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ABSTRACT Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An
example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These
antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is neces-
sary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce
aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electro-
static energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We
applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics
force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron
density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank.
The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equiv-
alent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron
density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches.
The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with
experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating
the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside
binding affinity.
INTRODUCTION
Since the 1960s, aminoglycoside antibiotics continue to be
one of the most valid treatments for hospital-acquired
serious bacterial infections (1). From the chemical stand-
point, aminoglycosides are often referred to as pseudoo-
ligosaccharides. Aminoglycosides are divided into three
structural families according to the position of the glyco-
sidic linkages. The two families, 4,5- and 4,6-disubstituted
2-deoxystreptamines (2-DOS) (Fig. 1), have high affinity
to the aminoacylated-tRNA binding site in bacterial ribo-
somal RNA (rRNA).

The primary mode of action of 2-DOS aminoglycosides
against prokaryotic ribosomes arises from their binding to
the 30S ribosomal subunit and results in their interference
with protein synthesis (2). Aminoglycosides interact with
helix 44 of 16S rRNA in the decoding region (A-site)
responsible for recognizing cognate aminoacylated-tRNA.
The binding of 2-DOS aminoglycosides restricts the confor-
mational freedom of two A-site adenines (A1492 and
A1493 using standard Escherichia coli numbering) by lock-
ing them in an extrahelical conformation. These adenines
assure the fidelity of decoding by acquiring an extrahelical
state only if a cognate tRNA binds to the A-site. Since ami-
noglycosides artificially enforce such a flipped-out adenine
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conformation, the incorporation of near-cognate tRNAs be-
comes possible and the accuracy of decoding decreases (3).
2-DOS aminoglycosides have a secondary binding site in
the ribosome—helix 69 of the 50S subunit (4).

Due to their polycationic nature, the binding of 2-DOS
aminoglycosides to RNA is believed to be driven electro-
statically (5–7). The pKas of their amino groups are >7.0
except for the 3-amino group in the 2-DOS ring, whose
pKas in neomycin-class aminoglycosides and in amikacin
are 5.7 (8) and 6.7 (9), respectively. The amide group in ami-
kacin remains un-ionized at pH>5.4 (9) (Fig. 1). Therefore,
aminoglycosides are positively charged in neutral pH and at
25�C (10). However, ionic strength, temperature, and pH of
the buffer are important for protonation of their amino
groups and energetics of binding (8,11,12). In addition,
the binding process at pH >5.5 induces a proton uptake
(11), meaning that the RNA-aminoglycoside complexes
favor fully protonated antibiotics. Thus, there is interplay
between the charge distribution in aminoglycosides and
their binding strength. Assuming that the 3-amino group is
charged in bound aminoglycosides at neutral pH, their net
charge is between þ4e and þ7e.

Crystallographic techniques confirmed the binding mode
of aminoglycosides in bacterial ribosomes and in model
RNA oligonucleotides mimicking the A-site (13). It was
proven that an isolated RNA oligonucleotide composed of
~45 nucleotides with two symmetrically located binding
http://dx.doi.org/10.1016/j.bpj.2014.12.020

mailto:joanna@cent.uw.edu.pl
http://dx.doi.org/10.1016/j.bpj.2014.12.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.12.020&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.12.020
http://dx.doi.org/10.1016/j.bpj.2014.12.020
http://dx.doi.org/10.1016/j.bpj.2014.12.020
http://dx.doi.org/10.1016/j.bpj.2014.12.020


FIGURE 1 Chemical structures of aminoglyco-

sides considered in this study: neamine (a), 4,5-2-

DOS (b), 4,6-2-DOS kanamycin aminoglycosides

(c), and 4,6-2-DOS gentamicin aminoglycosides

(d). Ring I is red, ring II (2-DOS) yellow, furanose

ring III violet, pyranose ring III green, ring IV blue,

and ring V dark blue. The numbering style of car-

bon atoms is shown for 4,5-2-DOS aminoglyco-

sides. To see this figure in color, go online.
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sites can be used as an A-site mimic (13) (see Fig. 2 a).
Various 2-DOS aminoglycosides bound to such RNA con-
structs were crystallized (14,15) and their structure was
found to be similar to the corresponding site in the ribo-
some. In addition, A-site-mimicking crystals revealed
many water-mediated hydrogen bonds formed between ami-
noglycosides and RNA (16).

A single-stranded model of the A-site shown in Fig. 2 b
was exploited in solution studies. The dissociation constants
and free enthalpy of binding were determined in thermal
denaturation and fluorescence studies (17), UV spectrom-
etry (8,11), isothermal titration calorimetry (8,11,12), differ-
ential scanning calorimetry (8), osmotic stress experiments
(12), NMR studies (2,11), and surface plasmon resonance
experiments (18,19). These experimental studies were
complemented by many computational studies. All-atom
molecular dynamics (MD) simulations of the A-site concen-
trated on the functional flexibility of A1492 and A1493
(20,21). MD studies of the A-site with paromomycin (20)
and amikacin (22) confirmed that the neamine core
(Fig. 1, rings I and II) is an anchor in the binding cleft.
The comparison of MD simulations of several 4,5- and
4,6-DOS aminoglycosides (22–24) revealed that the resi-
dence of water molecules in certain hydration sites corre-
lates with aminoglycoside binding affinity.

The electrostatic contributions to aminoglycoside binding
in the static A-site (17) and 30S subunit (17,25) were studied
with the implicit-solvent Poisson-Boltzmann model of elec-
Biophysical Journal 108(3) 655–665
trostatics (26). The process of association of aminoglyco-
sides with rRNA was studied using Brownian dynamics
combined with the Poisson-Boltzmann model (27,28).
These studies confirmed the importance of electrostatics to
association and formation of aminoglycoside-A-site com-
plexes. The partial charges of aminoglycoside atoms in
these computations were fixed single-point charges from
classical molecular-mechanics force fields.

Among methods used to approximate electrostatics that
go beyond the point-charge description, the approach based
on the aspherical atom database (29–31) takes into account
the asphericity of atomic electron density, contrary to point
charges encountered in classical force fields. It assumes
transferability of electron density, meaning that atoms in
chemically equivalent vicinities have similarly deformed
electron densities. The aspherical electron densities for
various atom types are gathered in the University at Buffalo
Databank (UBDB) (31) and can be applied to reconstruct
the electron density of biomolecules. UBDB contains
>200 atom types to cover atoms present in proteins, nucleic
acids, and many organic molecules (29). Other similar data
banks (32,33) have been developed and are compared in Bąk
et al. (34). The latter study showed that the Coulombic inter-
molecular interaction energies determined by ab initio
methods are best reproduced by UBDB combined with the
exact potential multipole moment (EPMM) method (35).
A few protein complexes have been successfully studied
with the UBDB approach, e.g., the interactions between



FIGURE 2 Secondary structure of 2-DOS aminoglycoside binding sites

mimicking the ribosomal A-site. Nucleotides forming non-Watson-Crick

basepairs are numbered according to the E. coli 16S rRNA sequence. (a)

Aminoglycoside binding site defined in François et al. (16) (blue frame)

and the extended binding site used herein, based on distance criteria (red

frame). (b) Minimal A-site model of the paromomycin binding site from

footprinting studies (2) used in solution studies. To see this figure in color,

go online.
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small peptide ligands and glycopeptide antibiotics (36), the
PDZ domain from the scaffolding protein syntenin (30),
neuraminidase and its inhibitors (37), and protein kinases
interacting with sunitinib (38). It was also shown that
UBDB effectively reproduces the electrostatic interactions
in molecular dimers (39), Watson-Crick basepairs (40),
and nucleic acid fragments (41).

Here, we have applied the aspherical electron density
approach and UBDB to assess the importance of electro-
statics in the binding of aminoglycosides and their rings to
rRNA. We used 12 aminoglycosides with different numbers
of rings and different net charges. To our knowledge, this
study is the first attempt to compare the structures and
electrostatic properties of such a large number of different
aminoglycoside-A-site complexes. In addition, we have
quantified the contributions of the water molecules located
in the vicinity of the antibiotics, which mediate the
hydrogen bonds with RNA. Based on the water patterns
and their electrostatic interactions with the A-site and ami-
noglycosides, we suggested positions in aminoglycosides
that are relevant for modification and might increase their
affinity toward RNA.
MATERIALS AND METHODS

Calculations of electrostatic interaction energy
based on electron density

To describe the electron density, we applied Hansen-Coppens formalism

(42), in which the atomic electron density for each atom k, rk , is described

by the equation

rkðrÞ ¼ PcorercoreðrkÞ þ Pvalencek
3rvalenceðkrkÞ

þ k03
Xlmax

l¼ 0

Rlðk0rkÞ
Xþl

m¼�l

Plm5 dlm5 ðwk;fkÞ; (1)

where Pcore, Pvalence, and Plm5 are the populations of core, valence elec-

trons, and multipoles, respectively. rcore and rvalence denote, respectively,

the spherical one-electron normalized core and valence electron densities,

and k and k0 are the contraction-expansion coefficients. The radial func-

tions, Rl, and angular functions, dlm5, model the aspherical deformations

and are represented by real spherical harmonic functions normalized to

the electron density.

The energy of electrostatic interactions, Eel, was calculated from the re-

constructed electron density via the EPMM method (35) as a sum of two

terms, Eel ¼ EEP
el þ EMM

el . The energy of short-range interactions, EEP
el , for

the overlapping charge densities, i.e., located at a distance of <4.5 Å,

was calculated with the exact potential (EP) using Eq. 2:

EEP
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(2)

where Za and Zb are the atomic charges, ra and rb are the atomic electron

densities, and Vnuc
a and Vnuc

b are the nuclear potentials of molecules A and B,

respectively. For long-range interactions, i.e., with nonoverlapping charge

densities, the Buckingham-type (multipole moment (MM)) approximation

described by Eq. 3 was applied to calculate EMM
el :
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(3)

where T;Ta;Tab, etc. are the interaction tensors, and q;ma;Qab, etc. are the

atomic multipole moments as described in Volkov et al. (35).
Preparation of structures

Twelve crystal structures of aminoglycosides complexed with identical

rRNA constructs (Fig. 2 a) were taken from the Research Collaboratory

for Structural Bioinformatics database: 2ET8 (16) with neamine (XXX),

1MWL (43) with geneticin (GET), 2G5Q (44) with amikacin (AKN),

2ESI (16) with kanamycin (KAN), 4F8V (14) with sisomicin (SIS),
Biophysical Journal 108(3) 655–665



FIGURE 3 Positions of aminoglycosides bound specifically in the first

binding site after superposing the RNA complexes onto the phosphorus

atoms of the 1J7T reference structure. The aminoglycosides used were
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1LC4 (45) with tobramycin (TOY), 2ET3 (16) with gentamicin (LLL),

2ET5 (16) with ribostamycin (RIO), 1J7T (46) with paromomycin (PAR),

2BEE (47) with modified paromomycin (JS4), 2ET4 (16) with neomycin

(NMY), and 2ESJ (16) with lividomycin (LIV). The structures contained

two binding sites, identical in sequence but slightly different in conforma-

tion and composition, e.g., with differently placed water molecules. In all

structures, the phosphates on the 50-termini were removed. Terminal uri-

dines from the 2ESI complex were also removed. Hydrogen atoms were

added to aminoglycosides using PyMOL (48) and their partial charges

were assigned with antechamber (49) at neutral pH. Aminoglycoside amino

groups were protonated according to their pKas (8) and proton uptake was

linked with the process of binding (11). The group left neutral was the

amide group in the L-HABA (L-(�)-g-amino-a-hydroxybutyric acid) tail

of AKN (9), as shown in Fig. 1. For RNA, the ff99 Amber force field

(50) parameters were assigned with Amber11 tools (51). For aminoglyco-

sides, the AM1-BCC method (52) in antechamber was used to reproduce

the HF/6-31G* RESP partial charges. The hydrogens missing in RNA

and oxygens of water molecules were built in LEaP to perform energy mini-

mization with explicit water in Sander. The space around the antibiotic was

filled with TIP3P (53) water molecules, but the crystal waters located within

3.5 Å of the antibiotic were kept. For analyses, all water molecules (crystal

and TIP3P) within 3.5 Å of both the aminoglycoside and RNAwere used,

since they were expected to mediate the hydrogen bonds with the antibiotic.

The steepest-descent method (8000 cycles) followed by conjugate gradients

(2000 cycles) with Cartesian restraints weighting 50 kcal/mol on nonhydro-

gen atoms excluding water were applied. No counterions were added, since

no ions were reported in the crystal structures except for one SO2�
4 ion in

RIO, which was removed.
neamine (XXX); the 4,5-DOS aminoglycosides ribostamycin (RIO),

neomycin (NMY), paromomycin (PAR), lividomycin (LIV), and modified

paromomycin (JS4); and the 4,6-DOS aminoglycosides sisomicin (SIS), ge-

neticin (GET), gentamicin (LLL), amikacin (AKN), kanamycin (KAN),

and tobramycin (TOY). Antibiotic abbreviations are as in the crystal struc-

tures. For clarity, only the RNA backbone of the 1J7T complex with PAR is

shown. To see this figure in color, go online.
Calculations of electrostatic and van der Waals
energies

An in-house bash script for calculating electrostatic energy was prepared.

Computations included transforming the above prepared PDB files to shelx

files and assigning UBDB atom types implemented in the LSDB program

(29–31,54). Every nucleotide and aminoglycoside was scaled individually

to its formal charge in LSDB. Next, the energies of electrostatic interactions

between aminoglycosides and RNA were computed with the XDPROP

module in the XD2006 program (55).

Coulomb interaction energies in vacuum between all atom pairs, EPC
el ,

were calculated using the single-point fixed partial charges described earlier

(AM1-BCC for aminoglycosides and ff99 fixed Amber charges for RNA)

and a dielectric constant of 1. Similar computations were performed with

the electrostatic potential (ESP) charges for aminoglycosides, EESP
el , ob-

tained with Gaussian 09 (56) using HF/6-31G*. The van der Waals energy

between aminoglycosides and their binding sites was approximated by the

Lennard-Jones 6-12 potential, truncated at the 20 Å cutoff distance, with the

same parameters as in the Amber ff99 force field used in the minimization

procedure.
Superposition of aminoglycoside-RNA
complexes

Different aminoglycosides bind the A-site while maintaining the neamine

(XXX) core in the same position. Fig. 3 shows the superposition of the

complexes using least-squares fitting. The average total root mean-square

deviation (RMSD), measured between the phosphorus atoms of the aligned

complexes and 1J7T was 0.60 5 0,05 Å for binding site 1 and 0,62 5

0,06 Å for site 2. The RNA binding site for the electrostatic analyses

(Fig. 2 a, red outline) was chosen according to the distance criteria.

Nucleotides contacting any aminoglycoside at a distance of %4 Å were

included. A discussion on the binding-site choice is presented in Section

S1 and Figs. S1 and S2 in the Supporting Material. Each aminoglycoside

located in site 1 or 2 was considered separately (Fig. 2 a).
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RESULTS AND DISCUSSION

Correlations of electrostatic interaction energies
in aminoglycoside-RNA complexes with
experimental binding free energies

Experiments do not provide the electrostatic contribution to
binding, since it cannot be decoupled from other contribu-
tions. Typically, the equilibrium association binding con-
stants, Ka, and Gibbs energies are determined. Therefore,
we checked whether the calculated electrostatic interaction
energies (gathered in Table S1) reproduce the experimen-
tally determined order of binding of different aminoglyco-
sides and correlated with four sets of experimental binding
free energies (12,17–19). The correlation plots for the
UBDB-based interaction energies, Eel, are presented in
Fig. 4. Note that each experiment was performed using a
different technique and buffer, so we compared them sepa-
rately. Also, because binding of aminoglycosides is salt-
and pH-dependent, this comparison needs to be treated
with caution. The R2 values are>0.8, which is a surprisingly
good result, bearing in mind the limitations of the method
(discussed in the Conclusions) and small number of experi-
mental data. The R2 values between the experimental DGs
and the Coulomb interaction energies (EPC

el , calculated



FIGURE 4 Correlation between the UBDB-based electrostatic energies

of interaction (Eel) of various aminoglycosides with RNA and the corre-

sponding Gibbs energies (DG) obtained from fluorescence experiments

(Yang et al. (17), pH 7.5, 150 mMNaþ, 0.5 mM EDTA, and 20 mMHEPES

buffer), surface plasmon resonance (Alper et al. (19), Wong et al. (18),

pH 7.4, 150 mMNaCl, 3.4 mMEDTA, and 10 mMHEPES), and isothermal

titration calorimetry and melting temperature assays (Pilch et al. (12),

pH 5.5, 150 mM Naþ, 0.1 mM EDTA, and 10 mM sodium cacodylate).

To see this figure in color, go online.
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with partial charges) were 0.803, 0.890, and 0.898 for the
three assays, respectively.

The comparison between the UBDB-computed Eel and
Coulomb-computed EPC

el is shown in Fig. S3 and discussed
in Section S2 in the Supporting Material. The differences
between the electrostatic interaction energies of the more
sophisticated method and simple Coulomb approach were
surprisingly small, suggesting that the monopole term dom-
inates electrostatics in these highly charged complexes.
Note that for the aminoglycosides bound specifically
to the EESP

el energies were less negative than EPC
el , but, for

the nonspecific antibiotics, this trend was reversed. Also,
the interaction energies (see Table S1), computed using
AM1BCC charges (EPC

el ) were very similar to the ones calcu-
lated with the presumably more exact ESP charges (EESP

el ).
Further, we present only the results of the UBDB approach.
We also compared the van der Waals interaction energies
between aminoglycosides and their binding sites (see
Table S1 and Fig. S4). These energies do not correlate
with experimental DGs, which further confirms that the
electrostatic contribution is an important factor in aminogly-
coside binding.
Electrostatic energy contributions to binding
from individual aminoglycoside rings

The electrostatic energy contributions to binding partitioned
into individual aminoglycoside rings presented in Fig. 5
show that total Eel values are similar for two mirrored
binding sites. Antibiotics bound nonspecifically (RIO*
and KAN*) can be recognized because their Eels are less
favorable. Overall, Eels are dominated by the contributions
from the positively charged amino groups. For example, in
NMYand PAR complexes, in which aminoglycosides differ
by one amino group substituted by one hydroxyl group, the
electrostatic energy term varies by ~500 kcal/mol. A similar
change in Eel is observed in the complexes with TOY and
KAN, in which, apart from one amino group replaced with
a hydroxyl group, there is an additional hydroxyl group in
KAN. Eel also depends on the protonation state of an amino
group, as shown for paromomycin derivatives JS4 and JS4P.
Their secondary amino group in the side chain of the fura-
nose ring was either neutral (JS4) or protonated (JS4P)
(Fig. 1 b), which resulted in the change in Eel for ring III.

We observed a relatively high Eel between the smallest
aminoglycoside (neamine (XXX)) and its binding site.
Further, the electrostatic contribution from neamine, but
as a part of larger aminoglycosides (RIO and NMY, which
have the same functional groups as XXX in rings I and
II), becomes less favorable in the presence of additional
rings III and IV (see Figs. 5 and S5). This may be a result
of attenuating the pKa of neamine’s amino groups. Overall,
for all aminoglycosides, the Eel for the neamine core (rings I
FIGURE 5 The electrostatic interaction energy

between an aminoglycoside and A-site partitioned

into aminoglycoside rings obtained from the

aspherical charge approach (Eel). Numbers 1 and

2 after the PDB ID denote the order in which the

antibiotic appears in the PDB file and correspond

to binding sites 1 and 2. The asterisk indicates an-

tibiotics bound nonspecifically. Coloring of rings is

the same as in Fig. 1. To see this figure in color,

go online.

Biophysical Journal 108(3) 655–665



660 Kulik et al.
and II) is less favorable than for neamine alone. This hap-
pens even though the neamine core is stably bound, in
contrast to rings III, IV, and V, as shown in MD studies
(20,23); the contacts formed by the other rings with the
A-site were more transient than the contacts formed by
neamine.

The differences in functional groups between aminogly-
coside rings and the corresponding Eel are shown in Table
S2. Ring I has the largest variety of substituents that give
up to twofold differences in the electrostatic interaction en-
ergies depending on the aminoglycoside. However, it is not
only the number of charged amino groups, but also the pres-
ence of uncharged moieties, that matters. Placing the hy-
droxyl groups instead of hydrogen atoms in the 30 and 40

positions decreases the strength of the electrostatic interac-
tion between a ring and its binding site (e.g., LLL and TOY
in Table S2). This effect corresponds with the experimental
observation that the removal of hydroxyl groups lowers the
basicity of neighboring amines (5). Adding a 40-50 double
bond in ring I as in SIS gives a similar effect. The electro-
static importance of the 20 amino group is visible by
comparing the Eel of ring I for NMY, RIO, and XXX with
that for KAN and AKN, which are deprived of this group.
In a similar way, the importance of the 50 amino group is
emphasized by comparing the Eel of ring I for NMY with
that for PAR.

Among the 2-DOS rings (ring II), the highest contribution
to Eel comes from the XXX ring type (Table S2). The
differences in the interaction energies between 4,5- and
4,6-2-DOS substituted rings II are not significant. Adding
the L-HABA group to ring II in AKN does not change the
electrostatic energy of interaction, which is in accord with
our findings that the binding of AKN (specifically the
L-HABA group) is also entropically driven (22). The six-
membered pyranose ring III in LLL, SIS, and GET com-
plexes has a higher Eel than does the analogous ring III in
TOY, KAN, or AKN, which differs only by one hydroxy-
methyl and two methyl groups. Significantly lower Eel

values are observed for the five-membered uncharged fura-
nose ring III. JS4(P) is an exception, but it is charged, and
the 10-fold difference in Eel is caused by two amino groups
in the 200 substituent. Rings IV are identical in all aminogly-
cosides equipped with this ring. On average, ring IV gives
high electrostatic contribution, similar to rings I and II.
MD simulations of the complex of the A-site with PAR
(20) and the superposition shown in Fig. 3 suggest that
ring IV is flexible, so its high Eel is somewhat surprising.
The contribution of ring V is significantly lower and compa-
rable to the contribution of the unmodified furanose ring.

From the electrostatic interaction energy standpoint
(Table S2), one could indicate a beneficial combination of
functional groups that would contribute to high electrostatic
interaction energy. A good example would be JS4P with
modifications introduced in ring I—a change of the 30 group
to H, 40 to H, and 50 to CH2NH

þ
3 (Fig. 1). However, the pro-
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posed modifications follow only from the observed correla-
tions between the computed Eel and experimental DGs and
do not take into account the influence of neigboring rings
and entropy effects.
Water-mediated interactions in the binding site

The locations of water molecules with high attractive elec-
trostatic interaction energies are interesting because they
could be replaced with functional groups attached to an ami-
noglycoside to improve its binding affinity. We analyzed the
electrostatic interactions of the water molecules located
within 3.5 Å of both the aminoglycoside and the RNA.
Next, we selected only those water molecules whose Eels
with the closest RNA nucleotide or aminoglycoside ring
were <�15 kcal/mol. Their calculated electrostatic interac-
tion energies, distances between heavy atoms, and angles of
hydrogen bonds are shown in Section S3 in the Supporting
Material and Tables S3–S6. We found a few repetitive
hydrogen-bond patterns in which the interactions between
the antibiotic and RNA are through a water molecule. The
highest number of mediating waters appeared around
JS4P, LIV, RIO, and XXX, whereas water mediation around
SIS, GET, and KAN was almost negligible. Among the wa-
ter molecules that interact most strongly with RNA or ami-
noglycoside, we describe the ones that overlap in different
complexes.

The most common hydration pattern emerges in six com-
plexes (RIO, JS4P, LIV, NMY, PAR, and TOY) with a
hydrogen-bond network termed Pattern 1 (Fig. 6, left;
also, see Section S3 in the Supporting Material and Tables
S3–S6). All these complexes, except TOY, contain 4,5-
DOS aminoglycosides. Awater molecule is trapped between
ring I and the RNA with two hydrogen bonds assuring its
stability. The length of one hydrogen bond formed between
the water oxygen and A1493:OP1 oxygen of the phosphate
group varies from 2.7 to 3.1 Å, depending on the complex
(the respective angle range is 170–179�). The second com-
mon hydrogen bond, between the water oxygen and N20 of
the amino group, is 2.8–2.9 Å long and the angle range is
154–168�. The Eels between these waters and either amino-
glycoside or RNA oscillate between�60 and�85 kcal/mol.
In two complexes (PAR and JSP4), an additional, third inter-
action is present between the water oxygen and the O30 hy-
droxyl group of PAR and JS4P. Although the bonding
distance for this third hydrogen bond is longer (~3.6 Å),
this water molecule was previously shown to be stable in
MD simulations of a PAR-A-site complex (20,23,46).

The next common water mediation of ring II is conserved
in four analyzed structures, PAR, NMY, RIO, and LIV
(Pattern 2; Fig. 6, right, and see Section S3 in the Supporting
Material and Tables S3, S5, and S6). The electrostatic inter-
action energy of this water with RNAvaries from �32 kcal/
mol to �83 kcal/mol, whereas its electrostatic interaction
energy with aminoglycosides is about �130 kcal/mol. In



FIGURE 6 Patterns 1 (left) and 2 (right). Super-

position of the A-site complexes showing water

molecules mediating the interactions of RNA

(gray) with ribostamycin (RIO (pink)), neomycin

(NMY (violet)), paromomycin (PAR (black)), liv-

idomycin (LIV (light gray)), modified paromomy-

cin (JS4 (blue)), and tobramycin (TOY (light

green)). PAR atoms are shown in black (carbon

atoms), red (oxygen), blue (nitrogen), and white

(hydrogen). The distances indicated by the dashed

lines correspond to the PAR complex. To see this

figure in color, go online.
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this pattern, three hydrogen bonds are formed with the water
molecule, and it also weakly interacts with the N1 amino
group of ring II (except in NMY).

In the second binding site in the crystal complex with
PAR (1J7T), the above interactions, between the O6 hydrox-
yl group of the antibiotic and RNA oxygen atoms O4
(U1406) and O6 (G1405), are held by not one but two
different crystal water molecules. However, MD simulations
either reveal only one water molecule contacting the
U1406:O4 atom (23) or do not detect any higher water den-
sity in this site (20). In the NMYand LIV crystal structures,
the water contacting U1406:O4 is present, but there
is no direct water contact with G1405:O6. Another MD
study that focused on NMY, PAR, and RIO again showed
long-lasting water mediating contact with the U1406:O4
atom (24).

The pattern repeated in the PAR, LIV, and JS4P com-
plexes, termed Pattern 3, is shown in Fig. S6 (for a descrip-
tion, see Section S3 in the Supporting Material and Tables
S4–S6). The water-mediated interaction is with two phos-
phates (A1492 and G1491) and an amino group N20 of
ring I. High water content was observed in this site in MD
simulations with PAR (20,23). The interaction of this water
molecule with G1491 has a favorable Eel of between �49
and �87 kcal/mol; its Eel with A1492 is between �23
and �78 kcal/mol, and that with the amino group is be-
tween �99 and �112 kcal/mol.

Three water molecules preserving similar contacts with
RNA were detected in the complexes with NMY, RIO, and
XXX (Pattern 4 in Fig. 7, left, and Tables S3, S5, S6). The
water molecules are close to the N3 and N60 aminoglycoside
groups and the A1493 phosphate. This water-mediated
interaction with the phosphate group and two amino groups
was also observed in MD simulations (23). A similar
scheme is present in the PAR complex, but the water mole-
cule mediates the interactions between the phosphate of
A1493 and the hydroxyl group O60 of PAR (which is in a
location similar to that of the amino group N60 in this
example).

In Fig. 7, right, we show a water molecule located close to
the C2 atom of ring II in the NMY and RIO complexes
(Pattern 5 in Tables S3 and S5) that interacts with
G1494:OP1 and U1495:OP2 and with the U1495:C5 atom
of the base. The Eel between ring II and this water molecule
is>�50 kcal/mol, which means that this water is not crucial
for aminoglycoside binding.

In the NMY complex, a water molecule located in the
same area as the hydroxyl group of ring III in KAN, TOY,
SIS, and LLL was detected (see Fig. S7 and Pattern 6 in
Table S5). The hydrogen bonding between this water
FIGURE 7 Patterns 4 (left) and 5 (right). Water

molecules mediating hydrogen bonds in the com-

plexes of ribostamycin (RIO (pink)), neomycin

(NMY (violet)), paromomycin (PAR (black)), and

neamine (XXX (red)) with A-site RNA (gray).

RIO atoms are colored black, red, blue, and white

according to atom type, as in Fig. 6. The distances

(dashed lines) correspond to the RIO complex. To

see this figure in color, go online.
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molecule and the N1 amino nitrogen reflects the intramolec-
ular interaction formed by the O200 and the N1 group of
KAN. This pattern is a nice example of how some water
molecules mediating hydrogen bonds between aminoglyco-
sides and RNA could be successfully substituted with a
functional group, mimicking these interactions.
Modifications proposed based on water-mediated
interactions

From the analysis of water-mediated interaction patterns
(distances between hydrogen-bond donors and acceptors
and the directionality and spatial localization of these bonds)
and the electrostatic interactions of waters with RNA and
aminoglycoside in the studied complexes, we propose a
few modifications that could enhance aminoglycoside bind-
ing affinity. Note that our analysis does not take into account
such effects as impact on solvation, influence of the modifi-
cations on pKas of other groups, and entropic contribution.
The easiest modifications would simply substitute the water
molecules detected in different complexes, which take part in
similar mediating hydrogen-bond patterns, for amino or hy-
droxyl groups attached via a flexible linker to the aminogly-
coside. However, water molecules that interact strongly and
repetitively with RNA are not necessarily good candidates
for replacement with an aminoglycoside extension, because
their release from RNA (even though entropically favorable
for binding) probably would not compensate the enthalpic
cost. Pattern 1 is an example of how attempts to replace the
water moleculewith any functional group attached to amino-
glycoside would probably be inefficient due to the presence
of this water in many complexes and its strong electrostatic
interaction with RNA. The interactions from amodified ami-
noglycoside would need to be enthalpically much stronger
than those via water, which would be difficult to achieve.
Therefore, the best candidates for substitution are thosewater
molecules that interact strongly with aminoglycoside and
weakly with RNA.

In 4,5-DOS aminoglycosides, thewatermolecule in Pattern
2 in Fig. 6 might be a good candidate for replacement.
The O6 hydroxyl group of ring II could be substituted
with a functional group with a more basic character, for
example,�CH2NH

þ
3 , which would keep the existing connec-

tion with G1405:O6 and U1406:O4 and create an overall
stronger hydrogen-bond network. This modification should
be feasible, because this water molecule interacts strongly
with an aminoglycoside and weakly with RNA (Section S3
in the Supporting Material and Tables S3, S5, and S6). More-
over, the 4,6-DOS aminoglycosides contain a pyranose ring
III at this site and they do maintain the antibacterial potency.

A promising site for a modification could be based on the
repeated water arrangement in NMY and RIO complexes
(Pattern 5 in Fig. 7). The attachment of the �CH2CONH2

group to the C2 carbon could be beneficial. Based on the
structures of the complexes, this additional group should
Biophysical Journal 108(3) 655–665
introduce new contacts between an aminoglycoside and
G1494 and U1495 nucleotides.

The hydrogen-bond pattern shown in Fig. 7 (Pattern 4 in
Tables S3, S5, S6) also suggests a modification. Based on
this interaction pattern, we propose a locked aminoglyco-
side, which would join rings I and II through the amino
groups N3 and N60. One could connect these rings using
the path appointed by the mediating water molecule to
obtain a conformationally restricted aminoglycoside. This
modification should stiffen the aminoglycoside and lower
the necessary conformational adaptation of rings I and II
upon binding. However, other conformationally restricted
derivatives of PAR and NMY appeared to have affinities
similar to those of the unmodified aminoglycosides (57),
so the conformational restriction does not necessarily
mean overall affinity improvement.

One of the requirements for successful improvement
of aminoglycosides is to design a modification that would
make the compound resistant to enzymatic modifications
by aminoglycoside-modifying enzymes. Enzymatic modifi-
cation of aminoglycoside functional groups is the major way
by which bacteria fight these antibiotics (58). Thus, avoid-
ing the functional groups of aminoglycosides, which are
prone to enzymatic modification by bacterial enzymes, ap-
pears to be a testable solution. Our results show that amino-
glycosides with hydrogen atoms instead of hydroxyl groups
in the 30 and 40 positions of ring I interact more strongly
with their binding sites (e.g., compare LLL with RIO in
Table S2). At the same time, these two hydroxyl groups
are frequently modified by aminoglycoside phosphotrans-
ferase APH(30) and nucleotidyltransferase ANT(40) (59).

On the other hand, it has been shown that to preserve the
efficacy of aminoglycosides, certain functional groups are
necessary, even though they are susceptible to aminoglyco-
side-modifying enzymes. For example, in 4,5-DOS amino-
glycosides, the N20 amino group in ring I (Fig. 1, red
rings) determines the mobility of A1492 and A1493 bases
and therefore is essential for antibacterial activity (60).
Our computational result corroborates this finding, because
the contribution of this amino group to the interaction en-
ergy between aminoglycosides and their binding site is
high (e.g., compare rings I of KAN and NMY in Table
S2). However, a modification of this site is possible, accord-
ing to the location of a water molecule in Pattern 3 (Fig. S6).
If we replace this 20-amino group with, e.g., CH2NH

þ
3 , then

contacts between the new amino group and G1491 and
A1492 phosphates could be created. This modification
should prevent the acetylation of this group by aminoglyco-
side acetyltransferase AAC(20)-I, present in Gram-negative
bacteria and Mycobacterium (61).
CONCLUSIONS

We performed a structural and electrostatic comparison of
12 4,5- and 4,6-aminoglycoside crystal complexes with
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the RNA model of the ribosomal A-site. We used two ap-
proaches to calculate the electrostatic energy of interactions
between aminoglycosides and RNA: single-point partial
atomic charges from the classical all-atom force fields and
charge densities reconstructed with the databank of aspher-
ical pseudoatoms (UBDB). Both approaches gave a simi-
larly high correlation of electrostatic interaction energies
between aminoglycosides and A-site, with experimental
Gibbs energies corroborating previous data showing that
electrostatics is a crucial factor in aminoglycoside binding.
The corresponding van der Waals energies did not show any
correlations with DGs.

The reasons for the roughly similar electrostatic interac-
tion energies obtained from the multipole-based approach
and single-point charges that assume spherical electron den-
sitiesmay be that for the charged antibiotics andRNA, the net
monopole term dominates. From the calculations, we have
reproduced and indicated the rings and functional groups in
aminoglycosides that are crucial for their binding to the
A-site. The electrostatic contributions of water molecules
mediating the hydrogen bonds between aminoglycosides
and RNA pointed to a few fragments of aminoglycosides
that are potential candidates for modification.

Overall, the electrostatic interaction energy between 2-
DOS aminoglycosides and RNA increases with the number
of protonated amino groups. This is in accord with findings
from a study showing that modification of the amino groups
to hydroxyl groups decreases the binding affinities of ami-
noglycosides for hammerhead ribozyme (6). Introducing
even more amino groups should strengthen the electrostatics
but could decrease the ability to access the bacterial cell, so
it would not be a therapeutically effective modification.

The electrostatic contribution depends also on the number
of rings. Rings I and II are sufficient for specific binding to
the A-site (as shown for XXX) and rings III and IV were
proven to contribute weakly to the specificity of aminogly-
coside binding (62). However, if rings III and IV are
removed, the affinity decreases (12,17–19). The contribu-
tions from individual rings (Fig. 5) suggest that the highest
electrostatic contribution is for aminoglycosides containing
four rings. The exceptions are the three-ring antibiotics
AKN and KAN, whose Eel is less favorable than that for
the two-ring neamine XXX, even though these aminoglyco-
sides have the same net charge ofþ4e. Our recent studies on
amikacin-A-site complexes suggest that the binding of AKN
(due to the L-HABA extension) is mainly entropically
driven, so this less favorable Eel seems reasonable (22).
Also, adding the fifth ring in LIV decreases the overall
jEelj in comparison with the four-ring antibiotics.

The methodology applied here is not without limitations.
The crystal structures that were used represent a solid
packed state, whereas aminoglycoside-RNA interactions
should be analyzed in solvent. We have partially solved
this problem through energy minimization of these struc-
tures in a box of water molecules. However, desolvation
and entropy effects were omitted. An analysis of electro-
statics in the course of MD simulations in explicit solvent
would probably better represent the aminoglycoside envi-
ronment. The calculated Eels have to be treated as an elec-
trostatic contribution to the total free energy of binding,
and only their relative values are meaningful. Also,
comparing them with experimental DGs must be treated
with caution, because DGs contain multiple contributions
beyond the electrostatic one. Notwithstanding the limita-
tions, both single-point and multipole approaches work
well for this charged system.
SUPPORTING MATERIAL

Seven figures and six tables are available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(14)04766-3.
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S1 Binding site definition and choice

Chemical footprinting studies (1) defined PAR binding site as shown in Figure 2b in the main text. However, if
one considers the computed spatial range of electrostatic interactions such definition is not sufficient. In Figure S1
we present the electrostatic interaction energies, Eel, for aminoglycoside rings with the nucleotides in the crystal
construct shown in Figure 2a of the main text. It turns out that the electrostatic interactions go far beyond the
structural definition of the minimal A-site that was based on steric contacts that 2-DOS aminoglycosides make with
RNA nucleotides. The 4,5-DOS aminoglycosides (consisting of the neamine core, furanose ring III and, alternatively,
rings IV and V) interact most strongly with nucleotides G1489–U1495 and C1404–A1408, whereas 4,6-DOS (con-
taining pyranose ring III) with G1491–U1495 and C1404–U1406. The nucleobases which do not form Watson-Crick
pairs and their sequence neighbours (especially G1494 and G1405) play electrostatically the most important role in
ligand binding. Both binding sites were found asymmetric, which agrees with the fact that, even though equivalent
in sequence, these two sites are crystallographically distinct (were resolved as independent sites). Moreover, G1405,
interacting with pyranose ring III and ring IV with Eel energies higher than −500 kcal/mol, was not considered
as a binding site nucleotide in (2). The two uracils U1406 and U1495 previously found to be important for bind-
ing (3, 4) of aminoglycosides also show favorable Eel especially with rings II and IV. Therefore, for the purpose
of this electrostatic study, we extended the binding site and included all the nucleotides within the distance of 4Å
from all aminoglycosides. As a result, the overall electrostatic binding energies were assessed including fragments
G1489–C1498 and G1403–C1411 as shown in Figure 2a of the main text (red frame). Interactions with G1403 were
significantly lower because the G5’-termini were deprived of phosphate groups. In all other cases the negatively
charged phosphates gave a substantial contribution to the electrostatic energy of interaction. Note, that the com-
plexes with KAN and RIO were not considered for defining the binding site because they contained unspecifically
bound aminoglycosides what disturbed the overall energies of those located directly inside the A-site and bound
specifically. For example, for KAN shown in Figure S2, the nonspecifically bound antibiotic (in green) had the
lowest overall energy of interaction with the binding site.

The correlations with experimental data presented in Results and Discussion were also computed for different
definitions of the binding sites and revealed a slightly better relative correlation coefficients with experimental bind-
ing energies if we extended the definition of the aminoglycoside binding site and took into account more nucleotides
from the aminoglycoside surrounding. This suggests that the long-range even though weaker interactions influence
the binding energetics and cannot be neglected in our analyses. Therefore, exploring only the minimal binding site
as defined in (2) carries a risk of missing full electrostatic insight into the ligand’s mode of action.

c© 2013 The Authors
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Figure S1: The electrostatic interactions between aminoglycosides (partitioned per ring) of one binding site and
the whole RNA construct (partitioned per nucleotide). The contribution of each ring is averaged over all rings I to
V in all studied aminoglycosides. Only the extreme nucleotides and the bases not forming canonical base pairs in
RNA duplex are numbered. Coloring as in Figure 1 of the main text.

Figure S2: The crystal structure of the RNA oligonucleotide mimicking two A-sites in the complex with three
kanamycin molecules (2) shown as van der Waals spheres (PDB code 2ESI) and the electrostatic interactions
between these kanamycins and the whole RNA construct, partitioned per nucleotide. Each antibiotic is considered
independently and coloured likewise in both graphics.
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Figure S3: Comparison of aminoglycoside–RNA electrostatic interaction energies calculated using the UBDB aspher-
ical (Eel) and single-point charges (EPC

el ) calculated with AM1BCC method. Aminoglycosides are grouped according
to their formal charge with the ones bound unspecifically also included. The black line x=y is drawn to show the
trend that EPC

el is more negative than Eel.

S2 Electrostatic energies obtained with the point and aspherical partial charges

Figure S3 plots the comparison of the electrostatic binding energies of aminoglycosides to A-site mimics calculated
using aspherical pseudo-atom UBDB, Eel, and single-point charges in the Coulomb formula, EPC

el , (for their values
see Table S1). The order of these interaction energies is the same in both methods.

Surprisingly, the energies obtained using UBDB are in most cases only a few kcal/mol less negative than those
computed with the Coulomb formula. Larger deviations are noticed for the +4e charged aminoglycosides, especially
for RIO. In the RIO complex, four antibiotics are located in two binding sites. For the nonspecifically bound RIOs
we observed an inverse behavior; higher electrostatic interaction energies were obtained for the aspherical approach
than for the single-point charge method. This means that the overall net high charge of aminoglycosides is well-
approximated with the monopole formula which dominates the electrostatic interaction.

S3 Interactions with water molecules

The interaction energy values between water molecules and the complexes are gathered in Tables S3 – S6. In these
Tables AMG stands for aminoglycoside. Pattern no. indicates a repetitive motif, found in two or more complexes
and discussed in the main text. In the RNA nucleotides’ numbering scheme (RNA res. no.) a prime sign denotes
the second binding site and a star sign denotes the nucleotides that were not included in the first or second binding
site. The remaining nucleotides (with no additional sign) belong to the first binding site. The interaction of water
and RNA residue can take place with three different parts of the nucleotide: with the functional group of the base
(B), with the ribose (R) and with the oxygen atom from the phosphate (OP). The electrostatic energy Eel is calcu-
lated between each AMG ring and each nucleotide, which take part in the described interactions. The distances (r)
between the water oxygen atom and the closest heavy atoms of RNA or aminoglycosides and the angles of hydrogen
bonds (a) are given. The heavy atom of the functional group of AMG (N for amino group, O for hydroxyl group)
is given together with the numbers that indicate the closest carbon atom of the aminoglycoside ring. For AKN
and JS4P, the interaction occurs with the terminal amino group of their side chains (NT). For atom and residue
numbering refer to Figures 1 and 2 of the main text.
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Table S1: The electrostatic interaction energies between aminoglycosides and RNA in vacuum computed using
UBDB (Eel) and point charges derived using AM1-BCC method (EPC

el ) and ESP charges from Gaussian (EESP
el ),

van der Waals energies (VDW) and the experimentally determined Gibbs energies (∆G). The * sign indicates ener-
gies calculated for antibiotics bound unspecifically. (a) Yang et al., (5); (b) Alper et al., (6), Wong et al., (7); (c)
Pilch et al., (8); (d) Dudek et al. (9). For antibiotic structures see Figure 1 of the main text. The aminoglycosides
are ordered according to their number of rings. The energies for each aminoglycoside are given according to the
order these antibiotics appear in the PDB files.

Aminoglycoside
Ligand
name

Total
charge
[e]

Eel

[kcal/mol]
EPC

el

[kcal/mol]
EESP

el

[kcal/mol]
V DW
[kcal/mol]

∆G
[kcal/mol]

Neamine XXX 4 −2401 −2456 −2421 −17.52
−7.03a;
−6.96b

Geneticin (G418) GET 4
−2394;
−2438

−2436;
−2443

−2434;
−2440

−30.86;
−35.62

−6.71a

Amikacin AKN 4
−2232;
−2230

−2258;
−2254

−2253;
−2252

−38.09;
−44.62

−8.36d

Kanamycin A KAN 4
−2332;
−2284;
−2015∗

−2403;
−2316;
−2072∗

−2540;
−2297;
−2207∗

−33.33;
−32.07;
−6.08∗

−6.64a;
−6.47b

Sisomicin SIS 5
−2837;
−2920

−2902;
−2988

−2900;
−2982

−33.14;
−37.93

Tobramycin TOY 5
−2863;
−2822

−2896;
−2856

−2855;
−2846

−33.38;
−32.74

−7.54a;
−7.94b

Gentamicin C1A LLL 5
−2950;
−2992

−3001;
−3025

−2996;
−3022

−33.02;
−30.28

−7.22a;
−7.86b

Ribostamycin RIO 4

−2385;
−2339;
−2104∗;
−2132∗

−2411;
−2368;
−2086∗;
−2101∗

−2394;
−2355;
−2091∗;
−2108∗

−27.04;
−26.10;
−4.94∗;
−3.90∗

−6.64a;
−6.27b;
−7.7c;
−7.07d

Paromomycin PAR 5
−2923;
−2866

−2956;
−2892

−2946;
−2887

−40.31;
−35.38

−8.77a;
−9.13b;
−10.3c;
−7.2d

Neomycin B NMY 6
−3481;
−3456

−3524;
−3495

−3504;
−3480

−29.99;
−30.01

−10.56a;
−10.52b;
−11.5c

Modified
paromomycin

JS4 6
−3346;
−3350

−3416;
−3425

−3407;
−3415

−37.94;
−38.55

Modified and
protonated
paromomycin

JS4P 7
−3884;
−3902

−3936;
−3956

−3929;
−3948

−35.22;
−38.31

Lividomycin A LIV 5
−2908;
−2882

−2947;
−2919

−2922;
−2899

−40.90;
−34.93

−10.5c
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Figure S4: The van der Waals energies between aminoglycosides and their binding sites versus Gibbs energies (∆G)
obtained from fluorescence experiments (Yang et al. (5), pH 7.5, 150 mM Na+, 0.5 mM EDTA, and 20 mM HEPES
buffer), surface plasmon resonance (Alper et al. (6), Wong et al. (7), pH 7.4, 150 mM NaCl, 3.4 mM EDTA,
and 10 mM HEPES) and isothermal titration calorimetry and melting temperature assays (Pilch et al. (8), pH
5.5, 150 mM Na+, 0.1 mM EDTA, and 10 mM sodium cacodylate). The linear trends with R-squared values are
presented for each data series.

Figure S5: The contribution of the neamine core (rings I and II) to the electrostatic interaction energy between
aminoglycosides and RNA, calculated using the UBDB aspherical approach (Eel).
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Table S2: Mean electrostatic energies of interaction between an aminoglycoside ring and its RNA binding site com-
puted with the UBDB approach (Eel). The l-HABA denotes NH(C=O)CH(OH)(CH2)2NH+

3 . The differences in
functional groups within one ring are listed with the numbering of the nearest carbon atom from the ring given in
bold. For ring and atom names see Figure 1 of the main text. SD is the standard deviation for Eel energies of rings
in each row. Aminoglycosides not bound specifically were not taken into account.

Aminoglycoside ring no Differences in functional groups
Mean Eel

[kcal/mol]
SD
[kcal/mol]

Ring I 2’ 3’ 4’ 5’
LLL NH+

3 H H CH2NH+
3 -1223 2

TOY NH+
3 H OH CH2NH+

3 -1153 18
NMY, RIO, XXX NH+

3 OH OH CH2NH+
3 -1124 40

SIS (4’-5’ double bond) NH+
3 H OH CH2NH+

3 -1099 1
GET NH+

3 OH OH CH(OH)CH3 -765 16
LIV, PAR, JS4P NH+

3 OH OH CH3 -695 22
KAN, AKN OH OH OH CH2NH+

3 -634 38

Ring II (2-DOS) 1 5 6
XXX NH+

3 OH OH -1339 -
AKN l-HABA OH Ring III -1055 14
LIV, PAR, JS4P, NMY, RIO NH+

3 Ring III OH -1054 42
LLL, SIS, GET, TOY, KAN NH+

3 OH Ring III -1035 158

Pyranose ring III 3” 4” 5”
LLL, SIS, GET NH+

2 CH3 (OH)CH3 OH -683 28
TOY, KAN, AKN NH+

3 OH CH2OH -606 31

Furanose ring III 2”
LIV, NMY, PAR, RIO H -116 20
JS4P (CH2)2NH+

2 (CH2)3NH+
3 -1023 38

Ring IV
no differences

LIV, NMY, PAR, JS4P -1046 55

Ring V
no differences

LIV -172 10
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Table S3: Hydrogen bonds formed by water molecules, mediating between RNA and ribostamycin.
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Table S4: Hydrogen bonds formed by water molecules, mediating between RNA and amikacin, geneticin, modified
paromomycin and kanamycin.
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Table S5: Hydrogen bonds formed by water molecules, mediating between RNA and lividomycin, gentamicin and
neomycin.
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Table S6: Hydrogen bonds formed by water molecules, mediating between RNA and paromomycin, tobramycin and
neamine.
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Figure S6: Pattern number 3. A water molecule mediating the interactions of the RNA backbone (grey) with amino-
glycosides located in the complexes of paromomycin (PAR, black), lividomycin (LIV, grey), modified paromomycin
(JS4, blue). Additionally, a water molecule from gentamicin complex (LLL, orange) is shown. The distances shown
correspond to the PAR complex.

Figure S7: Pattern number 6. Superposition of complexes with kanamycin (KAN atoms in black, red and blue,
RNA in grey) and neomycin (NMY, RNA and a water molecule in dark violet). The distances in black and violet
dashed lines correspond to KAN and NMY complexes, respectively.
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