

Supplementary Figure 1. Screening for novel genes responsible for the activation of HIF-1. (a) Schematic diagram of the p5HREp-bsd plasmid that expressed the blasticidin S-resistant gene (*bsd*) in a HIF-1-dependent manner. (b) NIH3T3/5HRE-BSD cells were cultured under normoxic (20%) and hypoxic (0.1%) conditions with 10 μ M blasticidin S for 24 h. The fraction of surviving cells was quantified by Cell Count Reagent SF (Nacalai Tesque) according to the manufacturer's instructions. Mean \pm s.d. n = 3, **p < 0.01 (Student's *t*-test between the indicated groups).

Supplementary Figure 2. Endogenous expression levels of UCHL1 in various cancer cell lines. Twenty-four hours after seeding the indicated cells, cell lysates were harvested and subjected to Western blotting with anti-UCHL1 (upper) and anti-β-actin (lower) antibodies.

Supplementary Figure 3. Activation of HIF-1 activity by UCHL1 overexpression. MDA-MB-231/5HRE-Luc cells were transfected with the UCHL1-expression vector, pcDNA4/UCHL1 (UCHL1), or its empty vector, pcDNA4/myc-His A (EV), cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h, and subjected to Western blotting using the indicated antibodies and the luciferase assay. Mean \pm s.d. n = 3, *p < 0.05, **p < 0.01 (Student's *t*-test between the 2 indicated groups).

Supplementary Figure 4. Efficiency of UCHL1 knockdown. The efficiency of UCHL1 knockdown in HEK293T/5HRE-Luc cells in the experiment in Figure 1c (**a**), MDA-MB-436/5HRE-Luc cells in that of Figure 1c (**b**), HEK293T cells in that of Figure 1e and Supplementary Fig. 7 (**c**), HEK293T cells in that of Figure 2b (**d**), HEK293T cells in that of Figure 2d left (**e**), MDA-MB-436 cells in that of Figure 2d right (**f**), and DU145 cells in that of Supplementary Fig. 5 (**g**) were quantified by qRT-PCR. Mean \pm s.d. n = 3, *p < 0.05, **p < 0.01 (Student's *t*-test between the 2 indicated groups).

Supplementary Figure 5. Suppression of HIF-1 activity by UCHL1 knockdown. DU145 cells were transfected with a plasmid encoding the *5HREp-luc* plasmid for 24 h, and treated with scramble- (Scr) or UCHL1-siRNA (siUCHL1), cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h, and then subjected to the luciferase assay. Mean \pm s.d. n = 3, *p < 0.05, **p < 0.01 (Student's *t*-test between the 2 indicated groups).

Supplementary Figure 6. Involvement of HIF-1 α in UCHL1-dependent upregulation of *5HRE-luc* reporter activity. HeLa/5HRE-Luc cells were transfected with the UCHL1-expression vector, pcDNA4/UCHL1 (UCHL1) or its empty vector, pcDNA4/myc-His A (EV), treated with either scramble- (Scr) or HIF-1 α -siRNA (siHIF-1 α), cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h, and then subjected to Western blotting using the indicated antibodies and luciferase assay. Mean \pm s.d. n = 3, *p < 0.05 (Student's *t*-test between the 2 indicated groups).

Supplementary Figure 7. Decrease in HIF-1-downstream gene expression by UCHL1 knockdown. 293T cells, which originally showed the high endogenous expression of UCHL1, were transfected with either scramble- (Scr) or UCHL1-siRNA (siUCHL1), cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h, and then subjected to qRT-PCR to quantify *MMP2* mRNA levels. Mean \pm s.d. n = 3, *p < 0.05 (Student's *t*-test between the 2 indicated groups).

Supplementary Figure 8. Prolonged HIF-1 α half-life by UCHL1 overexpression. HeLa/ODD-Luc (left) and MCF7/ODD-Luc (right) cells were transfected with the UCHL1-expression vector, pcDNA4/UCHL1 (UCHL1) or its empty vector, pcDNA4/myc-His A (EV), cultured under hypoxic conditions (1%) for 24 h, and treated with cycloheximide (10 µg/mL) under normoxic conditions (20%). After the reoxygenation treatment for the indicated period, cells were subjected to Western blotting using the indicated antibodies and luciferase assay. Mean ± s.d. n = 3, *p < 0.05 (Student's *t*-test between the 2 indicated groups).

Supplementary Figure 9. Quantitative analysis of the ubiquitination of HIF-1 α . 293T cells, which originally showed the high endogenous expression of UCHL1, were transiently transfected with the expression vector for HIF-1 α , pcDNA4A/HIF-1 α -myc, and the expression vector for HA-tagged ubiquitin, pMT132, and were then treated with the indicated combination of the proteasome inhibitor, MG132 (30 μ M), and PHD inhibitor, CoCl₂ (800 μ g/mL), under normoxic conditions (20%) for 24 h. Cell lysates were used for immunoprecipitation with the anti-HIF-1 α antibody and subjected to Western blotting with the anti-ubiquitin antibody. One fiftieth of the whole cell lysate (WCL) was subjected to Western blotting with the indicated antibodies.

Supplementary Figure 10. Characterization EMT6/EF-Luc/UCHL1 of and EMT6/EF-Luc/EV stable transfectants. (a) EMT6/EF-Luc/EV-1, 2 and EMT6/EF-Luc/UCHL1-1, 2 cells were cultured under normoxic (20%) and hypoxic (0.1%) conditions for 24 h, and then subjected to Western blotting with the indicated antibodies. (b) EMT6/5HRE-Luc cells were transfected with the UCHL1-expression vector, pcDNA4/UCHL1 (UCHL1) or its empty vector, pcDNA4/myc-His A (EV), cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h, and then subjected to Western blotting using the indicated

antibodies and luciferase assay. Mean \pm s.d. **p < 0.01. (Student's *t*-test between the 2 indicated groups) (c) EMT6/EF-Luc/EV-1, 2 and EMT6/EF-Luc/UCHL1-1, 2 cells were cultured under normoxic (20%) and hypoxic (1%) conditions for the indicated period. The growth of cells was monitored with Cell Count Reagent SF (Nacalai Tesque) according to the manufacturer's instructions. (d) Twenty-four hours after seeding the stable transfectants, EMT6/EF-Luc/EV-1, 2, and EMT6/EF-Luc/UCHL1-1, 2 cells, cells were subjected to the luciferase assay. n = 3, Mean \pm s.d. (e) The growth of the tumor xenografts was monitored after the subcutaneous transplantation of the EMT6/EF-Luc/EV-1, 2 and EMT6/EF-Luc/UCHL1-1, 2 cell suspensions (3 × 10⁵ cell/mouse) into the right legs of athymic nude mice. The tumor volume was calculated as 0.5 × length × width². n = 6.

Supplementary Figure 11. Transwell migration assay with or without UCHL1 overexpression. The transwell migration assay using EMT6/EF-Luc/EV (EV) and EMT6/EF-Luc//UCHL1 (UCHL1) cells. Mean \pm s.d. n = 4, *p < 0.05 (Student's *t*-test between the 2 indicated groups). Representative images are shown in **b**.

B16F10/EF-Luc/shUCHL1 Supplementary Figure 12. Characterization of and B16F10/EF-Luc/shNC stable transfectants. B16F10/EF-Luc/shNC-1, 2 **(a)** and B16F10/EF-Luc/shUCHL1 A-1, 2, B-1, and 2 cells were cultured under normoxic (20%) conditions for 24 h, and then subjected to qRT-PCR to quantify UCHL1 mRNA levels. Mean ± s.d. n = 3. (Student's *t*-test between the 2 indicated groups) (b) B16F10/EF-Luc/shNC-1, 2 and B16F10/EF-Luc/shUCHL1 A-1, 2, B-1, and 2 cells were cultured under hypoxic conditions (0.1%) for 24 h, and then subjected to Western blotting with the indicated antibodies. (c) Twenty-four hours after seeding stable transfectants, cells were subjected to the luciferase assay. (d) B16F10/EF-Luc/shNC-1, 2 and B16F10/EF-Luc/shUCHL1 A-1, 2, B-1, 2 cells were cultured under normoxic (20%) and hypoxic (1%) conditions for the indicated period. The growth of these cells was monitored with Cell Count Reagent SF (Nacalai Tesque) according to the manufacturer's instructions. n = 3, Mean $\pm s.d$.

 Supplementary
 Figure
 13.
 Characterization
 of
 EMT6/EF-Luc/shNC/EV,

 EMT6/EF-Luc/shNC/UCHL1,
 EMT6/EF-Luc/shHIF-1α/EV-,
 and

 EMT6/EF-Luc/shNC/UCHL1,
 f. d. d.

 $EMT6/EF-Luc/shHIF-1\alpha/UCHL1\ stable\ transfectants.$

EMT6/EF-Luc/shNC/EV (clone #1, 2), EMT6/EF-Luc/shNC/UCHL1 (clone #1, 2), EMT6/EF-Luc/shHIF-1 α /EV (clone #1, 2), and EMT6/EF-Luc/shHIF-1 α /UCHL1 (clone #1, 2) cells were cultured under hypoxic conditions (0.1%) for 24 h, and subjected to Western blotting with the indicated antibodies.

Supplementary Figure 14. Specificity of antibodies for immunohistochemical staining. Formalin-fixed paraffin-embedded sections of human breast tumors were subjected to immunohistochemical staining with (+) or without (-) anti-UCHL1 (upper) and anti-HIF-1 α (lower) antibodies.

Supplementary Figure 15. Immunohistochemical analyses of UCHL1 and HIF-1 α expression levels in human breast tumor sections. Low magnification images of Figure 6a and 6b (Immunohistochemical analyses using an anti-UCHL1 antibody [upper] and anti-HIF-1 α antibody [lower]). Bar, 200 μ m. Dotted squares represent the areas demonstrated in Figure 6a and 6b.

Supplementary Figure 16. Kaplan-Meier analysis of distant metastasis-free survival and overall survival rates of melanoma and lung adenocarcinoma patients. (a) A PrognoScan database-based Kaplan-Meier analysis of the distant metastasis-free survival rates of 63 melanoma patients stratified by high (red) and low (blue) UCHL1 levels (high: n = 42, low: n = 21). (b) A PrognoScan database-based Kaplan-Meier analysis of the overall survival rates of 204 lung adenocarcinoma patients stratified by high (red) and low (blue) UCHL1 levels (high: n = 73, low: n = 131).

Supplementary Figure 17. No apparent side-effects due to the UCHL1 inhibitor. Changes in the body weights of EMT6/EF-Luc/EV- and EMT6/EF-Luc/UCHL1-tumor-bearing mice on the indicated days after the administration of DMSO and LDN57444. Mean \pm s.d. n = 6.

Supplementary Figure 18. No apparent side effects due to the UCHL1 inhibitor. (a) Changes in the body weights of 10-week-old BALB/c mice after the administration of DMSO or LDN57444 (0.5 mg/kg i.p.) on days 1, 3, and 5. Mean \pm s.d. n = 4. (b) Ten-week-old male and female mice (4 pairs of BALB/c) were crossed for one week with the i.p. administration of DMSO or LDN57444 (0.5 mg/kg i.p.) on days 1, 3, and 5. The body weights of the resultant neonatal mice were measured 1 and 10 days after birth.

а b ** 20 Relative ODD-Luc activity 15 effect on ODD-Luc 2.5 10 2 1.5 0 UCHL UCHL UCHI UCHL UCHL High glucose Low glucose High glucose Low glucose High glucose Low glucose High glucose Low gl Нурохі Hypo С <u>α-HIF-1α</u> HIF-1α 100 kDa <u>α-UCHL1</u> UCHL1-myd UCHL1 25 kDa <u>α-β-actir</u> 50 kDa -actin UCHL UCHL UCHL High gl Low glucose High gluco Low glucose Hypoxia

Supplementary Figure 19

Supplementary Figure 19. UCHL1 efficiently stabilized the ODD-fusion protein under low glucose and hypoxic conditions. HeLa/ODD-Luc cells were transfected with either the UCHL1-expression vector, pcDNA4/UCHL1 (UCHL1), or its empty vector, pcDNA4/myc-His A (EV), and cultured in culture medium containing a low (0.45 g/L) or high (4.5 g/L) concentration of glucose under normoxic or hypoxic conditions for 24 h. (**a**,**b**) Cells were subjected to luciferase assay. Relative ODD-Luc activity in **a** was calculated as a ratio of *firefly* luciferase activity from the ODD-Luc expression vector to *renilla* luciferase activity from the internal control pRL-SV40. Relative effect on ODD-Luc activity in **b** was calculated as a ratio of the relative activity with UCHL1 transfection to that with EV transfection under each culture condition. Mean \pm s.d. n = 3, *p < 0.01, NS = not significant (Student's *t*-test between the 2 indicated groups) . (**c**) Cells were then subjected to Western blotting for the indicated proteins.

Fig. 1a left (α -UCHL1 Ab)

Fig. 1a right (α -UCHL1 Ab)

Fig. 1b left (α -UCHL1 Ab)

<u>α-UCHL1 Ab</u> UCHL1-myc endo-UCHL1		-		-	
	EV	UCHL1	EV	UCHL1	-25 KDa
	Normoxia × 24h		Hypoxia × 24h		

Fig. 1b left (α -UCHL1 Ab)

Fig. 1d (α -UCHL1 Ab)

Fig. 1a left (α - β -actin Ab)

Fig. 1a right (α - β -actin Ab)

Fig. 1b left (α - β -actin Ab)

Fig. 1b left (α - β -actin Ab)

Fig. 1d(α - β -actin Ab)

Supplementary Figure 20. Full blots of the indicated figures.

Fig. 2a (α-HIF1α Ab)

Fig. 2a(α - β -actin Ab)

Fig. 2b(α - β -actin Ab)

Fig. 2c left (α - β -actin Ab)

Fig. 2c right (α - β -actin Ab)

Supplementary Figure 20 continued.

Fig. 2a (α-UCHL1 Ab)

Fig. 2b (α -HIF1 α Ab)

Fig. 2c left (α-UCHL1 Ab)

Fig. 2c right (α -UCHL1 Ab)

Fig. 2e (α -HIF1 α Ab)

Supplementary Figure 20 continued.

Supplementary Figure 20 continued.

Supplementary Figure 20 continued.

Supplementary Figure 20 continued.

Supplementary Figure 20 continued.

Supplementary Fig. 13 (α -UCHL1 Ab)

Supplementary Fig. 19b . α -UHIF-1 α Ab

Supplementary Fig .19b α - β -actin Ab

	Normoxia			Hypoxia			
High	glucose	Low	glucose	High	glucose	Low	glucose
EV	UCHL1	EV	UCHL1	EV	UCHL1	EV	UCHL1
actin	~	-		-	-	-	-

Supplementary Figure 20 continued.

Supplementary Fig. 13 (α -HIF1 α Ab)

Supplementary Fig. 13 (α - β -actin Ab)

Supplementary Fig. 19b α -UCHL1 Ab

_1
25 kDa