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1 Idealization of Single Channel Records

We have gathered single BK channel recordings at multiple holding voltages and calcium concentrations (see Methods). Fig-

ure S1 shows a subset of the collected data, filtered at 10 kHz, at the indicated holding voltage and calcium concentration. In

order to idealize single channel recordings, we treat a single channel time series as a two-state hidden Markov model. Here,

the open and closed states each correspond to different levels of current obscured by noise, each with different variability.

Notice that a threshold method would yield very similar results to any model with a symmetric noise distribution, but makes

the assumption that the current variance is the same for both open and closed states. We prefer not to make this assumption

and so model closed and open states corresponding to Normal distributions each with distinct mean and variance. Using the

Gibbs sampling approach described in the Theory section, we utilize a latent indicator variable s1, ..., sN to denote the hidden

state from which each data point was likely to have been drawn. Thus, after Gibbs sampling, the indicator variables s1, ..., sN

yield the idealized trajectory through the hidden states. This Bayesian approach to idealization of ion channel records has

been used previously and was thoroughly compared to previous methods (1, 2), so we omit such a discussion here. Figure S2

shows an example of this method. The data points are overlaid with colors corresponding to which conductance state (closed

or open) each point was likely drawn from. With an idealized trace, we simply count how many consecutive samples are spent

in a state before transitioning to the other state: this is a dwell time in one of the states. Decomposing the whole recording in

this way yields a distribution of dwell-time events in the open state and in the closed state.
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Figure S1: Example data from a single BK channel at multiple holding voltages and calcium concentrations, as indicated.
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Figure S2: Using a two-state hidden Markov model to idealize single channel recordings. The time series is assumed to be
drawn from a two-state Markov process where each state has a distinct emission distribution characterized by a Normal dis-
tribution with different means and variances. The model is fit using Gibbs sampling (see Theory) and the idealized trace (the
hidden states) is shown as colors. Segments of the time series are shown at two different time scales.
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2 Applications of Infinite Exponential Mixture Model

As is shown in the main text, the infinite exponential mixture (iEMM) model can be used to analyze multi-component mixture

distributions without knowing beforehand the number of components. This is visualized in Figures 1, 3, and 7 of the main text

for simulated data as well as dwell-time data recorded from a single BK channel. For the ion channel data in particular, Figure

3 of the main text shows that we can use the iEMM to analyze data from multiple holding voltages and learn how many states

are visited by the channel. Figure 3 visualizes the results of this analysis: each data point is given a color according to which

component it was likely drawn from and the densities of each component are shown as well as the aggregate density which is

overlaid with the empirical histogram. However, this visualization does not convey our confidence in the number of inferred

mixture components and we are left unable to make a strong statement regarding model selection. Figure S3 shows, for each

of the same datasets, the approximated posterior distribution over the number of mixture components. We see that, in each

case, the number of components is inferred with high confidence as the posterior distribution is sharply peaked at its modal

value. The trace from +30mV (bottom right) yields the most uncertainty, with the posterior peaked at 4 components but with

non-negligible probability mass at 5 components.

Further tests of this method come from analyzing simulated datasets. In the Discussion section of the main text, we com-

pared our method with that of Landowne et al., and in particular, we used our method on parameter sets which were previously

determined to be quite challenging (Figure 7 of main text). For clarity, we show in Figure S4 a more thorough comparison

of our estimates with those from Landowne et al. For each parameter set (Boliden3 and Boliden4), we estimate the number

of components, the time constant of each component and the weight parameter of each component. To facilitate comparison,

Figure S4 shows the posterior distribution of each time constant parameter (shown as histograms) as well as the true parameter

value (blue) and the parameter estimate reported in Landowne et al. (red). The parameter values estimated by Landowne et al.

are all quite close to the true values. We cannot directly compare confidence intervals between the methods since Landowne

et al. used 1000-fold larger sample sizes than we have and this would have a strong effect on parameter confidence.
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Figure S3: Application of infinite exponential mixture model to BK data. Analysis of dwell times from BK recordings at
various holding voltages. For each trace, the posterior distribution over the number of mixture components is shown.
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Figure S4: Application of infinite exponential mixture model to challenging datasets. The results of parameter inference
are shown for the Boliden3 and Boliden4 parameter sets. Posterior distributions of time constant parameter are shown as
histogram. The true parameter values are shown in blue and the point estimates from Landowne et al. are shown in red.
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3 Sensitivity to Dirichlet Process Parameters

We now discuss the effects of Dirichlet process parameters on model inference. Recall that random probability measure, G,

is a draw from a Dirichlet process as, G ∼ DP(α,H). The Dirichlet process has two parameters, scalar α and probability

measure H . Base measure H serves as the expectation of G(A) (on any interval A) such that E[G(A)] = H(A). Parameter

α alters the variability of G around the expectation H , Var[G(A)] = H(A)(1−H(A))
α+1 , such that when α is large, G settles near

H with low variance. With respect to the stick-breaking representation of the Dirichlet process, α tunes the expected size of

the weights. Since the weights are related to iid draws from a Beta(1,α) distribution, large α results in many weights which

are relatively small and a small value of α results in fewer weights which each occupy larger probability mass. Therefore,

when using a Dirichlet process prior for model inference, the value of α will have an effect on the number of inferred model

components. One approach to handling this complication is to incorporate uncertainty in α into the model by putting a para-

metric prior on α and marginalizing this uncertainty through the course of MCMC sampling (3). In the applications explored

in the paper, we are primarily interested in applying these methods to distinct subsets of data, each of which represents an

independent measurement or a measurement in a different experimental condition. In this way, we are most interested in com-

paring the inference results across different data subsets, where the inference algorithm is fixed in each case. Then, differences

between the models inferred from each subset can be meaningfully compared, regardless of the uncertainty in α. Therefore,

our strategy for choosing DP parameter values is to choose values which have accurate and reliable performance with simu-

lated data and then fix these parameters for analysis of an entire dataset. In all cases, the relevant algorithm parameters used

are reported in Figures 1 through 7.

It is important to conduct sensitivity analysis to determine how changes in α affect model inference. As an example, a

Dirichlet process mixture of exponentials was used to model data simulated from a mixture of two exponentials where the

components differed in time-scale by ten-fold (N = 200 data points). Figure S5 shows the result of this model inference

for several fixed values of α. It is clear that over this range of α, the effect on the inferred models is negligible as the two

component mixture is correctly inferred in each case. For the biophysical applications in the Results section, we fix α = 1,

which, when compared across distinct data subsets, is able to distinguish when a small number of components are in the data.

For the Hierarchical Dirichlet process models (iHMM and iAMM), we incur an additional parameter γ, which also tunes

the variability of a Dirichlet process around its base measure. Again, we choose to fix γ = 1, since this low value leads to

good performance with simulated data. With the sticky-iAMM, we have an additional parameter κ which biases probability

mass onto the diagonal elements of a transition matrix π. We fix κ = 100, which places a very weak prior on elements of π,

since the traces used for analysis have 105 data points. Nonetheless, this weak prior is able to deter states which have zero

dwell time and effectively accomplishes the goal of the sticky-iAMM. Despite uncertainty in these algorithm parameters, our

strategy is to fix them to be small values which perform well with simulated data, because the primary goal is to compare

between data sets given fixed values of these parameters.
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Figure S5: Sensitivity of Dirichlet process mixture models to values of α. Data was simulated as drawn from a mixture of
two Exponential distributions which differ in time-scale by 10. The result of model inference for several fixed values of α.
It is clear that over this range of α, the effect on the inferred models is negligible as the two component mixture is correctly
inferred in each case.
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4 Applications of infinite HMM

The infinite hidden Markov model can be used to analyze stochastic single molecule time series. In the main text, we used the

iHMM to analyze data from electrophysiology, single molecule FRET, and single molecule photobleaching. Here, we discuss

in more detail the benefits of using a nonparametric Bayesian approach for these time series. Figures S6 and S7 show the

results of analyzing data from FRET and from photobleaching, respectively. In each case, several distinct traces are shown

and the data points are colored according to which hidden state they are likely drawn from (Left columns). Since we use a

Dirichlet process prior on the number of hidden states, we consider an infinite number of hidden states, yet through the course

of Gibbs sampling, we integrate out this infinite measure. As a result, we gain a quantification of the posterior distribution over

the number of hidden states likely to have generated the data. The Right columns in Figures S6 and S7 show this posterior

distribution for each data trace. The posterior maximum provides a point estimate of the most probable number of hidden

states, and the entire distribution provides a quantification of confidence in any given interpretation of the data. In this way,

we not only consider the set of all possible models, but gain a confidence in any particular model of the data.

Biophysical Journal 00(00) 1–16
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Figure S6: Application of iHMM to single molecule FRET. (Left column) Example traces of FRET efficiency over time.
Sudden conformational changes are evident, but it it difficult to know the number of states and precise moment of state
changes in these noisy traces. Colors indicate which hidden state each data point is assigned to. (Right column) Posterior
distributions over number of hidden states inferred for each trace. The iHMM is able to decipher the number of the number
of conformational states represented in these noisy time series. Algorithm parameters: α = 1, γ = 1.
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Figure S7: Application of iHMM to single molecule photobleaching. (Left column) Example traces of photon counts over
time. Sudden photobleaching events are evident, but it it difficult to know the number of bleaching steps in the presence of
noise. Colors indicate which hidden state each data point is assigned to. (Right column) Posterior distributions over number
of hidden states inferred for each trace. The iHMM is able to decipher the number of the number of bleaching events and also
provides a quantification of confidence. Algorithm parameters: α = 1, γ = 1.

Biophysical Journal 00(00) 1–16



12 5 EXTENDED DESCRIPTION OF IHMM AND IAMM

5 Extended Description of iHMM and iAMM

Here we describe in full detail the sampling methods underlying the iHMM and iAMM. We first describe a Gibbs sampling

scheme for parameter inference with finite HMMs and then describe the implementation used for the iHMM.

For the hidden Markov model examples, we imagine our observations are normally distributed random variables and that

each hidden state corresponds to a distinct mean θi and precision τi, such that yt ∼ N(θi,
1
τi
). Again, let Ai denote the set of

all t for which st = i. For the means, θi, we use a conjugate prior normal distribution N(a, b). For each θi,

p(θi|...) ∝ N(M,V ) (1)

where M =
ab+ τ

∑
t∈Ai

yt

|Ai|τ + b
(2)

V =
1

|Ai|τ + b
(3)

With a conjugate gamma prior,p(τi) = Ga(c, d) , on the precisions, τi,

p(τi|...) ∝ Ga(A,B) (4)

where A =
d+ |Ai|

2
(5)

B =
1

bc+ 1
2

∑
(yt − θi)2

. (6)

Sampling the transition matrix, π, is simple conditioned on the previous samples of hidden states s1, ..., sN . First, we use

the standard Dirichlet distribution prior for rows of the transition matrix, ie. p(πi) = Dir(m, ...,m). Let matrix N track the

number of transitions between hidden states i and j such that Ni,j =
∑
t I(st = j|st−1 = i). Then each row of the transition

matrix is sampled as,

p(πi|...) ∝ Dir(Ni,1 +m, ..., Ni,K +m). (7)

Finally, the hidden states, st, are sampled using the forward-filter-backward-sampler method (4). First we construct the

K×N forward matrix F in the following way. For each datapoint, yt, first compute vectorO which quantifies the conditional

probability of observing yt given the emission distributions of each hidden state,

Biophysical Journal 00(00) 1–16
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O =



p(yt|θ1, τ1)

p(yt|θ2, τ2)

.

.

.

p(yt|θK , τK)


. (8)

We then combine the observation probabilities, the transition probabilities, and the occupancy probabilities from the previous

time step,

L = (O × π) • F,t−1 (9)

F,t =
L∑
L
. (10)

Having computed F deterministically, we use Gibbs sampling on the backwards pass. Starting at time step N , we move

backwards through each time step t, and combine F with the transition probability

L = F,t • π,st+1 (11)

~p =
L∑
L
. (12)

We sample st from the resulting multinomial distribution,

p(st|...) ∝ Mult(~p). (13)

The result of this forward-backward sampler is a new sample of s1, s2, ..., sN . For any hidden Markov model of fixed size,

K, this Gibbs sampler allows us to calculate posterior distributions of all relevant parameters.

Generalizing this model to the infinite case will proceed similarly as with a mixture model. Again, the problem is that

we now wish to consider the probability of transitions to each of an infinite number of hidden states, a computation that we

cannot perform in our existing Gibbs sampler. However, using the hierarchical Dirichlet process hidden Markov model, we

Biophysical Journal 00(00) 1–16
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can sample from both the currently instantiated hidden states as well as the infinitely many other hidden states which have yet

to be sampled (5),

p(st = j|s−, β, α,yN) ∝



(Nst−1,j + αβj)
Nst+1

+αβst+1

Nk,+α
j ≤ k−, k− 6= st−1

(Nst−1,j + αβj)
Nst+1

+1+αβst+1

Nk,+1+α j = st−1 = st+1

(Nst−1,j + αβj)
Nst+1

+αβst+1

Nk,+1+α j = st−1 6= st+1

αβjβst+1
j = k− + 1

(14)

The sampling scheme works well, but it was noted that since Markov-type models will inherently have very high correla-

tion between the latent variables, this form of Gibbs sampling could mix very slowly. To remedy this, (6) proposed the beam

sampler for iHMMs. This implementation combines the dynamic programming approach described previously (forward-filter

backward-sampler) with the slice sampling approach of (7). As described previously, the model is augmented to include latent

variables u1, ..., uN in order to limit the computation to a finite number of hidden states (at each iteration of MCMC). Once

the appropriate number of states, k∗, is computed from ~u, then we proceed with the Gibbs sampler just described for finite

HMMs. Again, throughout the course of MCMC, resampling ~u results in fluctuations in the number of hidden states repre-

sented such that the aggregate of all MCMC samples results in integration over the infinite number of states. Sampling for

β is performed using standard sampling methods for hierarchical Dirichlet process models (5). For our analyses of single

molecule time series, we have utilized this beam sampling approach, and refer the reader to (6) for additional details.

In the iHMM, it was assumed that each hidden state corresponds to a distinct emission distribution, p(yt|θi). In some

cases, we might want to model a degeneracy such that multiple hidden states share the same emission distribution. In this

aggregated Markov model (8), we imagine that the hidden states appear as aggregated into one of A distinct emission distri-

butions such thatA < K. We augment the iHMM with an indicator variable, at ∈ {1, 2, ..., A}, that specifies which aggregate

each data point is drawn from such that yt ∼ p(yt|θat). This does very little to change the Gibbs sampler described above for

HMMs and iHMMs. We simply need to sample each at in proportion to [p(yt|θ1, τ1), p(yt|θ2, τ2), ..., p(yt|θA, τA)]. In the

applications here, this model is applied to data from single ion channel recordings and A is fixed to be two. For each at, we

sample

at ∼ Mult(p(yt|θ1, τ1), p(yt|θ2, τ2)) (15)

Intuitively, the likelihood p(yt|θ1, τ1) would correspond to, say, the probability of observing yt given the channel was in

an open state (any open state) at time t and p(yt|θ2, τ2) would correspond the likelihood of yt given a closed state. The addi-

tion of the latent variables at has added minimal complexity to the Gibbs sampler for HMMs, and everything else remains the

same, including the beam sampling. It is our intention with the iAMM that the number of aggregates, A, is known beforehand

Biophysical Journal 00(00) 1–16
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and we mean to infer the number of hidden states within each aggregate. It would be possible to treat the number of aggregates

as unknown and model both A and π nonparametrically, but we do not know of any interesting use for such a thing, so do not

explore this possibility.

The use case for the iAMM is the analysis of single ion channel recordings, for which we add one additional feature to

the model. Previous authors extended the infinite hidden Markov model framework by allowing for a strong preference for

models with state-persistence (9). That is, we assume the time-scale of system dynamics is significantly slower than the data

sampling rate. In this way, we are interested in solutions to the data where the system stays in each state for many time samples

and we are intentionally not interested in models where states have zero dwell-time before transitioning. This certainly seems

to be the case with ion channels, where from dwell-time distributions, we imagine that the channel tends to stay in each state

for multiple time samples (at least). Following (9), we employ a sticky-iAMM by biasing probability mass onto the diagonal

elements of the transition matrix π. By ensuring non-zero probability mass on the diagonal of π, we exclude models where

states transition arbitrarily quickly to other states. To achieve this, we make a slight alteration to the algorithm described in

the previous section. We add a hyper-parameter κ, the magnitude of which tunes the stickiness of the resulting Markov model.

Each row of π is drawn from a Dirichlet process, with the diagonal elements biased by κ,

πj ∼ DP(α+ κ,
αβ + κδj
α+ κ

), (16)

and the rest of the algorithm remains the same. Incorporating uncertainty in κ into the sampling model should be possible in

principle (3), but we prefer to use a fixed value. In experiments with simulated data, κ = 100 works well, and we use this

same value for all ion channel data analyzed.
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