5	+	+	+	+	+	+	+	+	+	+
ccs1	ycf44, orf437	+	+	+	+	+	+	+	+	+	+
chlB		-	-	+	+	+	+	-	-	+	-
chll		+	+	+	+	+	+	+	+	+	+
chll	aidB_frxC	-	-	+	+	+	+	_	-	+	-
				- T		т	г				
CHIN .	giuA	-	-	+	+	+	+	-	-	+	-
cemA	yct10	+	+	+	+	+	+	+	+	+	+
cobA		+	+	ψ	-	-	-	-	-	-	-
dsbD	ccdA, orf240	-	-	-	+	+	+	+	+	+	+
ftrB								-			
	tftrC	+	+	+	+	+	+	+	+	+	+
linB	tftrC	+	+ +	+	+	+	+	+	+	+	+
lipB	tftrC	++	+ +	+	+	+ -	+	+	+	+	+

1 -		1									
menB		+	+	-	-	-	-	-	-	-	-
menC		+	+	-	-	-	-	-	-	-	-
menD		+	+	-	-	-	-	-	-	-	-
menE		+	+	-	-	-	-	-	-	-	-
menF		+	+	-	-	-	-	-	-	-	-
moeB		+	+	+	+	+	+	+	+	+	+
pbsA		-	-	-	+	+	+	+	+	+	+
preA	crtE	+	+	+	+	+	+	+	+	+	+
sufB	vof24	_		_		_	_	_	_	_	_
sulD	yof16										
suic	yciro	+	+	+	+	+	+	+	+	+	+
thig	(10) (7)	+	+	+	+	+	+	+	+	+	+
this	yct40, ort71	+	+	+	+	+	+	+	+	+	+
trxA	trxM	+	+	-	+	+	+	+	+	+	+
upp	orf198	-	-	-	+	+	+	+	+	+	+
Plastid division											
ftsH	ycf25	+	+	+	+	+	+	+	+	+	+
minD		-	-	ψ	-	-	-	-	-	-	-
minE		-	-	ψ	-	-	-	-	-	-	-
Conserved hypo	othetical reading frames										
vcf3	3	+	+	+	+	+	+	+	+	+	+
vcf4		+	+	+	+	+	+	+	+	+	+
yof4		_		_		_	_	_	_	_	_
yor 17			- T	- T	. T	- T	- T	т	т ,	- T	т ,
yci 19		+	+	+	+	+	+	+	+	+	+
ycf20	apcL9.5, on20	+	+	+	+	+	+	+	+	+	+
ycf21		-	-	-	+	+	+	+	+	+	+
ycf22		-	+	-	+	+	+	+	+	+	+
ycf23		+	+	+	+	+	+	+	+	+	-
ycf27	ompR, orf27	+	+	+	+	+	+	+	+	+	+
ycf29	luxR	+	+	+	+	+	+	+	+	+	+
ycf33		-	+	-	+	+	+	+	+	+	+
vcf34		-	-	-	+	+	+	+	+	-	+
vcf35		-	-	-	+	+	+	+	+	-	+
vcf36		-	-	+	+	+	+	+	+	+	+
vcf37		+	_	L L		_	_	_	_	_	_
yci37		т		- T	- T	- T	- -	т ,	т ,	- T	т ,
yci30			. T	- -	. T		- -	т	- T		- T
ycr39	(100	+	+	+	+	+	+	+	+	+	+
yct41	orf109	-	-	-	-	-	-	+	+	+	-
ycf45	orf565	+	-	+	+	+	+	+	+	+	+
ycf46		-	-	-	+	+	+	+	+	-	+
ycf49		+	+	+	-	-	-	-	-	-	-
ycf52	orf174	+	+	+	+	+	+	+	+	+	+
ycf53	orf238	+	+	ψ	+	+	+	+	+	+	+
ycf54	orf108	+	+	+	+	+	+	+	+	+	+
vcf55		+	+	-	+	+	+	+	+	+	+
vcf56	orf263, rnZ	-	-	+	+	+	+	+	+	+	+
vcf58	cncS orf149	+	-	+	+	+	+	+	+	+	+
ycf60	orf202	_	-	÷		_	_	_	_	_	_
yciou vcf62	VOVE OPE262			_			, ,		, ,	, T	, ,
ycios	ycai, ORF205	_	т Т		Ť	- T	- T	т		T	- T
yc164		-	-	-	Ť	+	+	-	+	-	· +
ycf65		+	+	-	+	+	+	+	+	+	+
ycf80	matK, orf450	+	+	+	+	+	+	+	+	+	+
ycf82		+	+	+	-	-	-	-	-	-	-
ycf83	ycf57, orf114, sufA	-	+	+	+	+	+	-	+	-	-
ycf84	yjgP,yjgQ	+	+	+	-	-	-	-	-	-	-
ycf85		+	+	+	-	-	-	-	-	-	-
ycf86	petP, orf68	+	+	+	+	+	+	-	+	-	+
vcf91	•	-	-	-	+	+	+	+	+	-	+
vcf92	orf245_ORF287	_	_	_	+	+	+	+	+	+	+
Other open read	ling frames				· ·	•	•			•	
orf58		_	-	_	<u>ــ</u>	ъ	L.	<u> </u>	щ	ъ	т
orf621						T.	- ب		т	T J	т ,
011021		-	-	-	Τ	т	-	Т	-	т	т

	Cyanidiophyceae			Bangiophyceae			Florideophyceae			
Gene name	Ccal	Cmer	Gsul	Phai	Pyez	Ppur	Gten	Ccri	Ctub	Gtai
Ribosomal RNAs					-					
rrn5	+	+	+	+	+	+	+	+	+	+
rrn16	+	+	+	+	+	+	+	+	+	+
rrn23	+	+	+	+	+	+	+	+	+	+
Transfer RNAs										
trnA (GGC)	-	-	+	+	+	+	-	-	-	-
trnA (TGC)	+	+	+	+	+	+	+	+	+	+
trnC (GCA)	+	+	+	+	+	+	+	+	+	+
trnD (GTC)	+	+	+	+	+	+	+	+	+	+
trnE (TTC)	+	+	+	+	+	+	+	+	+	+
trnF (GAA)	+	+	+	+	+	+	+	+	+	+
trnG (GCC)	+	+	+	+	+	+	+	+	+	+
trnG (TCC)	+	+	+	+	+	+	+	+	+	+
trnH (GTG)	+	+	+	+	+	+	+	+	+	+
trnl (GAT)	+	+	+	+	+	+	+	+	+	+
trnK (TTT)	+	+	+	+	+	+	+	+	+	+
trnl (CAA)	+	+	+	+	+	+	+	+	+	+
trol (CAG)	-	-	+	_	-	-	_	-	-	-
trol (GAG)	+	+	+	+	+	+	-	-	-	_
trol (TAA)	+	+	+	+	+	+	+	+	+	+
trol (TAG)	+	+	+	+	+	+	+	+	+	+
trnM-CAT/trnl-CAT	_	_	_	_	_	_		_	_	_
trofM(CAT)	, ,			, ,	, +		- -		, +	
$\operatorname{trnMo}(CAT)$, ,	, ,	, ,	· -	, ,	, ,	, ,
troNL(CTT)		1	-	, ,	, ,	, ,	· -	, ,	, ,	, ,
troB (TCC)	- T	- T	- -	- T	- T	т 1	т ,	- T	- T	т ,
trpO(TTC)	т 	т 	т 	т 	т 	т 	т 	т 	т 	т
	т 	т 	т 	т 	т 	т 	T L	т 	т 	т
troB (CCC)	т 	т -		т 	т 	т 	T L	т 	т 	т
troP (CCT)	Ŧ	-			+ 1	- -	Ŧ	-	Ŧ	T
	-		- T	- T	- -	- T	-	-	-	-
	-	+	+	+	+	+	÷	+	+	Ŧ
	-	-	+	+	+	+	-	-	-	-
	+	+	+	+	+	+	+	+	+	+
tmS (GGA)	-	+	+	+	+	+	-	-	+	-
	+	+	+	+	+	+	+	+	+	+
	-	-	+	-	-	-	-	-	-	-
trn1 (GG1)	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+
trnV (GAC)	+	+	+	+	+	+	+	+	+	+
trnV (IAC)	+	+	+	+	+	+	+	+	+	+
trnW (CCA)	+	+	+	+	+	+	+	+	+	+
trnY (GIA)	+	+	+	+	+	+	+	+	+	+
Other RNAs										
#ts	+	+	-	+	+	+	+	+	+	+
rnpB	+	+	+	+	+	+	+	+	+	+
ssrA	-	+	+	+	+	+	+	+	+	+

Table S3B - RNA genes in red algal plastid genomes

Ccal: Cyanidium caldarium, Cmer: Cyanidioschyzon merolae; Gsul: Galdieria sulphuraria, Phai: Pyropia haitanensis; Pyez: Pyropia yezoensis; Ppur: Porphyra purpurea; Gten: Gracilaria tenuistipitata Ccri: Chondrus crispus; Ctub: Calliarthron tuberculosum; Gtai: Grateloupia taiwanensis

Figure S1A - *atp4* gene. A) Gene order map showing the genomic position of the putative *G. andersonii atp4* gene newly identified in this study (shaded in gray). B) Amino acid alignment of *atp4*. Positions with amino acids identical or similar in >75% of sequences are shaded black or gray, respectively. Corrected frameshift mutations are highlighted in yellow and marked with an "X." C) Nucleotide alignments of the frameshift mutations located in mononucleotide repeat regions. Gaps inserted to correct the reading frame are highlighted in yellow.

Gand	TTTATTTCAA<mark></mark>AAAAATATT F I S X K N I	Gand	TTTAAAAAACTTTTATTTACT F K K L L F T
Glem	TTAATTTCAAAAAATGTT	Glem	TTAAAAAAACTTTTATTTACT
	LIS-KNV		LKKLLFT
Gory	CTTATTTCAAAAAATATT	Gory	TTAAAAAAACTTTTATTTACT
	LIS-KNI		LKKLLFT
Ppul	TTAATTTCAAATAAAATA	Ppul	AAAAAAAAA <mark>-</mark> TTTTATATACA
	LIS-NKI		КККХLҮТ
Ccri	TTAATTTATCAGAACATT	Ccri	CCAAAAAAAATCAAATTTATC
	LIY-QNI		PKKIKFI

Figure S1B - *atp8* gene. A) Gene order map showing the genomic position of the putative *atp8* genes newly identified in this study (shaded in gray). The status of *rpl5* is shown in Supplementary Figure S1E, while the status of *trnl*-gau is shown in Supplementary Figure S1H. B) Amino acid alignment of *atp8*. Positions with amino acids identical or similar in >75% of sequences are shaded black or gray, respectively. A corrected frameshift mutation is highlighted in yellow and marked with an "X." C) Nucleotide alignment of the frameshift mutation located in a mononucleotide repeat region. The gap inserted to correct the reading frame is highlighted in yellow.

Gand	AATTTGTTAAAGAAAATATTG											
	Ν	L	L	Κ	Κ	I	L					
Glem	AAT	TTA	TTA	AAA	AAA	TTT	TTA					
	N	L	L	K	Κ	F	L					
Gory	AAC	TTG	TTA	AA <mark>-</mark>	TTT	TTT	TTA					
	N	L	L	Х	F	F	L					
Ppul	ACT	TTA	TTA	TAT	AGT	AAT	GTG					
	Т	L	L	Y	S	Ν	V					
Ccri	CTT	TTG	TTA	AAA	CAA	CTT	TTG					
	L	L	L	Κ	Q	L	L					

Figure S1C - *sdhC* gene. A) Gene order map showing the genomic position of the putative *G. oryzoides sdhC* gene newly identified in this study (shaded in gray). The status of *trnA*-ggc (shaded in blue) is shown in Supplementary Figure S1G. B) Amino acid alignment of *sdhC*. Positions with amino acids identical or similar in >75% of sequences are shaded black or gray, respectively. A corrected frameshift mutation is highlighted in yellow and marked with an "X." C) Nucleotide alignment of the frameshift mutation located in a mononucleotide repeat region. The gap inserted to correct the reading the frame is highlighted in yellow.

Gand	TAT	TCT		TTC	TTT	TTA	CAA
	Y	S	-	F	F	L	Q
Glem	GTT	TCT		TTT	GTT	TTT	CAA
	V	S	-	F	V	F	Q
Gory	TTT	TCT		TT-	TTT	TTT	CAA
	F	S	-	Х	F	F	Q
Ppul	ATA	TCT	AAT	TCA	ATA	TAT	ATA
	I	S	Ν	S	I	Y	I
Ccri	ATT	TCC	CAA	TGA	ATA	ATT	ATT
	I	S	Q	W	I	I	I

Figure S1D - *rpl20* gene. A) Gene order map showing the genomic position of all *rpl20* genes newly identified in this study (shaded in gray). A loss of synteny upstream of *rpl20* in *G. oryzoides* and *C. crispus* is marked with a "//." B) Amino acid alignment of *rpl20*. Positions with amino acids identical or similar in >75% of sequences are shaded black or gray, respectively.

Figure S1E - *rpl5* gene. A) Gene order map showing the genomic position of all putative *rpl5* genes newly identified in this study (shaded in gray). The status of *atp8* is shown in Supplementary Figure S1B. B) Amino acid alignment of *rpl5*. Positions with amino acids identical or similar in >75% of sequences are shaded black or gray, respectively. A corrected frameshift mutation is highlighted in yellow and marked with an "X." C) Nucleotide alignment of the frameshift mutation located in the mononucleotide repeat region. Gaps inserted to correct the reading frame are highlighted in yellow.

Gand	AATTTAGAAAAATCTGTT											
	Ν	L	Ε		K	S	V					
Glem	AAC	TTA	GAA		AAA	TCT	GTT					
	Ν	L	Ε		K	S	V					
Gory	AAT	TTT	GAA	––A	AAA	CTT	TCA					
	Ν	F	Ε	Χ	K	L	S					
Ppul	CCT	ATA	AAA	ACT	TGT	ATT	ATC					
	Ρ	I	K	Т	С	I	I					
Ccri	AAA	CTT	AAT	TCT	TCC	TCC	AAA					
	K	L	Ν	S	S	S	K					

Figure S1F - *rrn5* gene. A) Gene order map showing the genomic position of all *rrn5* genes newly identified in this study (shaded in gray). In parallel, the *rrn5* was also recently identified in the species shown below, as well as all sequenced Bangiales species (Valach et al. 2014). B) Nucleotide alignment of *rrn5*. Positions with nucleotides identical in >75% of sequences are shaded black.

Figure S1G - *trnA*-ggc gene. A) Gene order map showing the genomic position of the *P. pulvinata trnA*-ggc gene (highlighted in blue) and the *trnG*-gcc gene in other Florideophyceae species. The status of *sdhC* is shown in Supplementary Figure S1C. B) Nucleotide alignment of *trnA*-ggc and *trnG*-gcc. Positions with nucleotides identical in >75% of sequences are shaded black. The anticodon mutation is highlighted in blue.

Figure S1H - *trnl*-gau gene and intron. A) Gene order map showing the genomic position of all *trnl*-gau genes newly identified in this study (shaded in gray). The status of *atp8* in *G. oryzoides* and *P. pulvinata* is shown in Supplementary Figure S1B. B) Nucleotide alignment of *trnl*-gau with exon and intron positions highlighted in yellow and brown, respectively. Positions with nucleotides identical in >75% of sequences are shaded black.

Figure S1I - *cox1* intron. A) *cox1* intron position based on old annotations present in GenBank files (shown in green for *P. pulvinata* and in yellow for *P. haitanensis* and *P. yezoensis*) and new annotations reported here (in purple). The new annotations improve exon similarity compared with intron-lacking species and restore canonical GTGYG–AC intron boundary sequences for all three intron-containing species. B) Sequence alignment of the *cox1* intron from *P. pulvinata* compared to *P. haitanensis* and *P. yezoensis*. The large internal segment of the P. *haitanensis* and *P. yezoensis* introns (encoding the majority of the IEP) is absent from *P. pulvinata* and was excluded from the alignment.

Α													
Ccri Gand Ppul-ol Ppul-ne	GCGCATTTTCATTAT GCCCATTTTCATTAT d GCCCATTTTCATTAC w GCCCATTTTCATTAC	G G GGTGCGTTGTCTAATACAATT Ggtgcgttgtctaatacaatt	- no intron - no intron taacaaagtt- (5 taacaaagtt- (5	531 bp) -tcct 531 bp) -tcct	TACTTTC TTTTATC TTTTATC TACTTCACTATTATC	AATGGGAGCTGTT TATGGGTGCCGTT LATGGGAGCAGTT TATGGGAGCAGTT	TTT TTT TTT TTT						
Phai-ol Phai-ne Pyez-ol Pyez-ne Ppur Pumb	d GCTCACTTTCATTAT w GCTCACTTTCATTAT d GCTCACTTCCACTAT w GCTCACTTCCACTAT GCACATTTTCATTAC GCACATTTTCATTAT	GCTCACTTTCATTAT gggggggggggggggggggggggggggggggggggg											
	exon	exon Pvul intron (old annotation)											
	exon	Phai, Pye	z intron (old anr	otation)		exon							
	exon	Pvul, Phai, F	^D yez intron (new	v annotation)		exon							
В	10 20) 30 40	50	60 71 I I I	0 80	90 :	100						
Ppul G Phai G Pyez G	TGCCTTGTCTAATACAATT TGCCCCGTCTAATTGCGTT TGCCCCGTCTAATTGCGTT	TAACAAACTTCATRA TATCGTCCCTTACTTCAGTGAG TATCGTCCCTTACTTCAGTGAG	A <mark>ATG</mark> CATGTATTACCATTC C <mark>ATG</mark> TATTACCATTC	AATATATAA TTGAATTATATAA TTGA <mark>A</mark> T <mark>TATATAA</mark>	AAAAGGTTTTTATAA ATTAAAAGTTATACAA ATT <mark>AAAA</mark> GTT <mark>ATA</mark> CAA	ТТТАТА ГАТТАААС ТТТАТАСАТТААА? ТТТАТАС <mark>АТТААА</mark> ?							
Ppul I	110 12 AGCAACTTAC-TATTTATG	0 130 140 ATAATTTAAATAAATAGAACCA	150 	160 17 	0 180 AGCTAAGTT	190 : 	200 . I 41						
Phai A Pyez A	ATCAACTTACTTATTTCTG ATCAACTTACTTATTTCTG	GCCAACAGAAAGAGGACTA GCCAACAG <mark>AAA</mark> GAG <mark>GAC</mark> TA	TAGCATGTTG <mark>AT</mark> AAA C <mark>AGCATGTTG</mark> AT <mark>AAA</mark>	GG <mark>AG</mark> TTTTGAAAT GG <mark>AG</mark> TTTTGAAAT	'AGTAAACTCCGAGTT 'AGTA <mark>AA</mark> CTCCGA <mark>GTT</mark>	ATATTACC <mark>CATGGI</mark> ATACTACA <mark>CA</mark> CGGI	PT PT						
Ppul 2 Phai 2	210 22 AGGTTAAC-AAATCCTTTTA AGGTAACGAACTCCTTTTA	0 230 240 TTAATCAGTTTTA -CAATCAGCCAGGCGGATATG?	250 TCTAATCAAAAA AGTTCCCATC-ATTA	260 27 AAAATAATGATTA GAAATAATGA4	'0 280 .GTATCTTAATAA .GTATTGCACGGTGAA	290 : AAATTATACGTAA- ACCCTTTACGTAGI	300 . -A FT						
Pyez 4	AGGCTAACGAACTCCTTCTA	-CAATCACCCAGGCGGATATGA	AGTTCCGATC-ATTA	GAAATAATGA A 360 37	AGTATCTCACGGTGAA	AGTTTTT <mark>TACATAGT</mark> 390	FT 400						
Ppul 7 Phai 7 Pyez 7	aatt <mark>tttattgaaacg</mark> ttt Ggco <mark>tttacaggaatggtc Gacc<mark>tttacaggaatggt</mark>c</mark>	'AAGAATAAAAAATTATATATAT 'TAATACCOAAAATTTAAGTAAA 'TGGT <mark>A</mark> CCC <mark>AAAAATT</mark> TAA <mark>GT</mark> AAA	. ATTTTTAA – -CTGTA ATTTTTAAAGCTG-A ATTTTTAAAGCTG-A	GGA <mark>-</mark> AACCTAAAA GGA <mark>G</mark> AACCTAAAG GGA <mark>G</mark> AACCTAAAG	 ATAATTAATAATGTT GTAGTTATTAATGGT GTAGTTATTAATGGT	AAATTGTAGAATTC AAGCGTAAGAATTC AAGCGTAAGAATTC	A G G						
Brul I	22: 	30 2240 2250 	2260 	2270 22 	80 2290 		2310 .						
Phai G Pyez G	GAAA- (1823 bp) -AA GAAA- (1823 bp) -AA GAAA- (1823 bp) -AA	CTTATCACAAGGGTAAGTATG CTTATCACAAGGGTAAGTATG CTTATCACAAGGGTAAGTATG	ATGGTTCAAAAATTA ATGGTTCAAAAATTA	TTTAAGTGACTCT TTTAAGTGACTCT TTTAAGTGACTCT	'TTT <mark>G</mark> AAG <mark>T</mark> GAAAGCC 'TTT <mark>G</mark> AAG <mark>TGAAAGCC</mark>	ATATGCGCTGAAAA ATATGCGCTGAAAA ATATGCGCTGAAAA	AG AG						
Ppul Phai Pyez	2320 233 	30 2340 2350 AGGATTTAATCTATATATATAT AGGATTTTGATACTTAA AGGATTTTGATAC	2360 	2370 ACTTCAC ACTCTAC ACTCTAC									

Figure S2 - Predicted stem-loop structures in the *Galdieria sulphuraria* plastid genome. Structures were predicted with the EMBOSS program einverted (<u>http://emboss.bioinformatics.nl/cgi-bin/emboss/einverted</u>), requiring a \geq 20 bp stem with \geq 80% sequence identity and a \leq 20 bp loop.

Galdieria-CP: Score 78: 26/26 (100%) matches, 0 gaps 3547 aaaaaaatatcttgctctatagctat 3572 3602 tttttttatagaacgagatatcgata 3577 Galdieria-CP: Score 134: 46/47 (97%) matches, 0 gaps 5036 aataaaaatatggaagttcgtaaataataaccatctattacaaggta 5082 5136 ttattttataccttcaagtatttattattggtagataatgttccat 5090 Galdieria-CP: Score 75: 25/25 (100%) matches, 0 gaps 7649 tacataaaaaaatatatggtatctt 7673 7699 atgtatttttttatataccatagaa 7675 Galdieria-CP: Score 134: 46/47 (97%) matches, 0 gaps 11104 aggtaaagattgattagaaaataaaaataatctagtgtatcttattt 11150 11205 tccatttctaactaatcttttgtttttattagatcacatagaataaa 11159 Galdieria-CP: Score 138: 46/46 (100%) matches, 0 gaps 19510 aattgtattaaagatagatcagatagaaaataaaaggccatttata 19555 19602 ttaacataatttctatctagtctatcttttattttccggtaaatat 19557 Galdieria-CP: Score 63: 21/21 (100%) matches, 0 gaps 27947 aagattaaaaagtggatagt 27967 27992 ttctaattttttcacctatca 27972 Galdieria-CP: Score 147: 49/49 (100%) matches, 0 gaps 31116 aaactttaaaaagggaaataaaatagataaaattggattggttctttg 31164 31218 tttgaaatttttccctttattttatctattttaacctaaccaagaaac 31170 Galdieria-CP: Score 150: 50/50 (100%) matches, 0 gaps 48093 aaggaagcattaaaaaacctcaataaatagaaaaagatattatactctaa 48142 48193 ttccttcgtaattttttggagttatttatctttttctataatatgagatt 48144 Galdieria-CP: Score 62: 30/31 (96%) matches, 2 gaps 49807 aataata-ttat-ttgatattttgataatagaa 49837 49880 ttgttatcaatataactataaaactattatctt 49848 Galdieria-CP: Score 59: 21/22 (95%) matches, 0 gaps 53158 taataaataataaaaaact 53179 53207 attgtttattattttttga 53186 Galdieria-CP: Score 114: 38/38 (100%) matches, 0 gaps 57756 taaattatatagaataaaaagaaaataaagtaaatca 57793 Galdieria-CP: Score 135: 44/44 (100%) matches, 0 gaps 58808 aatattgaaaaatttcacaaaaatgagctaaagcaaaatgattt 58851 58897 ttataactttttaaagtgtttttactcgatttcgttttactaaa 58854

Galdieria-CP: Score 78: 26/26 (100%) matches, 0 gaps 59197 aatattatataaatttttatttctta 59222 59253 ttataatatatttaaaaataaagaat 59228 Galdieria-CP: Score 66: 22/22 (100%) matches, 0 gaps 59483 aatataaagaatgagtacaaaa 59504 59531 ttatatttcttactcatgtttt 59510 Galdieria-CP: Score 93: 30/30 (100%) matches, 0 gaps 60641 ttaattaatacaatcaataaacaaaaatgt 60670 60702 aattaattatgttagttatttgtttttaca 60673 Galdieria-CP: Score 68: 31/32 (96%) matches, 2 gaps 61424 tattaaagtgataaattataataacaaattatta 61457 61491 ataaattca-ta-ttaatattattgtttaataat 61460 Galdieria-CP: Score 113: 39/40 (97%) matches, 0 gaps 66325 caagcaattaaatatttagtaaaaacaaaacacataacca 66364 66407 gttcgttaatttataaatcatttttattttgtgtattggt 66368 Galdieria-CP: Score 288: 96/96 (100%) matches, 0 gaps 70875 ttataagaacagaaaattattatcagtatagtaggagaatataatcacaaattctccttgtaaaaaagggtatgtctgaataattactatagttaat 70970 71072 aatattettgtettttaataatagteatateateetettatattagttttaagaggaacatttttteeeatacagaettattaatgatateaatta 70977 Galdieria-CP: Score 99: 33/33 (100%) matches, 0 gaps 89622 ataaatcaataggatataaaacgcttaactttt 89654 89692 tatttagttatcctatattttgcgaattgaaaa 89660 Galdieria-CP: Score 146: 50/51 (98%) matches, 0 gaps 92864 taactaatgaataataaataaaattaaaagaagaaataaaatctttgtaag 92914 92971 attgatcacttattatttattttaattttcttctttattttagaaacattc 92921 Galdieria-CP: Score 132: 43/43 (100%) matches, 0 gaps Galdieria-CP: Score 147: 48/48 (100%) matches, 0 gaps 97529 agaaatccgaatcgtagagacttagaataaaatgaaaagccctagttt 97576 97626 tetttaggettagcatetetgaatettatttaettttegggateaaa 97579 Galdieria-CP: Score 129: 43/43 (100%) matches, 0 gaps 99714 taagatatttatctcataaaatattgatattgatgttataata 99756 99802 attctataaatagagtattttataactataactacaatattat 99760 Galdieria-CP: Score 232: 79/81 (97%) matches, 0 gaps 101673 tttccatttattagtatggctttgttttttatttatgttgaacaagaagaaattggggtaatgaagaagacaatctgagtta 101753 101836 aaaggtaaataatcataccgaaacaaaaataaatacaacttgttcttctttaaccaattacttcttctgtcagactcaat 101756 Galdieria-CP: Score 111: 37/37 (100%) matches, 0 gaps 102484 tctataataacataataagaaaatgataataagggct 102520 102560 agatattattgtattattcttttactattattcccga 102524

Galdieria-CP: Score 161: 55/56 (98%) matches, 0 gaps 107228 tttattttttccattataatacttcttaactataaacaataaggacttaaacttt 107283 107343 aaataaaaaaggtaatattatgaagaattgatattcgtttattcctgaatttgaaa 107288 Galdieria-CP: Score 179: 60/61 (98%) matches, 0 gaps 108167 atatcataataaatccttcaaaattttatattaaaaaatctatagaaaaagttataataat 108227 108290 tacagtattatttaggaagttttaaaatataattttttagatatctttttcaatattatta 108230 Galdieria-CP: Score 69: 23/23 (100%) matches, 0 gaps 115296 aacaaaaatatgttctatttata 115318 115346 ttgtttttatacaagataaatat 115324 Galdieria-CP: Score 150: 49/49 (100%) matches, 0 gaps 122947 aagttaattacaaaaagaaaattaatattgtatattattctagtttta 122995 123046 ttcaattaatgtttttcttttaattataaacatataataagatcaaaat 122998 Galdieria-CP: Score 141: 47/47 (100%) matches, 0 gaps 137298 catggaaaagaagaaaaacaagaaaaataagtaattgataacctta 137344 137393 gtaccttttcttctttttgttcttttttattcattaactattggaat 137347 Galdieria-CP: Score 110: 38/39 (97%) matches, 0 gaps 140523 taagtaaattaggttggaataattatgtagaaactacta 140561 140602 attcatttaatccaaccttattaatacatctttgatcat 140564 Galdieria-CP: Score 153: 51/51 (100%) matches, 0 gaps 143415 attaatcataaaaaaagatgagagaataacaaataaattattagatataat 143465 143524 taattagtatttttttctactcttattgtttatttaataatctatatta 143474 Galdieria-CP: Score 103: 36/38 (94%) matches, 0 gaps 149605 tataaaataagaaaaatataaaaaacaatattattata 149642 149682 atatttattctttttatattttttgttataatataat 149645 Galdieria-CP: Score 81: 27/27 (100%) matches, 0 gaps 149955 aagatgaaaaaagaaatgaggataaat 149981 Galdieria-CP: Score 138: 50/50 (100%) matches, 1 gaps 151873 tatgaataacaaataaagagatagattgatagattaagttaacaatcggta 151923 151975 atacttattgtttatttctctatctaactatctaattc-attgttagccat 151926 Galdieria-CP: Score 156: 51/51 (100%) matches, 0 gaps 154254 tttttatttagatgcctttaagttgggaagctaaaaaagaacaaagtaaa 154304

154357 aaaaataaatctacggaaattcaacccttcgattttttcttgtttcattt 154307

Figure S3 - Dot plot analyses of the plastid genomes of *G. sulphuraria* (top), *P. yezoensis* (middle), and *C. merolae* (bottom). Direct repeats are shown in red. Inverted repeats are shown in blue. Genome sizes are shown in kb.

