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SUPPLEMENTARY METHODS 

RNA extraction and microarray preparation. RNA extraction was performed 

using RNeasy micro kits (Qiagen) in an automated manner on the QIAcube 

platform. Extracted RNA was subject to quantification and quality assurance 

using an Agilent 2100 Bioanalyzer and samples checked for a RNA Integrity 

Value (RIN) >7 prior to further analysis. Degradation of RNA from the 5’ end may 

introduce bias which is further compounded by in vitro transcription based 

amplification technologies that preferentially amplify the 3’ end of the RNA 

molecule[1]. However, careful RNA processing and the use the Ovation Pico 

system (NuGen Technologies) for single primer isothermal amplification 

resulted in no appreciable 3’ bias (Supplemental Fig. 1g) with strong inter-array 

signal intensity concordance (Supplemental Fig. 1h) using 1ng starting material 

from all samples. Amplified RNA was then biotinylated using the Encore Biotin 

Module (NuGen) prior to hybridization to Human Gene ST 1.0 microarrays 

(Affymetrix) and reading using an Affymetrix GeneChip Scanner 3000 7G with 

data extraction using the Affymetrix Expression Console 3.2.3.1515 software.  All 

arrays were required to pass initial quality control metrics including a positive 

versus negative area under the curve (AUC) ≥0.8.   

 

Microarray pre-processing. Initial microarray data pre-processing was 

performed using Affymetrix Power tools (APT 1.15.0, Affymetrix) including 

robust multichip average (RMA) normalization. All steps from RNA extraction to 

array hybridization were performed in batches to which samples were randomly 



assigned, with subsequent correction for any batch effects using the methods of 

Johnson et al[2]. Removal of batch effects was confirmed and effect size of 

known variables measured using principle variance component analysis (PVCA) 

according to the methods of Li. et al.[3] (Fig. 1a). 

 

A common problem with expression microarray data is discrimination of signals 

from background noise, particularly for low abundance transcripts. Although 

noise will be constant between arrays and hence false detection of a significant 

difference between biological groups is unlikely, inclusion of signals from these 

probes in downstream analysis will incur a penalty in correction for multiple 

testing and thus lead to type II errors. Approaches using array designs based 

upon pairing each perfect match (PM) oligomeric probe with a deliberately 

mismatched probe (MM) altered at a single base enable estimation of signal 

specificity based upon PM/MM signal ratio but reduce the total number of 

transcripts that can be interrogated for any given number of probes.  

 

PM-only design chips such as the Affymetrix Gene ST used in this study need an 

alternative approach to transcript presence/absence calling. Discarding results 

from probesets in an arbitrary bottom fraction of expression values[4] does not 

allow the discrimination of consistent biological differences in expression of low 

abundance transcripts. We used an approach based upon the APT Detection 

Above BackGround (DABG) algorithm, whereby every probeset is assigned a p 

value representing the probability of the signal representing background noise, 

based upon the comparison of the signal from each of the probes in a given 

probeset and from non-expressed control probes matched for GC-content[5]. We 



defined a transcript as detected on an array if ≥50% of probesets mapped to a 

given transcript ID had a DABG p value ≤0.01; likewise, we defined a transcript 

as present within the total dataset if ≥50% of arrays for any single given cell type 

showed detection of the transcript according to these criteria (i.e. DABG p values 

≤0.01 for ≥50% of probesets mapped to a single transcript ID in ≥3 arrays for 

any given TEM cell population). Modelling of alternative thresholds showed that 

this combination of stringent DABG p value but relaxed probeset frequency 

resulted in the greatest power to detect differentially expressed transcripts in 

downstream analysis. 

 

DABG filtering, removal of control or cross-hybridizing probesets and removal of 

probesets that were not mapped to autosomes or to chromosome X, reduced an 

initial dataset of 33,321 transcript IDs to 14,315. Additional filtering was 

performed to remove probesets mapped to transcripts that did not correspond 

to a confirmed RNA sequence in the National Centre for Biotechnology 

Information (NCBI) Reference Sequence (RefSeq) database (accession codes 

beginning ‘NM’ and ‘NR’). This further reduced the total dataset to 9,468 

transcript IDs. 

 
Differential expression analysis. Transcript IDs passing pre-processing and 

filtering were taken forwards for differential gene expression using the R ‘limma’ 

software (Linear Models for Microarray Data; version 3.16.7), with weightings 

applied for array quality[6] and correction for multiple testing according to the 

methods of Benjamini and Hochberg[7]. Data were analysed pairwise, with each 

gut TEM population paired to a corresponding peripheral blood TEM population 



taken from the same individual (CD4+  TEM IELs and CD4+  TEM LPLs paired to 

CD4+ TEM blood cells; CD8+  TEM IELs and CD8+  TEM LPLs paired to CD8+ TEM blood 

cells). Lists of differentially expressed genes were used for pathway analysis 

using Ingenuity Pathway Analysis (IPA, Ingenuity Systems) with enrichment 

significance determined by Fisher’s Exact test. 

 

Protein-protein interaction. Protein-protein interaction networks were built 

for lists of differentially expressed genes. Since not all proteins within a given 

pathway might need to be upregulated at the mRNA level in order to see 

enhanced signalling through that pathway, we first identified all protein binding 

partners for products of upregulated transcripts, then built an interaction 

network for all protein-protein interactions in this extended list. Protein-protein 

interactions were identified using iRefIndex, an expert curated database 

(http://irefindex.org; version 12.0)[8] and the results filtered to show only 

interaction data from in vitro studies of human proteins (i.e. in silico predictions 

and data from other species removed). Interactions with CFTR and UBC were 

removed since these are promiscuous in their associations, and then proteins left 

unlinked to the main network were also removed.  

 

Results were plotted using Cytoscape software (http://www.cytoscape.org; 

version 3.0). Each protein reflected by a single node, with node prominence (size 

and shading) set to reflect betweeness centrality, a measure of the importance of 

each node to overall network connectivity, based upon the number of shortest 

paths between all other nodes in the network passing through the node itself[9]. 

Each protein-protein interaction is represented by an edge, with edge 



prominence (size and transparency) set to reflect edge betweeness, a measure of 

the importance of each protein-protein interaction to overall network 

connectivity, based upon the number of shortest paths in the network passing 

through the edge itself, normalized to the total number of edges in the nodes that 

the edge belongs to (this normalization prevents proteins for which more 

interaction data has been reported from dominating the network view)[9]. 

Distance and positioning of each node within the network was determined 

according to a force-directed paradigm where nodes mutually repel unless 

drawn together by edges, according to the ‘yFiles organic’ algorithm (yWorks 

GmbH), with slight modifications only to ensure clarity of view. 

 

GWAS interval enrichment analysis. Testing for enrichment of differentially 

expressed genes within genetic risk loci was performed using script written in 

Python (http://www.python.org; version 2.7.2). Lists of genetic risk loci 

associated with specific traits were drawn from definitive studies in the 

published literature (CD[10], UC[10], CeD[11], Psoriasis[12]), from the 

Immunobase Consortium (T1D, http://www.immunobase.org [accessed 

1/4/13]) or from the National Institutes of Health (NIH) GWAS catalogue 

(http://www.genome.gov/gwastudies [accessed 1/4/13]).  SNP lists were 

filtered for genome-wide significance (p value ≤5x10-8) and restricted to 

autosomes only since not all GWAS studies include chromosome X. Risk intervals 

based upon genetic distance were defined 0.2 cM (estimated using Phase I data 

from the 1000 Genomes project: http://www.1000genomes.org) either side of 

the focal SNP. Where multiple SNPs fell within overlapping recombination 

windows, the SNP with the less significant p value was removed from testing. 



Lists of differentially expressed genes (DEGs) for the four gut TEM populations 

were reanalysed according to the methods already described, with additional 

filtering prior to Limma analysis to restrict expression data to autosomes only 

(Limma analysis performed on 9,144 transcripts, rather than 9,468). Transcripts 

showing ≥1.4 fold differential expression with p value ≤0.05 after adjustment for 

multiple testing were used for analysis. We then counted the number of risk 

intervals that overlap with at least one DEG, defined here as the interval between 

the first start and last stop site of the transcript.  

 

To assess the statistical significance of this result, we calculated the number of 

risk intervals that overlap with sets of transcripts picked at random from the 

total list of 9,144 expressed autosomal transcripts. This generates a null 

distribution of overlap counts from which the empirical p-value of the observed 

result can be obtained. The number of transcripts to sample was set initially as 

the same total number of DEGs that was observed in the DEG list for the 

comparison under test. However, since gene expression may occur non-

randomly with respect to genomic position, the significance of the observed 

overlap may be biased by overrepresentation of genomic regions selected at 

random from DEG clusters. To avoid this, we sampled a number of transcripts 

equivalent to the number of DEGs representing unique genetic locations, as 

determined by removing from the list of DEGs any transcript that overlaps with 

an interval 0.2 cM either side of the midpoint of another DEG transcription 

interval. Likewise, during the random sampling, each new transcript picked was 

rejected if it fell within a 0.2 cM window around the midpoint of any transcript 

already selected.  We assessed the degree of overlap of this random sample of 



transcripts with the genetic risk intervals for the trait under study.  This random 

sampling was iterated 106 times to generate a null distribution of the number of 

overlapping loci between genes present in our total dataset and the genetic risk 

loci. The empirical p-value is then the number of times the simulated number of 

overlapping risk loci exceed the observed number of overlaps divided by the 

number of iterations. In this way, we were able to assess the statistical 

significance of the observed overlap between any given list of genetic risk loci 

and any list of differentially expressed genes, without biasing for the total 

number of SNPs or genes in either list.  

 

Chromatin Immunoprecipitation Enrichment analysis. To identify 

potentially active transcription factors (TFs) within the cell populations under 

study, lists of upregulated genes were analysed using the X2K algorithm of Chen 

et al.[13], based upon identification of genes known to coimmunoprecipitate 

with specific TFs in an expert curated database of published human chromatin 

immunoprecipitation sequencing (ChIP-Seq) data. TFs with ChIP-Seq binding 

sites occurring at a significantly higher frequency (after correction for multiple 

testing[7]) within the list of differentially expressed genes than in the master 

database represent putative active regulators within that cell population.  

 

In order to identify potential TF binding sites modified by SNPs associated with 

IBD, focal IBD-associated SNPs as well as all SNPs in tight linkage disequilibrium 

(r2≥0.9) with the focal SNP, were identified using SNAP, an online SNP proxy 

search tool[14]. All SNPs were then analysed for the presence of known TF 



binding sites based upon ChIP-sequencing data using an online, expert curated 

database[15].  

 

We wanted to test whether any of the TFs identified as putative drivers of 

differential gene expression in LPL CD4+ and CD8+ TEM cells might explain the 

association seen between IBD risk loci and genes over-expressed in these cell 

populations. We reasoned that such a TF might be expected to have multiple 

binding sites associated with those IBD risk SNPs that were in turn associated 

with a gut overexpressed gene, but significantly fewer binding sites associated 

with those IBD risk SNPs showing no such association.  

 

To this end, we divided SNP lists into those where the focal SNP marked a risk 

locus containing a gene upregulated in LPL CD4+ or CD8+ TEM cells, and those 

where no such overlap was observed. We then noted the distribution between 

these two lists of binding sites for those TFs identified as active in each cell 

population. For those TFs showing a minimum of five binding sites in each list, 

we calculated the probability of the null hypothesis of random distribution 

between the two lists by χ2 testing, with adjustment for multiple testing[7]. 
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