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Text S1: Supplementary Methods for Bayesian Inference and Stochastic 

Mapping of Seasonal Migration Processes from Phylogenetic Tree 

Distributions (SeasMig) 

Supplement for: Seasonality in the migration and establishment of H3N2 Influenza with  

epidemic growth and decline (Zinder et al.) 

 

In this supplement we describe in further detail the general Bayesian modeling approach, the mathematical 

details of the model, and the computational techniques used to perform inference and model selection. We 

demonstrate the method for several simulated scenarios in the context of seasonal migration. 

 

Note: Sections 2.10-2.13 of this text partially overlap with [1] supplementary-text and [2], with author’s (co-

author Ed Baskerville) permission.  

1 Inference of migration processes from tree distributions 

 

A variety of tools has been developed to generate phylogenetic trees from sequence data. Some are Bayesian in 

nature and provide a distribution of possible trees [3–5]. These trees are sampled according to their likelihood 

and according to the given prior probability for the parameters used when estimating this likelihood. A sample 

from this distribution is referred to as a sample from the empirical posterior distribution of trees. Other 

phylogenetic tree reconstruction tools capable of handling larger datasets e.g. [6, 7] often provide a single tree 

output or distributions which are based on randomizations of the data. It is very common for tree 

reconstruction to be the most computationally expensive part of phylogenetic analysis. This is the case since 

the number of possible trees grows super-exponentially in relation to the number of tips (or taxa).  

 

In some cases it is possible to separate the inference of tree topology based on nucleotide data, from additional 

steps relating to the inference of phylogeography and phenotypic traits. This is the case when the contribution 

of these traits to the combined sequence and trait based tree likelihood is sufficiently small. In this case, the 

tree distribution is mostly defined based on sequence data and it can be further refined and used for trait based 

analysis [5]. If all the trees based on nucleotide data were enumerated, a step which is computationally 

infeasible for more than a few taxa, than an additional step involving inference based on traits will be 

mathematically equivalent to joint inference based on nucleotide and trait data, as long as the evolutionary 

models for traits and for individual nucleotide substitutions are independent. It is not easy to know exactly how 

many tree samples based on nucleotide data are required for trait based inference, but it is necessary that the 

sample should be large enough to capture the major different tree topologies.  

 

In addition, given a distribution of trees, it is often useful to generate stochastic realizations of possible 

mutation and migration events as they occurred along the branches of the tree [8–10]. This can be done in a 

Bayesian manner, where for each tree topology coupled with a corresponding mutational and trait evolutionary 

model sampled form the empirical posterior distribution, a stochastic realization is generated.  

Finally, the different genes, or proteins of an organism, may have alternative evolutionary histories. If the 

underlying migration processes is assumed to be the same, we can use information from multiple proteins 

together when inferring migration processes.   
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2 Implementation 

 

2.1 SeasMig 

 

We implemented in Java a tool (http://bitbucket.org/pascualgroup/seasmig) for migration model inference. 

This tool can also perform stochastic mapping, based on an initial distribution of trees and geographic 

annotations. Alternative migration model parameters can be inferred and compared by their marginal 

likelihoods including seasonal and epochal phylogeographic migration models. An empirical distribution of 

trees in nexus format is given as input. Our tool uses an MCMC to sample from a posterior distribution of 

model parameters and stochastically mapped migration events along branches and trunk lineages.  

 

2.2 Bayesian Inference 

 

In a Bayesian framework, both the data and the model parameters are assumed to be stochastic. Rather than 

finding the set of parameters that maximizes the likelihood of a particular observation, we estimate the 

distribution of the model parameters that can lead to the observed data. The probability of observing a specific 

set of model parameters   conditioned on observing the data   is known as the posterior probability and can 

be written according to Bayes' rule: 

        
            

     
 (1) 

 

      denotes he prior probability of observing a specific set of parameters, while         denotes the 

likelihood of observing the data   given the model parameters  . The probability of observing the data       

without the context of a model (or models) is most often unknown. As such samples from the posterior 

distribution are known in probability often only with relation to other samples.     

 

The probability of observing the data         in a context of a specific model  , used to fit the data, can be 

calculated by summing up the probability of observing the specific model parameters (prior) multiplied by the 

probability of observing the data conditioned on the model parameters (likelihood), across all the parameter 

values     

 

            

 

          (2) 

 

or in a more general continuous notation: 

 

                     
 

 (3) 

 

Where         is referred to as the marginal likelihood,      is the prior distribution and        is the 

likelihood function.  

 

 

 

 

http://bitbucket.org/pascualgroup/seasmig
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2.3 Non-Seasonal Migration Model 

 

We assume that discrete geographic location diffuses along branches of the tree following a continuous time 

Markov chain (CTMC) process. In this case, non-seasonal migration processes are characterized by a single 

rate matrix Q: 
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where     represents the migration rate between location   to location  .  

 

2.4 Non-Seasonal Migration Model Parameterization and Priors 

 

Rates are assumed to have an exponential prior              with a rate hyperprior parameter   which is 

shared across all the rates and is itself exponentially distributed with unit mean             

 

Note: the rate hyper prior was added at a later stage and is not included in non-seasonal analysis in the main 

body of the text .   

 

2.5 Matrix Exponentiation 

 

Matrix exponentiation is used to convert migration rates, to probability distributions, which concern the state 

of nodes along the tree. We first focus on processes along individual branches of the phylogenetic tree.  

Given a branch connecting parent node x to child node y,    , of length  . We assign node   a vector     

which defines its probability of being at state  :  

 

               
      
  

      

   (5) 

 

We assume, in the simplest case, that states along branches behave as homogeneous Poisson processes with a 

rate matrix Q, as such the state distribution of node   can be written as:  

 

              (6) 

Where    is the transition probability matrix and can be calculated as follows: 

 

              (7) 

 

The matrix exponent can be defined by the Taylor expansion of the exponent function: 

 

     
    

  
  

     

  
  

     

  
     (8) 

 

Multiple alternative algorithms are implemented for matrix exponentiation. Several algorithms were either 
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imported (JBLAS) or directly implemented in the code including the Taylor Series, the Padé approximate [11], 

and Eigen-Decomposition. For matrices of rank 3 or less, and for specific cases of matrices of rank 4 (HKY 

[12], JC69 [13]), analytic solutions exist and were implemented. All matrix exponentiation algorithms were 

cross-validated within the package.  

 

2.6 Two Seasonal Migration Model 

A seasonal migration model which is a variation of [14], was established by using two different migration rate 

matrices    and    for two parts (seasons) of the year:   

 

   

 

 
 
 
 
      

 

   
         

          
 

   
     

    

              
 

    

 
 
 
 

      (9) 

 

The exact partitioning of the year is defined by the start   and end   of season A (without loss of generality). 

Where:         and        .  

 

For example, for     and        the rate matrix    applies to all branch parts within January-March, 

while rate matrix    applies to all branch parts within April-December. To estimate the transition probabilities 

between two states at different times, the respective transition probability matrices       are calculated for the 

individual year parts through matrix exponentiation. For instance, for the same partitioning of the year, given a 

branch      spanning from year       to year        , the state distribution of node   can be calculated 

as: 

 

            (10) 

 

Where P is the transition probability matrix: 

 

 

                             (11) 

  

                is the fraction of the branch within season A, and                   is the 

fraction of the branch within season B.  

 

2.7 Two Seasonal Migration Model Parameterization and Priors 

 

2.7.1 Migration Seasonality Based on a Specific Source and Destination 

 

Migration rates for the two partitions of the year were parameterized as follows: 

 

                                   (12) 

 

Where     is referred to as the mean migration rate, and     are referred to as the seasonal scaling parameters.  

As is the case in the non-seasonal model, mean rates are assumed to have an exponential prior 

             with a rate hyper prior parameter    which is shared across all the rates and is itself exponentially 
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distributed with unit mean            The seasonal scaling parameters (             are assumed to have a 

uniform prior            . The scaling parameter was used instead of two separate rates, to separate the 

inference of mean migration rates, from the inference of the seasonality of migration.  

 

2.7.2 Migration Seasonality Based on Source  

 

For source based migration seasonality rates (Equation 9) are parameterized in the following way: 

 

                                   (13) 

 

where     are the source based seasonal scaling parameters. Mean rates are assumed to have an exponential 

prior              with a rate hyper prior parameter    which is shared across all the rates and is itself 

exponentially distributed with unit mean             The seasonal scaling parameters (          are assumed 

to have a uniform prior             

 

2.7.3 Migration Seasonality Based on Destination 

 

For destination based migration seasonality rates (Equation 9) are parameterized in the following way: 

 

                                   (14) 

 

where     are the destination based seasonal scaling parameters. Mean rates are assumed to have an 

exponential prior              with a rate hyper prior parameter    which is shared across all the rates and is 

itself exponentially distributed with unit mean             The seasonal scaling parameters (          are 

assumed to have a uniform prior            . 

 

2.7.4 Migration Seasonality Based on Source and on Destination 

 

For destination based migration seasonality rates (Equation 9) are parameterized in the following way: 

 

                                                    (15) 

 

where     and     are the source and destination based seasonal scaling parameters respectively. Mean rates 

are assumed to have an exponential prior              with a rate hyper prior parameter    which is shared 

across all the rates and is itself exponentially distributed with unit mean             The seasonal scaling 

parameters (                     are assumed to have a uniform prior or             and             

 

2.8 Tree Likelihood Calculation 

Given a tree, a specific and parameterized trait evolutionary (substitution) model, and the state of traits on the 

tips of the tree, a tree likelihood can be calculated [6].  

 

In general, this likelihood can be calculated by integrating (enumerating and summing up) the likelihood of all 

possible internal node states. This is done efficiently by calculating and storing the likelihood of sub-trees, 

recursively progressing from the tips towards the trunk of the tree [6].  
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The transition probability matrix is defined according to Equation 7 for a non-seasonal model and according to 

Equation 11 for a two seasonal model. The transition probability matrix is used to calculate the likelihood of 

node states along individual branches of the tree. 

       

The prior assumption    about the state of the root of the tree usually follows either an equal probability of 

being at each state, an empirical estimate of being at a given state, or the stationary distribution of the 

substitution model: 

 

          
   

         (16) 

 

where     is the initial state of the system and assumed to be an equal probability of being in each state The 

value of     is only relevant if isolated populations exist, and stationary conditions depend on their populace.  

 

Since there is no such stationary distribution for a seasonal model, we used the stationary distribution of the 

corresponding seasonal migration matrix at the root node time, this assumes some convergence to the 

stationary distribution within each season. Alternative estimates can be derived. The inference is not sensitive 

to the specific root prior assumptions in this case.    

 

2.9 Stochastic Mapping 

 

Stochastic mapping is an additional step following the calculation of tree likelihood and ancestral state 

reconstruction at the nodes of a tree. This mapping allows us to generate a stochastic realization of the state of 

branches along the tree, in addition to the state of internal nodes, and in so doing, provides samples of 

migration and mutation events, and their timing along the tree that lead to the observed tip states. Stochastic 

mapping of both sequence (nucleotide) and character (e.g. geographic) annotations is available in SeasMig, 

together with the option of incorporating seasonal migration models. Stochastic mapping is implemented 

directly in our code based on [8]. Improved performance could be achieved using [10].  

 

A given type of event, migration or mutation, is assumed to behave as a Poisson process along a branch with a 

rate matrix Q: 

 

Q= 

     
 
          
        

 
       

    
            

 
   

  (17) 

 

As such, the timing of the next event given the present state follows an exponential distribution with the rate 

parameter        
 
   , where x is the present character state.  

Once the timing of the next event is determined, it is chosen based on its relative probability compared to other 

transition (emigration) events:  

    

        

 
 
 

 
 
   
  

   

  
   
  

   

  (18) 
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Given a branch connecting parent node   to child node  , defined to span from time    to time   , and with 

ancestrally reconstructed states    and    respectively. Stochastic events are generated starting from    , 

repeatedly until the state of node y is correctly reconstructed. That is, until an event prior to the timing of node 

y results in the state   , and an additional event time generated is timed to be beyond   .  

 

Branch reconstructions that span across seasons were performed by stochastically reconstructing the state 

between the seasons’ boundaries using the initial migration matrix, and by continuing the stochastic mapping 

forward using the second seasonal matrix and so forth. This is process is reinitialized from node x, until the 

state of the node y is correctly mapped. The validity of these processes relies on the memory less nature of the 

Poisson process.   

 

2.10 Markov-Chain Monte Carlo (MCMC) 

Markov-chain Monte Carlo, or MCMC, is an algorithm that allows sampling from analytically intractable 

distributions. Such distributions include the distribution of tree likelihoods given a mutational or a migration 

model.  

 

The general idea of an MCMC method is to set up a sequence of dependent samples         that is 

guaranteed to converge to a target distribution, in this case the posterior distribution of our model. In the 

Metropolis-Hastings algorithm, a change is proposed to the current state, drawn from a proposal distribution 

over possible changes        . This change is either rejected, in which case the current sample is repeated, 

or the proposed change is accepted as the new sample. The Metropolis-Hastings acceptance probability [15, 

16]: 

 

 

     
         

            

         
  
  

 

(19) 

 

guarantees that the sequence of samples will converge to the posterior distribution.  

 

2.11 Metropolis-coupled MCMC (MC3) 

We use (http://github.com/edbaskerville/mc3kit) for MCMC functionality [1, 2]. Additional functions for 

sampling and evaluating tree likelihoods were implemented.   

 

Although the Metropolis-Hastings algorithm is guaranteed to converge to the target distribution at some point, 

local maxima in the likelihood surface can cause a chain to become stuck for long periods of time. One 

approach to avoiding this problem, known as “Metropolis coupling”, involves running multiple chains in 

parallel. One chain, the “cold chain”, explores the target distribution, while the other chains, “hot chains”, 

explore low-likelihood configurations more freely. Periodically, swaps are proposed between chains, allowing 

good configurations discovered on hot chains to propagate toward to the cold chain.  

 

Rather than exploring the target distribution                      , heated chains explore 

  

                     
          (20) 

 

http://bitbucket.org/pascualgroup/seasmig
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Where   is a heating parameter. We use uneven spaced values of   [17], with the hottest chain exploring the 

prior (     and the coldest chain exploring the posterior (    . 

 

Swap moves are standard Metropolis-Hastings proposals, but rather than considering a change to a single 

chain, they consider a change to the joint distribution of two chains. The acceptance proability is thus the ratio 

of the joint distribution after and before the move:  

 

                   
              

                
  

              
                

  
  

       

       
 

     

 (21) 

  

Where       are the configurations that begin in chains i and j, and       are the heat parameters of the two 

chains.  

 

The use of multiple heated chains has the side effect of drastically improving estimates of marginal likelihoods 

for model selection, as described in the next section.  

 

2.12 Marginal Likelihood Estimation  

Enumeration across all possible model parameters is computationally costly and grows exponentially with the 

number of model parameters. We would like to use MCMC to estimate the marginal likelihood for the sake of 

comparison among different models. Marginal likelihood estimates derived from a single chain, such as the 

harmonic mean estimator of Raftery [18], converge very slowly, because MCMC fails to sample sufficiently 

from low-likelihood areas. However, it is possible to use the information gathered about low-likelihood areas 

in heated chains using a technique called thermodynamic integration [19, 20], or path sampling [21].  

 

Assuming a continuum of heated chains, the thermodynamic estimator of the log-marginal likelihood is:  

 

          
 

 
           

 

   

 

 

          (22) 

 

where m is the number of samples in the MCMC output, and      is a single sample from the output in a chain 

with heat parameter   [20]. With a finite number of chains, we use the trapezoid rule to numerically integrate 

this integral (Figure 1), using uneven spacing of heats to improve the estimate [17]. 
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Figure 1. Thermodynamic integration of the marginal likelihood. The mean likelihoods of each chain 

(black dots) are interpolated and used to estimate the marginal likelihood (gray area) [17]. The maximum 

likelihood (dotted line) is asymptotically approaches the mean likelihood as    .  

2.13 Model Selection via Marginal Likelihood   

The Bayesian framework provides a natural way to make probabilistic inferences based on a particular model. 

However, we also want to be able to choose between different models by quantifying their relative goodness of 

fit. One approach to Bayesian model selection can be framed directly in terms of Bayes’ rule, mirroring the 

process for estimating the posterior distribution over parameters for a single model.  

 

Consider two models,    and   , to which we assign prior weight        and       . After the data has 

been observed, we can calculate the posterior probability of the models using Bayes’ rule: 

 

          
                

      
 

(23) 

          
                

      
 

 

 

Where the denominator is equal to the probability of observing the data unconditional of the particular model 

at play,                                   . The probabilities                            
 

and                            
 are the marginal likelihoods of the two models, corresponding to 

Equation 3. If we give the two models equal prior weight, then the relative posterior weight of the two models 

is simply given by the marginal likelihoods. This reasoning extends naturally to any number of models.  

 

The ratio of the marginal likelihoods is often called the Bayes factor [18, 22, 23], and is equal to the posterior 

odds ratio of the two models, assuming equal prior weight:  

 

    
         

         
 

(24) 
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The Bayes factor provides a convenient way to compare models: if B12=10, then we consider support for 

model M1 to be ten times stronger than model M2. In AIC-based selection, the Bayes factor is analogous to a 

ratio of Akaike weights [24]. 

 

The marginal likelihood of a a model is the likelihood averaged over the prior distribution. That is, it is the 

likelihood one would expect by randomly sampling parameters from the prior distribution:  

 

                    
 

 (25) 

 

This value serves as a useful measure of model fit because it directly incorporates the dependence of the 

likelihood on uncertainty in parameter values,  implicitly penalizing extra degrees of freedom [25]. If an 

additional parameter improves the maximum likelihood but decreases the average likelihood, the model suffers 

from over fitting relative to the simpler model.  

 

2.14 Convergence 

Methods for estimating model convergence were not directly implemented within our package. Such tools 

include [26] which can be used to estimate the number of effective number of samples from an MCMC chain. 

This is necessary since MCMC chains include auto correlated samples.  

 

2.15 Variable Selection 

To assess whether the inclusion of migration between different communities is informative, and to establish if 

rates are seasonal, Bayesian variable selection [27] was implemented.  

 

Our implementation is based on [28] but differs in that it is implemented within an MC3 framework. Indicator 

variables which can take a value of either 0 or 1 prefix parameters of interest. Bayes factors for the inclusion of 

a specific parameter are calculated as: 

   
            

            
 

(26) 

  

and represent the ratio of the marginal likelihoods of the two models, with and without the variable of interest 

parameterized. Symmetric non-informative priors were used for the indicators. Bayes factors are estimated as 

the ratio of the number of posterior samples of the cold chain in which the indicator was 1 compared to 0. The 

use of an MC3 framework reduces the probability of variables getting stuck in a specific configuration (on or 

off) as heated chains continue to sample from the prior and flattened likelihood distributions. In theory, it may 

be possible to use thermodynamic integration to obtain better estimates of Bayes factors.     

 

2.16 Non-Seasonal Migration Model Parameterization with Variable Selection 

 

Rates (Equation 4) are parameterized in the following way              where              have an exponential 

prior with a rate hyper prior parameter   which is shared across all the rates and is itself exponentially 

distributed with unit mean            The indicators     are drawn from an equal probability prior 

distribution. 

 

Note: a rate hyper prior was added at a later stage and is not included in non-seasonal analysis in the main 

body of the text. 
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2.17 Two-Seasonal Migration Model Parameterization with Variable Selection 

 

Rates (Equation 9) are parameterized in the following way: 

 

                                                       (27) 

 

where     is referred to as the mean migration rate, and     are referred to as the seasonal scaling parameters. 

As is the case in the non-seasonal model, mean rates are assumed to have an exponential prior 

             with a rate hyper prior parameter    which is shared across all the rates and is itself exponentially 

distributed with unit mean            The seasonal scaling parameters (             are assumed to have a 

uniform prior            . The seasonal scaling indicators     , and the rate indicators      are drawn from an 

equal probability prior distribution. 

 

2.18 Combining the likelihood of multiple protein trees 

A conservative approach was used to combine the information present in multiple protein trees with respect to 

the model likelihood. The combined protein tree log-likelihood is averaged across the multiple protein trees, to 

account for the possible lack of independence in the information contained in the two trees with respect to 

migration rates and seasonality. This choice does not affect the maximum likelihood model parameter choice 

but has the effect of widening confidence intervals when the multiple protein trees provide independent data, 

while providing the correct confidence interval when the proteins are in complete linkage and have the exact 

same evolutionary history. Tree weights can be specified as configuration parameters.  

3 Results 

 

3.1 Inference of non-seasonal and seasonal migration rates 

 

In this analysis we infer seasonal and non-seasonal migration rates from a single tree topology and 

stochastically generated tip locations based on a known input migration model. A single hemagglutinin tree 

topology with 2859 tips was used for this analysis. Tip collection dates span from 1981-2009. Non-seasonal 

and two-seasonal migration models without variable-selection are used in this section.  
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migrations per lineage per year 

 
 

Figure 2 Inferred migration rates given a non-seasonal tip location generating model Inferred median 

(dashed) and 90% Bayesian credible intervals (gray) (CI) for migration rates between five locations. Tip 

locations were generated stochastically using an input non-seasonal migration model (green line). A non-

seasonal migration rate model was used for inference.  
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migrations per lineage per year 

 
Figure 3 Inferred migration rates given a non-seasonal tip location generating model Inferred median 

(dashed) and 90% CI (gray) migration rates between five locations. Tip locations were generated stochastically 

using an input non-seasonal migration model (green line). A two-seasonal migration rate model was used for 

inference. 
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  migrations per lineage per year 

 
Figure 4 Inferred migration rates given a two-seasonal tip location generating model Inferred median 

(dashed) and 90% CI (gray) migration rates between five locations. Tip locations were generated stochastically 

using an input two-seasonal migration model (green line).  A non-seasonal migration rate model was used for 

inference. 
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migrations per lineage per year 

 
Figure 5 Inferred migration rates given a two-seasonal tip location generating model Inferred median 

(dashed) and 90% CI (gray) migration rates between five locations. Tip locations were generated stochastically 

using an input two-seasonal migration model (green line).  A two-seasonal migration rate model was used for 

inference. 

 

When using the input migration model type (seasonal vs. two-seasonal), migration rates are mostly, but not 

always within the 90% Bayesian credible intervals. 
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3.2 Marginal likelihood of non-seasonal and seasonal migration models 

We compare the marginal likelihood of alternative non-seasonal and two-seasonal migration models. For this 

tree and the specified input models (Table 1). The correct migration model (seasonal vs. non-seasonal) is 

supported for 3, 5 and 8 demes based on the marginal likelihood.  

 

Table 1. Marginal likelihood of seasonal and non-seasonal migration rate models  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Inference of seasonal migration from simulated trees 

 

3.3.1 Five populations, single protein tree 

 

We used an agent based simulation [29] to simulate migration between different populations with random 

population size, associations and seasonal incidence patterns (Table 2, Table 3, Figure 6). In this model the 

number of infected contacts between deme i and deme j was drawn from a Poisson distribution with mean:  

 

                     
     

  

            (28) 

 

where    is the contact rate,       the number of infected at the source deme,       the number of susceptible at 

the destination deme,    the population size of the destination deme,      is the fraction of contacts between 

the demes (Table 3) as part of within deme contact, and       is the seasonality in the contact rate at the source 

deme (an alternative could be at the destination deme contact seasonality).  

Infection is further determined by the immune history of the host and the cross-immunity with the infecting 

strain. As such none of these parameters can be directly associated with migration rates on a per lineage basis.  

 

Table 2 Agent based five deme population parameterization 

Parameter Value 

 contact rate β0 0.6 [1/day]  

recovery rate ν 0.2[1/day] 

birth/death rate μ  1/30 [1/year] 

epitopes 4 

variants per epitope  5x4x3x2 

epitope mutation rate ξ 0.000008 [1/day] 

cross-immunity σ 0.87 

# demes tip generating model inference model marginal likelihood 

3 non-seasonal non-seasonal -2370.4 

3 non-seasonal two-seasonal -2374.2 

3 two-seasonal non-seasonal -2491.3 

3 two-seasonal two-seasonal -2478.9 

5 non-seasonal non-seasonal -3899.3 

5 non-seasonal two-seasonal -3914.7 

5 two-seasonal non-seasonal -4016.4 

5 two-seasonal two-seasonal -3979.7 

8 non-seasonal non-seasonal -5055.2 

8 non-seasonal two-seasonal -5069.6 

8 two-seasonal non-seasonal -5494.4 

8 two-seasonal two-seasonal -5430.4 
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A single tree with ~3000 tips tracking the genealogy of the simulated virus was sampled proportional to the 

prevalence. 

Table 3. Random associations        between five simulated populations as a fraction of within deme contact  

 

 

 

 

 

 

 

 

 

Figure 6 Prevalence seasonality in simulated population Simulation of 5 populations with seasonal 

incidence patterns and random associations.  

  

from/to deme1 deme2 deme3 deme4 deme5 

deme1  0.007 0.039 0.039 0.041 

deme2 0.045  0.005 0.005 0.031 

deme3 0.014 0.032   0.013 

deme4 0.007 0.029 0.033 0.033 0.014 

deme5 0.042 0.040 0.011 0.011  
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migrations per year 

 
Figure 7 Inferred migration events seasonality using a constant migration model Inferred median 

(dashed) and 90% CI (gray) stochastically mapped migrations between five locations. Samples of the 

migration events on the simulation tree (green line).  A model with constant migration rates is used (marginal 

likelihood = -4593.7).   
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migrations per year 

 
Figure 8 Inferred migration events seasonality using a two-seasonal migration model Inferred median 

(dashed) and 90% CI (gray) stochastically mapped migrations between five locations. Samples of the 

migration events on the simulation tree (green line).  A two seasonal migration model is used (marginal 

likelihood = -4510.2)  

 

3.3.2 Three populations, two protein trees 

 

We simulated [29] migration between three different seasonal populations with a specified population size. 

Contact seasonality (Figure 9, observed seasonality) and a associations (Table 4) were randomly 

parameterized. A limited number of tip samples were used to sample the transmission tree as specified by 

Table 5 intended to approximate the sampling profile of the main text, and Table 6 representing uniform 

sampling over time. Each simulation was repeated twice to attain to alternative evolutionary histories 

(proteins) driven by the same migration process. Future simulations will include the direct simulation of 

segmented genome viral evolution.   

 

 
Figure 9. Prevalence seasonality in simulated population Simulation of three populations with seasonal 

incidence patterns and random associations.  
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Table 4. Random associations 

       between three simulated 

populations as a fraction of within deme 

contact  
 

from/to deme1 deme2 deme3 

deme1  0.007 0.039 

deme2 0.045  0.005 

deme3 0.014 0.032  

 

 

  

3.3.2.1 Uniform sampling over time 

 

In this simulation, we sampled approximately the same number of tips over time irrespective of 

population size and of seasonal incidence patterns.    

Table 6.  Number of tips samples from two simulated protein trees with 

alternative evolutionary histories and the same underlying migration processes. 

Tips were sampled stochastically, with approximately the same number of tips 

sampled over time and in each population.  

 

 protein A  protein B Total 

deme1 287 278 565 

deme2 252 273 525 

deme3 290 297 587 

Total 829 848 1677 
 

 

 

migrations per year 

 

Figure 10 Inferred migration events seasonality using a non-seasonal migration rate 

model and uniform tip sampling Inferred median (dashed) and 90% CI (gray) stochastically 

mapped migrations between five locations. Samples of the migration events on the simulation 

tree (green line).  A two seasonal migration model is used (marginal likelihood = -902.3)  
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migrations per year 

 

Figure 11 Inferred migration events seasonality using a two-seasonal migration rate 

model and uniform tip sampling Inferred median (dashed) and 90% CI (gray) stochastically 

mapped migrations between five locations. Samples of the migration events on the simulation 

tree (green line).  A two seasonal migration model is used (marginal likelihood = -906.9)  

 

3.3.2.2 Proportional sampling 

 

In this simulation tips were sampled proportional to incidence. The number of tips (Table 5) sampled is 

intended to approximate the available hemagglutinin and neuraminidase sequences which were used in the 

main text for a similar inference.  

Table 5.  Number of tips samples from two simulated protein trees 

with alternative evolutionary histories and the same underlying 

migration processes. Tips were sampled stochastically, proportional 

to prevalence, with an approximate number of tips specified in each 

population. 

 protein A  protein B Total 

deme1 514 47 561 

deme2 138 2 140 

deme3 1369 323 1692 

Total 2021 372 2393 
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migrations per year 

 

Figure 12 Inferred migration events seasonality using a constant migration rate model 

Inferred median (dashed) and 90% CI (gray) stochastically mapped migrations between five 

locations. Samples of the migration events on the simulation tree (green line).  A model with 

constant migration rates is used (marginal likelihood = -899.3).   
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migrations per year 

 

Figure 13 Inferred migration events seasonality using a two-seasonal migration rate model 

Inferred median (dashed) and 90% CI (gray) stochastically mapped migrations between five 

locations. Samples of the migration events on the simulation tree (green line).  A two seasonal 

migration model is used (marginal likelihood = -862.7)  

 

 

migrations per year 

 

Figure 14 Inferred migration events seasonality using a two-seasonal migration rate model 

with variable selection for the inclusion of migration between deme pairs and for the 

inclusion of seasonal migration between deme pairs Inferred median (dashed) and 90% CI 

(gray) stochastically mapped migrations between five locations. Samples of the migration events 

on the simulation tree (green line).  A two seasonal migration model is used (marginal likelihood 

= -866.5)  
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