Supplementary Figures

Supplementary Figure 1: Loci associated with 2 hr glucose during pregnancy imputed to HAPMAP (a) and 1000 Genomes (b). Peak of association is in the first intron of HKDC1. Black bars delineate a 30kb block with the strongest association (F-test, p < 1 $\times 10^{-5}$, n = 1,367) and LD (r² > 0.3).

Supplementary Figure 2: Significant HKDC1 eQTLs $[log_{10}(Bayes Factor) > 2.5]$ and GWA SNPs (F-test, p < 1 x 10⁻⁸) in the maternal 2 hr glucose level associated locus. An enrichment of open chromatin is located in a 30kb block between the 1st and 5th exons of HKDC1, flanked by two regulatory "deserts" on either side. Open chromatin for each cell line is denoted by DNasel hypersensitivity (ENCODE). Putative enhancer marks are marked by H3KMe1 and H3K27AC. Black bars delineate the same 30 kb block in Supplementary Figure 1.

chr10705007100071500Кьchr10705007100071500КьSupplementary Figure 3: eQTL analysis in primary liver for all genes within 500 kb ofHKDC1. The red line represents the lead GWAS SNP rs4746822.

Supplementary Figure 4: Enhancer strength of selected regulatory elements. Firefly luciferase intensity was normalized by dividing by the *Renilla* luciferase intensity. Enhancer strength was determined by dividing the normalized luciferase intensity of each construct by the normalized intensity of the empty vector. Error bars show s.d (n = 8 to 19).

Supplementary Figure 5: Enhancer strength vs DHS peak width. Spearman ρ =0.5 ,p = 0.117 (n = 8 to 19) . Error bars show s.d.

SNP: 1, 2, 3

Supplementary Figure 6: Experimental design for luciferase reporter assays. Multiple haplotypes of each regulatory element were cloned upstream of the promoter and site directed mutagenesis was used to segregate alleles which do not segregate naturally in the population. A linear regression model was used to determine the effect of each SNP on luciferase expression. The bottom and top boxes are the first and third quartiles, and the band inside the box is the median. The ends of the whiskers represent the lowest and highest data points within 1.5 interquartile range of the lower and upper quartiles. Circles represent outliers defined as 1.5 times the interquartile range above the upper quartile or below the lower quartile.

Supplementary Figure 7: Plots of predicted luciferase values versus observed luciferase values. In **a-f**, predicted luciferase values are positively and significantly associated with observed luciferase values, suggesting that the effects of individual variants may combine additively within haplotypes. The blue line is y = x and the black line is the regression line. Error bars show s.d.

Supplementary Figure 8: Full blot and gel images. **(a)** Coomassie stain for HKDC1 and HK1. The numbers representing the following: 1:Preinduction, 2:Induction, 3:Clarified Lysate, 4:Column Flow through, 5:Fraction 1, 6:Fraction 2, 7:Fraction 3, 8:Fraction 4, 9:Fraction 5. Full western blot images are shown for INS-1 cells induced with GFP and HKDC1 adenovirus using an HKDC1 **(b)** and anti-β Actin antibody **(c)**.

Supplementary Figure 9: Un-normalized HKDC1 virus transduction results. HKDC1 overexpression in INS-1 cells via adenovirus shows increased HK activity between a range of 0-50mM glucose. Error bars show s.d.

Supplementary Figure 10: Expression of other HK mRNAs in INS-1 cells after either GFP or HKDC1 adenovirus transduction. Expression was quantified via qPCR and expression was normalized using the $\Delta\Delta$ CT method (n = 3). Error bars show s.d.

Supplementary Figure 11: Cell number is consistent between groups of INS-1 cells treated with adenovirus. Cell number was quantified using the Cell-Titer Glo assay (Promega) (n = 3). Error bars show s.d.

Supplementary Figure 12: Replicate of HKDC1 activity dose response curve. This experiment is a duplicate experiment represented in Supplementary Figure 4 (n = 3). Error bars show s.d.

Supplementary Figure 13: Power analysis to detect independent additive effects of regulatory variants. The beta of SNP1 (rs10762264) = 0.48 and the MAF = 0.4. R^2 values between the 4 SNPs range from 0.8-0.99.

Supplementary Figure 14: Standard curve for specific activity versus fluorescence (n = 3).

Supplementary Tables

Region	Coordinates	DHS Width	DNasel HS	H3Kme1	H3K27Ac
-		(bp)			
1	chr10:70973319- 70974076	757	HeLa, K562, HepG2, HRPEpiC	K562	K562
11	chr10:70975656- 70976016	360	HUVEC, HeLa, k562, HMVEC, HRPE	HUVEC, K562, NHEK, NHLF	HUVEC, NHEK, K562
	chr10:70976807- 70977827	1020	HUVEC, HeLa, K562, HMVEC, HRPE, A549, Stellate, Urothel, Myometr, Medullo, HMEC, Osteoblasts, PanIsletD, HPDE6, FibroP	HUVEC, K562, NHEK, NHLF	HSMM, HUVEC, NHEK, NHLF
IV	chr10:70979612- 70980551	939	HepG2, HRPE, A549, K562	K562	H1-hESC
V	chr10:70981067- 70981290	223	HepG2, A549	K562, NHEK	GM12878, H1-hESC, NHEK
VI	chr10:70982000- 70982955	955	HUVEC, HeLa, K562, HepG2, HMVEC, HRPE, A549, Stellate, Urothel, Myometr, Medullo, HMEC, HMEC, Osteoblast, PanIsletD, HPDE6, FibroP	GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, NHLF	GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK
VII	chr10:70984649- 70985565	916	HUVEC, HeLa, HepG2, HMVEC, HRPE, Medullo, HMEC, HPDE6, FibroP	GM12878, HSMM, HUVEC, K562, NHEK	GM12878, HUVEC, NHEK
VIII	chr10:70986715- 70987113	398	HepG2, Medullo		
IX	chr10:70988887- 70990294	1407	HUVEC, K562, HepG2, HMVEC, HRPE, A549, Stellate, Urothel, Medullo, HMEC, Osteoblast, PanIslet, FibroP	GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, NHLF	GM12878, K562
X	chr10:70991933- 70992631	698	HUVEC, HeLa,HepG2, HMVEC, HRPE, A549, Stellate, Urothel, Myometr, Medullo, HMEC, HMEC, Osteoblast, PanIsletD, HPDE6, FibroP	H1-hESC, HSMM, HUVEC, NHEK, NHLF	HSMM, NHEK, NHLF
XI	chr10:70997194- 70998073	879	HUVEC, HeLa, K562, HMVEC, HRPE, A549, Stellate, Urothel, Myometr, Medullo, HMEC, Osteoblasts, PanIsletD, HPDE6, FibroP	GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, NHLF	

Supplementary Table 1. Putative regulatory element chromatin marks

Region	Coordinates	SNPs (common)	Common Haplotypes (>1%)	Rare Haplotypes (<1%)	Total Haplotypes
Ι	chr10:70973319- 70974076	9(4)	5	6	11
II	chr10: 70975656- 70976016	4(2)	2	3	5
	chr10:70976807- 70977827	11(8)	5	6	11
IV	chr10:70979612- 70980551	13(2)	3	12	15
V	chr10:70981067- 70981290	2(1)	2	1	3
VI	chr10:70982000- 70982955	21(9)	8	19	27
VII	chr10:70984649- 70985565	15(4)	5	14	19
VIII	chr10:70986715- 70987113	7(4)	4	4	8
IX	chr10:70988887- 70990294	26(12)	13	55	68
Х	chr10:70991933- 70992631	15(7)	6	9	15
XI	chr10:70997194- 70998073	13(7)	7	14	21
	Total	136(60)	60	143	203

Supplementary Table 2. Haplotype frequencies across the regulatory elements

Catalog ID	Ancestry	Sex
NA19399	LUHYA IN WEBUYE, KENYA	Female
NA19428	LUHYA IN WEBUYE, KENYA	Male
NA18557	YORUBA IN IBADAN, NIGERIA	Male
NA19007	JAPANESE IN TOKYO, JAPAN	Male
HG01133	COLOMBIAN IN MEDELLIN, COLOMBIA	Male
HG00346	FINNISH IN FINLAND	Female
NA19473	LUHYA IN WEBUYE, KENYA	Female
NA18861	YORUBA IN IBADAN, NIGERIA	Female
NA19346	LUHYA IN WEBUYE, KENYA	Male
NA19457	LUHYA IN WEBUYE, KENYA	Female
HG01437	COLOMBIAN IN MEDELLIN, COLOMBIA	Male
NA19438	LUHYA IN WEBUYE, KENYA	Female
HG00189	FINNISH IN FINLAND	Male
NA19150	YORUBA IN IBADAN, NIGERIA	Male
HG01626	IBERIAN POPULATIONS IN SPAIN	Female
NA19445	LUHYA IN WEBUYE, KENYA	Female
HG01079	PUERTO RICAN IN PUERTO RICO	Male
GM19707	AFRICAN ANCESTRY IN SOUTHWEST USA	Female
GM12144	CEPH/UTAH	Male

Supplementary Table 3. 1000 Genomes individual IDs and ancestries

SNPid	Pre-mutagenesis	Post-mutagenesis
rs7089312	0.125	0.2857
rs5030941	0.125	0.2857
rs2394529	0.1667	0.2727
rs141651118	0.2	0.3
rs147449838	0.2	0.4
rs55755107	0.1667	0.4286
rs4072135	0.1667	0.35714
rs11813186	0.1667	0.21429
rs5030945	0.125	0.38889
rs144643300	0.125	0.16667
rs12246517	0.25	0.5
rs4746829	0.25	0.5

Supplementary Table 4. Pre- and post-mutagenesis rare allele frequencies

		Allele	Allele			
Region	SNP	Α	В	MAF	β Luciferase	P-Value
	rs10762264	G	А	0.48	-3.13	5.05E-05
	rs12241136	А	Т	0.1	2.77	4.14E-08
VI	rs78983061	С	А	0.06	2.21	0.003
VI	rs7089277	Т	G	0.07	-8.59	8.90E-11
VI	rs4746822	С	Т	0.49	-6.7	8.00E-08
VII	rs4746824	С	А	0.22	1.18	-2.00E-06
VII	rs75405157	Т	С	0.06	1.55	3.08E-08
VII	rs2394529	G	С	0.5	-1.41	1.06E-04
VIII	rs9645501	G	А	0.34	-2.08	9.04E-08
VIII	rs147449838	G	А	<.01	-1.23	4.35E-04
VIII	rs200216341	G	А	<.01	-1.31	1.71E-04
IX	rs1983128	G	А	<.01	-4.45	9.49E-09
Х	rs5030945	Т	С	0.45	-28.14	2.19E-10
Х	rs874557	А	G	0.45	-31.58	1.54E-06

Supplementary Table 5. Table of significant regulatory variants

Region	SNP	Allele A	Allel e B	MAF	P-value	β Luc A549	β Luc K562	β Luc Fibroblas t	β Luc HepG2
III	rs1076226 4	G	A	0.48	5.05E- 05	-2.368	N.E.	-8.9581	-3.13
VI	rs4746822	С	Т	0.49	8.00E- 08	-2.724	N.E.	-3.86	-6.7
VII	rs2394529	G	С	0.5	1.06E- 04	N.E.	N.E.	3.137	-1.41
VIII	rs9645501	G	A	0.34	9.04E- 08	-29.078	-115.44	-15.29	-2.08

Supplementary Table 6. Concordant SNP effects in four different cell lines

Supplementary Table 7. Discordant SNP effects in four different cell lines

Reg ion	SNP	Allele A	Allele B	MAF	β Luc A549	β Luc K562	β Luc Fibroblast	β Luc HepG2
Х	rs5030945	Т	С	0.45	5.04	66.89	-3.13	-28.14
Х	rs874557	А	G	0.45	28.37	62.46	-2.3	-31.58

Supplementary Table 8. RPKM for primary hepatocytes and HepG2 cells

	Hepatocytes (RPKM)	HepG2 (RPKM)
HK1	6.5	0.7
HK2	1.3	27.2
HK3	6.6	0
GCK	1	0.1
HKDC1	1.2	28.3

Supplementary Table 9. Amino acid percent identity matrix

	GCK	HK3	HKDC1	HK1	HK2
GCK	100	52.41	51.52	53.13	54.64
HK3	52.41	100	52.97	53.23	55.93
HKDC1	51.52	52.97	100	70.8	67.79
HK1	53.13	53.23	70.8	100	72.71
HK2	54.64	55.93	67.79	72.71	100

Supplementary Table 10. DNA percent identity matrix

	GCK	HK3	HK1	HKDC1	HK2
GCK	100	53.18	50.35	48.77	49.46
НК3	53.18	100	57.31	57.86	60.38
HK1	50.35	57.31	100	63.44	63.09
HKDC1	48.77	57.86	63.44	100	64.12
HK2	49.46	60.38	63.09	64.12	100

Region	Forward	Reverse
	CGGTACCTGAGCTCGAAGGCCACAGG	TATCCTCGAGGCTAGTGGTCCTGGCG
	TTTTTAGATCTCCTT	CATCTTGTA
11	CGGTACCTGAGCTCGTCCTGAGCATTC	TATCCTCGAGGCTAGGGAACAGTTGG
	CTTGTCTTCG	GAATTTTATGGAAA
	CGGTACCTGAGCTCGCCAGATGGGTG	TATCCTCGAGGCTAGCCTAATTCCCCC
	ATACGCTTT	ACTAGTTGATT
IV	CGGTACCTGAGCTCGAATGGAAGAATC	TATCCTCGAGGCTAGTGGCCTTTCCGA
	TGCCCCAACA	GCAAACAT
V	CGGTACCTGAGCTCGTTGTCACTTTGC	TATCCTCGAGGCTAGGACCTTGGCTAA
	TCAGGGAACTTG	GTCCTCCTGCT
VI	CGGTACCTGAGCTCGAGAGGAAGTGT	TATCCTCGAGGCTAGGCCATGAAAAAT
	GGCCCCTTACA	ACACACTGAAAACC
VII	CGGTACCTGAGCTCGCCCTTAGTGCCT	TATCCTCGAGGCTAGTCCCCAGGTGA
	GGGACGTG	GAGGTGAGG
VIII	CGGTACCTGAGCTCGTCTGCAGCCCTC	TATCCTCGAGGCTAGGAATGGCCCTG
	TCACCTCA	ACGAAGGTG
IX	CGGTACCTGAGCTCGTCCCATGTCAGG	TATCCTCGAGGCTAGCCCTCCATGAAC
	GTCCCAGT	TGCCTTGG
Х	CGGTACCTGAGCTCGTCCTCAGATTCT	TATCCTCGAGGCTAGGAATGGCCCTG
	GCCCTTCAGA	ACGAAGGTG
XI	CGGTACCTGAGCTCGTCCCACCACTAG	TATCCTCGAGGCTAGCATGGTTTGCCA
	AATTGTGGGTTT	GGTCCACA

Supplementary	Table 11.	Primer sec	quences for	amplifying	regulatory	/ elements
---------------	-----------	------------	-------------	------------	------------	------------

SNP ID	Forward	Reverse	Edit
kg0002	CTTGTCTTCGGTTCA <u>C</u> AATAAACCTGT	TTTTACAGGTTTATTGTGAACCGAAGA	G>C
	AAAA	CAAG	
rs50309	TACCAGCAGGTCACA <u>C</u> TGATTTATGTT	TCATAACATAAATCAGTGTGACCTGCT	T>C
37	ATGA	GGTA	
rs50309	TTTATGTTATGACGA C TTAACTTTGGA	TAAGTCCAAAGTTAAGTCGTCATAACA	T>C
38	СТТА	ТААА	
rs96455	ACCTTCTCAGCCCTC A TTCCATTCTGC	GAAAGCAGAATGGAATGAGGGCTGAG	G>A
01	TTTC	AAGGT	
rs14744	CACATGCGGCTCTCC A ATGACACCCT	CCAAAAGGGTGTCATTGGAGAGCCGC	G>A
9838	TTTGG	ATGTG	
rs20021	AGGCGGTTCCGGGCT <u>A</u> AGATGGAGAA	GGCCCTTCTCCATCTTAGCCCGGAAC	G>A
6341	GGGCC	CGCCT	
kg0001	TGGCTGCTCCTCGCC <u>A</u> CACATCCTGT	GGAAGACAGGATGTGTGGCGAGGAG	G>A
	CTTCC	CAGCCA	
rs50309	CCTTTATCCGAGTTT <u>T</u> CCCAGGCTGG	TGCTCCCAGCCTGGGAAAACTCGGAT	C>T
45	GAGCA	AAAGG	
rs50309	CCAGGCTGGGAGCAC <u>A</u> AGCTCTCTCT	TGGGAAGAGAGAGCTTGTGCTCCCAG	C>A
46	TCCCA	CCTGG	
rs14464	ACCGCAAGGGCTGTG <u>T</u> TCACATTTGC	AGAAGGCAAATGTGAACACAGCCCTT	C>T
3300	СТТСТ	GCGGT	
rs47468	GTGCTCACATTTGCC <u>T</u> TCTCCAGTTGA	CATGTCAACTGGAGAAGGCAAATGTG	C>T
28	CATG	AGCAC	
rs12241	AAAATCCAACTACTT <u>T</u> TAAGATTTAAAC	TAGGTTTAAATCTTAAAAGTAGTTGGA	A>T
136	СТА	TTTT	
rs10998	GGCAAGGCTGGTCTC <u>G</u> AACTCCTGAC	GGCAGATTGCCTGAGGTCAGGAGTTC	T>G
649	CTCAGGCAATCTGCC	GAGACCAGCCTTGCC	
rs79142	GGCAAGGCTGGTCTCTAACTCCTGA <u>T</u>	GGCAGATTGCCTGAGATCAGGAGTTA	C>T
56	CTCAGGCAATCTGCC	GAGACCAGCCTTGCC	

Supplementary Table 13. Primer sequences for qPCR

	Forward	Reverse
Bactin	GTGGCCATCTCTTGCTGCAAG	GGGAAATCGTGCGTGACATTAAG
HKDC1	GGTCAGGATGCTGCCCACCT	CCCAAGATCCAGGGCGAGAA
HK1	TGAAGTCGGCCTGATCATCG	TCCTCCCCTCGTCTCCTTCC
HK2	GGGTCCTGCTGGTCCGTGTT	TCCTGCGGGATGGCGTAGAT
НК3	GAGGAGACCCTGGCCCCATT	CCTTCCGCATCTGTGCCTGA
GCK	TGGATGTGGTGGCAATGGTG	GATCATGCCGACCTCGCACT
ratHK1	TTAACCCGCTTGGGAGTGGA	GGCTGATCGGAAGGAGACGA
ratHK2	AGCGACTTCGCTCCACCATC	GGAGACGCTTGGCAAAATGG
ratHK3	CTCTTCCAGGATGCGCCTGT	TCCCCTCTGTGGATGGTGGT
ratGCK	GGCACTGCCGAGATGCTCTT	GAAGCCCAGGGGCAGTTTCT
ratBactin	CACTGCCGCATCCTCTTCCT	GGAACCGCTCATTGCCGATA