
File S5: prediction error variance in the training- and validation set.

We assume a balanced and completely random design, with n genotypes and r replicates. Given the model
yi,j = µ + Gi + Ei,j , the best linear unbiased predictor (BLUP) of G = (G1, . . . , Gn)t and the best linear
unbiased estimator (BLUE) of µ are given by

Ĝ = δKZt(δZKZt + IN )−1(y − µ̂1N ), µ̂ =
1tN (δZKZt + IN )−1y

1tN (δZKZt + IN )−11N
, (2)

where δ = σ2
A/σ

2
E is the shrinkage parameter, N is the total number of individuals and Z is the N ×n incidence

matrix assigning individuals to genotypes. See e.g. [6] or [7], or equation (23) in the present work (Appendix
C). The parameter δ = h2/(1 − h2) is a function of the heritability, and determines the extent to which the
phenotypic data y are ’shrunk’ towards zero. When the heritability is high, δ is large, and there is little shrinkage,
i.e. Ĝ will be close to the observed phenotypic observations y. For low heritability, δ is small, and y will be
shrunk towards the vector of zeros. When BLUPs are based on the genotypic means the same expressions hold,
with N = n and Z = In, and Ĝ = δrK(δrK + In)−1((ȳ1, . . . , ȳn)t − µ̂1n). Since the noise level is reduced from
σ2
E to r−1σ2

E , the shrinkage parameter δ becomes σ2
A/(r

−1σ2
E).

The preceding expressions assume the shrinkage parameter to be known, while it is usually estimated from
the data. As a consequence, the standard error of µ̂ and prediction error variance of Ĝ obtained by setting
δ = δ̂ = ĥ2/(1 − ĥ2) in (2) are larger than what would be obtained when δ is known ([8], [9]). Before we give
examples of too much or too little shrinkage (section ), we first give expressions for the prediction error variance

for the training and validation set, for the case when heritability is known (δ̂ = δ). These can be derived as a
special case of the more general expressions in e.g. [6] or [7].

Prediction error variance when δ = δ̂

First we consider the genetic effects G = (G1, . . . , Gn)t of the genotypes in the training sample. If we assume
that G ∼ N(0, σ2

AK) (i.e. in equation (21) in the main text (Appendix B), γ and the QTL-effects αm are zero),
the prediction error variance is given by the diagonal elements of

E(Ĝ−G)(Ĝ−G)t = (ZtZ + δ−1K−1 − Jn)−1, (3)

where Z is the N × n incidence matrix assigning plants to genotypes, and Jn is the n× n matrix with identical
elements 1/n. In case the phenotypic data consists of genotypic means, N = n. For efficient computation, see
[10] [11].

The genetic effects Gpred = (Gn+1, . . . , Gn+m)t of m unobserved (but genotyped) genotypes can be predicted
with the conditional mean

Ĝpred := E[Gpred|y] = δ̂Kpred.obsZ
t(δ̂ZKZt + IN )−1(y − µ̂1N ), (4)

where Kpred.obs is the m×n matrix of kinship coefficients for the unobserved versus observed genotypes. To give

expressions for the prediction error variance E(Ĝpred −Gpred)2i′ (i′ = 1, . . . ,m) we assume again that γ = 0, all
genetic signal being polygenic. Writing Kpred.pred for the m×m kinship matrix of the unobserved genotypes, it
is assumed that the kinship matrix is the (n+m)× (n+m) block matrix with K and Kpred.pred on the diagonal
and off-diagonal blocks Kpred.obs and Kt

pred.obs. Then the conditional distribution of Gpred|G is

Gpred|G ∼ N
(
Kpred.obsK

−1G, σ2
A

(
Kpred.pred −Kpred.obsK

−1Kt
pred.obs

))
.

Since Ĝpred = Kpred.obsK
−1Ĝ (by comparing (2) and (4)), it follows that

(Ĝpred −Gpred)|(Ĝ−G) = Kpred.obsK
−1(Ĝ−G)− Y,

where Y ∼ N
(
0, σ2

A(Kpred.pred −Kpred.obsK
−1Kt

pred.obs)
)
.

Consequently, the prediction error variances E(Ĝpred −Gpred)2i are the diagonal elements of

E(Ĝpred −Gpred)(Ĝpred −Gpred)t = E
[
E(Ĝpred −Gpred)(Ĝpred −Gpred)t | (Ĝ−G)

]
= (Kpred.obsK

−1)
[
E(Ĝ−G)(Ĝ−G)t

]
K−1Kt

pred.obs

+ σ2
A(Kpred.pred −Kpred.obsK

−1Kt
pred.obs).

(5)

Hence, the prediction error variance for the validation set contains a term depending on δ−1 = σ2
E/σ

2
A (see (3)),

as well as a term which depends only on the genetic variance σA.
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Prediction error variance with incorrect shrinkage (δ 6= δ̂)

For the case that the amount of shrinkage is not chosen correctly (δ̂ 6= δ = σ2
A/(r

−1σ2
E)), we now give an

expression for the prediction error variance for the training set based on genotypic means, under the additional
assumption that µ is known to be zero. The BLUP for G then simplifies to

Ĝ = δ̂K(δ̂K + In)−1ȳ, (6)

where we recall that we still assume a balanced and completely random design. Hence ȳi = Gi + Ēi, with
Ēi ∼ N(0, r−1σ2

E) and G = (G1, . . . , Gn)t ∼ N(0, σ2
AK). Since ȳ = (ȳ1, . . . , ȳn)t ∼ N(0, σ2

AK + r−1σ2
EIn) =

N(0, σ2
E(δK + r−1In), the variance-covariance matrix of Ĝ−G equals

Var(Ĝ−G) = σ2
AK − 2δ̂K(δ̂K + In)−1σ2

AK + δ̂K(δ̂K + In)−1(δK + r−1In)(δ̂K + In)−1δ̂Kσ2
E ,

where we used that (by the independence of G and E)

Cov(G, Ĝ) = Cov(G, δ̂K(δ̂K + In)−1G) = δ̂K(δ̂K + In)−1σ2
AK

and that (using ȳ ∼ N(0, σ2
E(δK + r−1In) and the symmetry of K and In)

Ĝ = δ̂K(δ̂K + In)−1ȳ ∼ N(0, δ̂K(δ̂K + In)−1(δK + r−1In)(δ̂K + In)−1δ̂Kσ2
E).

In particular, when δ̂ =∞ (i.e. ĥ2 = 1), there is no shrinkage, and Ĝ = ȳ. The prediction error variance is
then completely determined by the residual variance, since Ĝ−G = ȳ −G = Ē, and

E(Ĝ−G)(Ĝ−G)t = r−1σ2
EIn.

On the other hand, when δ̂ = 0 (i.e. ĥ2 = 0), there is ’total’ shrinkage towards zero, i.e. Ĝ = 0, and

E(Ĝ−G)(Ĝ−G)t = E(GGt) = σ2
AK.

This explains the asymmetry in the observed accuracy in our simulations, in particular when h2 = 0.5: when the
number of replicates r is sufficiently large, overestimating the heritability will have less impact on the prediction
error variance (and hence accuracy) than underestimating it.
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