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Appendix A: The unadjusted estimator is unbiased

Recall the unadjusted estimator is the average difference in the outcomes within matched pairs:

ψ̂unadj =
1

n/2

n/2
∑

j=1

[

Aj1Yj1 − (1− Aj1)Yj1 +Aj2Yj2 − (1−Aj2)Yj2
]

If observations within matched pairs have been ordered such that the first corresponds to intervention and the second to

the control, the estimator can be expressed 1
n/2

∑n/2
j=1(Yj1 − Yj2). Given the vector of covariates Wn = (W1, . . . ,Wn),

the unadjusted estimator is unbiased for the statistical estimand:

E0

[

ψ̂unadj |Wn
]

=
1

n/2

n/2
∑

j=1

[

E0[Aj1Yj1 |Wn]− E0[(1 −Aj1)Yj1 |Wn]

+ E0[Aj2Yj2 |Wn]− E0[(1−Aj2)Yj2 |Wn]

]

=
1

n/2

n/2
∑

j=1

[

Q̄0(1,Wj1)E0(Aj1 |Wn)− Q̄0(0,Wj1)E0((1 −Aj1) |Wn)

+ Q̄0(1,Wj2)E0(Aj2 |Wn)− Q̄0(0,Wj2)E0((1 −Aj2) |Wn)

]

=
1

n/2

n/2
∑

j=1

1

2

[

Q̄0(1,Wj1)− Q̄0(0,Wj2) + Q̄0(1,Wj2)− Q̄0(0,Wj2)

]

=
1

n

n
∑

i=1

Q̄0(1,Wi)− Q̄0(0,Wi) = Ψ(Pn0 ).

Thus, ψ̂unadj is an unbiased estimator of Ψ(Pn0 ), conditional on Wn.
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Appendix B: Statistical inference for the TMLE

In this subsection, we establish that the proposed TMLE is an asymptotically linear estimator of the conditional average

treatment effect (CATE) in an adaptive pair-matched trial, where n/2 matched pairs are created as a function of baseline

covariates of n candidate units. We then consider the adaptive design, where n/2 matched pairs are created as function of

the baseline covariates of N > n candidate units and the remaining (N − n) units discarded. The latter adaptive design is

a generalization of the first and the derived theorems are applicable. The theoretical results also apply to the unadjusted

estimator ψ̂unadj , which can be considered a special case.

Let Pn0 denote the conditional distribution of On = (O1, . . . , On), given the vector of covariates Wn = (W1, . . . ,Wn).
The statistical estimand is a function of this conditional distribution:

Ψ(Pn0 ) =
1

n

n
∑

i=1

Q̄0(1,Wi)− Q̄0(0,Wi),

where Q̄0(A,W ) = E0(Y |A,W ) denotes the conditional expectation of the outcome, given the exposure A and the

covariates W . The TMLE for Ψ(Pn0 ) is defined by following plug-in estimator:

Ψ(Q̄∗
n) =

1

n

n
∑

i=1

Q̄∗
n(1,Wi)− Q̄∗

n(0,Wi),

where Q̄∗
n(A,W ) denotes targeted estimates of the conditional mean function Q̄0(A,W ). Let ψ0 denote the true parameter

value and ψ∗
n denote the estimate.

Let us define the following function of O = (W,A, Y ):

D∗(Q̄, g0)(O) ≡
(

I(A = 1)

g0(A)
− I(A = 0)

g0(A)

)

(

Y − Q̄(A,W )
)

,

where the marginal probability of receiving the intervention or the control is g0(A) = P0(A) = 0.5 in a randomized trial

with two arms. By construction, TMLE solves D∗(Q̄, g0)(O) at the targeted update Q̄∗
n:

PnD
∗(Q̄∗

n, g0) =
1

n

n
∑

i=1

D∗(Q̄∗
n, g0)(Oi) = 0,

where Pn denotes the empirical distribution, placing mass (1/n) on each Oi, i = 1, . . . , n. It is of interest to note that this

equality can be rewritten as

1

n/2

n/2
∑

j=1

{

Q̄∗
n(1,Wj1)− Q̄∗

n(0,Wj2)
}

=
1

n/2

n/2
∑

j=1

{Yj1 − Yj2} ,

where observations in pair j have again been ordered such that the first corresponds to the intervention Aj1 = 1 and the

second to the control Aj2 = 0. Thus, the TMLE has the interesting property that if it is used to predict the counterfactual

effect Y (1)− Y (0) for each pair j, then the average of these j-specific effects equals the unadjusted estimator.

Let Pn0 f = E[f(On) |Wn] denote the conditional expectation of a function f of the dataOn, given the covariate vector

Wn. For all Q̄(A,W ), we have

Pn0 D
∗(Q̄, g0) =

(

Q̄0(1,Wi)− Q̄0(0,Wi)
)

−
(

Q̄(1,Wi)− Q̄(0,Wi)
)

.

Therefore, the statistical estimand Ψ(Pn0 ) minus the TMLE Ψ(Q̄∗
n) can be written as the empirical mean of the above

conditional expectation:

Ψ(Pn0 )−Ψ(Q̄∗
n) =

1

n

n
∑

i=1

Pn0 D
∗(Q̄∗

n, g0).

Combining the latter equality with PnD
∗(Q̄∗

n, g0) = 0 yields

(ψ∗
n − ψ0) = Pn

{

D∗(Q̄∗
n, g0)− Pn0 D

∗(Q̄∗
n, g0)

}

=
1

n

n
∑

i=1

{

D∗(Q̄∗
n, g0)(Oi)− Pn0 D

∗(Q̄∗
n, g0)

}

.
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We can re-write this equality in terms of the empirical distribution Pn/2, which puts mass 1/(n/2) on each paired data

point Ōj = (Oj1, Oj2):

(ψ∗
n − ψ0) = Pn/2

{

D̄∗(Q̄∗
n, g0)− Pn0 D̄

∗(Q̄∗
n, g0)

}

=
1

n/2

n/2
∑

j=1

{

D̄∗(Q̄∗
n, g0)(Ōj)− Pn0 D̄

∗(Q̄∗
n, g0)

}

where D̄∗(Q̄∗
n, g0)(Ōj) =

1

2

{

D∗(Q̄∗
n, g0)(Oj1) +D∗(Q̄∗

n, g0)(Oj2)
}

Now let F be a set of multivariate real valued functions so that Q̄∗
n(A,W ) is an element of F with probability 1. Define

the process (Zn(Q̄) : Q̄ ∈ F) by

Zn(Q̄) =
1

√

n/2

n/2
∑

j=1

{

D̄∗(Q̄, g0)(Ōj)− Pn0 D̄
∗(Q̄, g0)

}

Conditional on the covariate vectorWn = (W1, . . . ,Wn), Zn(Q̄) is a sum of n/2 independent mean zero random variables

D̄∗(Q̄, g0)(Ōj)− Pn0 D̄
∗(Q̄, g0), j = 1, . . . , n/2. Below we establish asymptotic equicontinuity of (Zn(Q̄) : Q̄ ∈ F) so

that Zn(Q̄
∗
n)− Zn(Q̄) → 0 in probability. Then, we can conclude that

√

n/2(ψ∗
n − ψ0) =

1
√

n/2

n/2
∑

j=1

{

D̄∗(Q̄, g0)(Ōj)− Pn0 D̄
∗(Q̄, g0)

}

+ oP (1).

Since the main term on the right-hand side, conditional on Wn, is a sum of independent mean zero random variables, we

can apply the central limit theorem for sums of independent random variables.

Let us define the following function of the paired data Ōj = (Oj1, Oj2):

ICj(Q̄, Q̄0, g0) ≡ D̄∗(Q̄, g0)(Ōj)− Pn0 D̄
∗(Q̄, g0),

where the notation recognizes that Pn0 D̄
∗(Q̄, g0) also depends on the true conditional mean Q̄0(A,W ) = E0(Y |A,W ).

We assume that

Σ0 = lim
n→∞

1

n/2

n/2
∑

j=1

Pn0 ICj(Q̄, Q̄0, g0)
2

exists as a limit. Then, we have shown
√

n/2(ψ∗
n − ψ0) ⇒d N(0,Σ0).

To establish the asymptotic equicontinuity result, we use a few fundamental building blocks. Let Fd = {f1 − f2 :
f1, f2 ∈ F}. Let σ2

n(f) = Pn0 Zn(f)
2 be the conditional variance. Note that Zn(f)/σn(f) is a sum of n/2 independent

mean zero bounded random variables and the variance of this sum equals 1. Bernstein’s inequality states that P (|
∑

j Yj |>
x) ≤ 2 exp

(

− 1
2

x2

v+Mx/3

)

, where v ≥ VAR
∑

j Yj . Thus, by Bernstein’s inequality, conditional on Wn, we have

P

(

| Zn(f) |
σn(f)

> x

)

≤ 2 exp

(

−1

2

x2

1 +Mx/3

)

≤ K exp(−Cx2),

for a universal K and C. This implies ‖ Zn(f)/σn(f) ‖ψ2
≤ (1 +K/C)0.5, where for a given convex function ψ

with ψ(0) = 0, ‖ X ‖ψ≡ inf{C > 0 : Eψ(| X | /C) ≤ 1} is the so called Orlics norm, and ψ2(x) = exp(x2)− 1. Thus

‖ Zn(f) ‖ψ2
≤ C1σn(f) for f ∈ Fd. This result allows us to apply Theorem 2.2.4 in van der Vaart and Wellner [1]: for

each δ > 0 and η > 0, we now have

‖ sup
σn(f)≤δ

| Zn(f) |‖ψ2
≤ K

{
∫ η

0

ψ−1
2 (N(ǫ, σn,Fd)dǫ + δψ−1

2 (N2(η, σn,Fd)),
}

, (1)

where N(ǫ, σn,Fd) is the number of balls of size ǫ w.r.t. norm ‖ f ‖= σn(f) to cover Fd.

Convergence of a sequence of random variables to zero with respect to ψ2-orlics norm implies convergence in

expectation to zero and thereby convergence of that sequence of random variables to zero in probability. Let δn be a
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sequence converging to zero, and let ηn also converge to zero but slowly enough so that the term δnψ
−1
2 (N2(ηn, σn,Fd))

converges to zero as n→ ∞. By assumption,
∫ δn
0
ψ−1
2 (N(ǫ, σn,Fd)dǫ converges to zero. Thus,

lim
δn→0

{

∫ δn

0

ψ−1
2 (N(ǫ, σn,Fd)dǫ + δnψ

−1
2 (N2(ηn, σn,Fd))

}

= 0.

This proves that

E

(

sup
{f :σn(f)≤δn}

| Zn(f) |
)

→ 0.

Thus, if σn(Q̄
∗
n − Q̄) → 0 in probability, then Zn(Q̄

∗
n − Q̄) → 0 in probability. This proves the following theorem.

Theorem 1 Consider the TMLE Ψ(Q̄∗
n) of the statistical estimand Ψ(Pn0 ) = 1/n

∑n
i=1{Q̄0(1,Wi)− Q̄0(0,Wi)}. Let

Pn0 f represent the conditional expectation of a function f of On, given the vector of covariates Wn. This conditional

expectation, Pn0 f , is thus still random through Wn. Let F be a set of multivariate real valued functions so that Q̄∗
n is an

element of F with probability 1. Define

Zn(Q̄) =
1

√

n/2

n/2
∑

j=1

ICj(Q̄, Q̄0, g0)

where

ICj(Q̄, Q̄0, g0) ≡ D̄∗(Q̄, g0)(Ōj)− Pn0 D̄
∗(Q̄, g0)

D̄∗(Q̄, g0)(Ōj) =
1

2

{

D∗(Q̄, g0)(Oj1) +D∗(Q̄, g0)(Oj2)

}

D∗(Q̄, g0)(Oi) =

(

I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)

(

Yi − Q̄(Ai,Wi)
)

.

where g0(A) = P0(A) is known. We make the following assumptions.

Uniform bound: Assume supQ̄∈F supO | D∗(Q̄, g0) |< M <∞, where the second supremum is over a set that contains

the support of each Oi.

Convergence of variances: Assume that for a specified {σ2
0(Q̄) : Q̄ ∈ F}, for any Q̄ ∈ F ,

1
n/2

∑n/2
j=1 P

n
0 ICj(Q̄, Q̄0, g0)

2 → σ2
0(Q̄) a.s (i.e, for almost every (Wn, n ≥ 1)).

Convergence of Q̄∗
n to some limit: For any Q̄1, Q̄2 ∈ F , we define

σ2
n(Q̄1 − Q̄2) =

1

n/2

n/2
∑

j=1

Pn0
{

ICj(Q̄1, Q̄0, g0)− ICj(Q̄2, Q̄0, g0)
}2
,

where we note that the right-hand side indeed only depends on Q̄1, Q̄2 through its difference Q̄1 − Q̄2.

Assume that for a particular Q̄∗ ∈ F , σ2
n(Q̄

∗
n − Q̄∗) → 0 in probability as n→ ∞.

Entropy condition: Let Fd = {f1 − f2 : f1, f2 ∈ F}. Let N(ǫ, σn,Fd) be the covering number of the class Fd w.r.t

norm/dissimilarity ‖ f ‖= σn(f). Assume that the class F satisfies

lim
δn→0

∫ δn

0

√

logN(ǫ, σn,Fd)dǫ = 0

Asymptotic equicontinuity of process: Then,

Zn(Q̄
∗
n)− Zn(Q̄

∗) converges to zero in probability, as n→ ∞.

First order linear approximation: As a consequence,

√

n/2(ψ∗
n − ψ0) = Zn(Q̄

∗) + oP (1).
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Asymptotic normality: In addition, Zn(Q̄
∗) converges to N(0, σ2

0(Q̄
∗)), so that

√

n/2(ψ∗
n − ψ0) converges in distribution to N(0, σ2

0(Q̄
∗)).

The asymptotic variance σ2
0(Q̄

∗) equals the limit of

σ2
0,n =

1

n/2

n/2
∑

j=1

Pn0

{

ICj(Q̄
∗
n, Q̄0, g0)

}2

If Yi is d-dimensional outcome, then the application of the above theorem to each component of ψ∗
n yields the desired

asymptotic linearity for the d-dimensional ψ∗
n and thereby the asymptotic normality as well.

Appendix B.1: Conservative variance estimation

The above result suggests the following estimator of the asymptotic variance of the standardized TMLE:

Σ̂ =
1

n/2

n/2
∑

j=1

{

ICj(Q̄
∗
n, Q̄n,np, g0)(Ōj)

}2

where Q̄n,np is a consistent estimator of Q̄0. Unfortunately, such a variance estimator relies upon consistent estimation

of the conditional mean function Q̄0, which is particular concerning when n is small. However, we will now show that

one can obtain a conservative variance estimate, which does not rely on a consistent estimator of the conditional mean

function Q̄0.

The asymptotic variance of the standardized estimator
√

n/2(ψ∗
n − ψ0) can be expressed as

Σ0 = lim
n→∞

1

n/2

n/2
∑

j=1

Pn0

[

ICj(Q̄
∗, Q̄0, g0)

]2

= lim
n→∞

1

n/2

n/2
∑

j=1

Pn0

[

D̄∗(Q̄∗, g0)

]2

−
[

Pn0 D̄
∗(Q̄∗, g0)

]2

.

The latter term is zero when Q̄∗(A,W ) = Q̄0(A,W ):

Pn0 D̄
∗(Q̄∗, g0) =

1

2

{

Q̄0(1,Wj1)− Q̄0(0,Wj1)−
(

Q̄∗(1,Wj1)− Q̄∗(0,Wj1)
)

+ Q̄0(1,Wj2)− Q̄0(0,Wj2)−
(

Q̄∗(1,Wj2)− Q̄∗(0,Wj2)
)

}

Thus, the true variance Σ0 is always less than or equal to an upper bound Σu0 , where

Σu0 = lim
n→∞

1

n/2

n/2
∑

j=1

Pn0

{

D̄∗(Q̄∗, g0)

}2

Again, if the conditional mean is consistently estimated Q̄∗(A,W ) = Q̄0(A,W ), Σu0 = Σ0.

We can consistently estimate the upper bound Σu0 with

Σ̂u =
1

n/2

n/2
∑

j=1

{

D̄∗(Q̄∗
n, g0)(Ōj)

}2

Recall

D̄∗(Q̄, g0)(Ōj) =
1

2

{

D∗(Q̄, g0)(Oj1) +D∗(Q̄, g0)(Oj2)

}

=
1

2

[(

I(Aj1 = 1)

g0(Aj1)
− I(Aj1 = 0)

g0(Aj1)

)

(

Yj1 − Q̄(Aj1,Wj1)
)

+

(

I(Aj2 = 1)

g0(Aj2)
− I(Aj2 = 0)

g0(Aj2)

)

(

Yj2 − Q̄(Aj2,Wj2)
)

]
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Ordering the observations within pairs, such that index j1 corresponds to the unit randomized to the intervention (Aj1 = 1)

and j2 corresponds to the unit randomized to the control (Aj2 = 0), it follows that

D̄∗(Q̄, g0)(Ōj) = Yj1 − Q̄(1,Wj1)−
(

Yj2 − Q̄(0,Wj2)
)

,

allowing us to represent the conservative variance estimator Σ̂u as the difference in residuals within matched pairs:

Σ̂u =
1

n/2

n/2
∑

j=1

{

Yj1 − Q̄∗
n(1,Wj1)−

(

Yj2 − Q̄∗
n(0,Wj2)

)

}2

.

Appendix B.2: Generalization to N > n candidate units

Now consider the common adaptive design, where first N candidate units are selected, the best n/2 matched pairs selected

as a function of the covariate vector WN = (W1, . . . ,Wn, . . . ,WN ), and the remaining N − n units discarded. In the

SEARCH trial, for example, 16 matched pairs were formed as a function of the baseline covariates of 54 candidate

communities. As a result of this adaptive design, the treatment assignment mechanism depends on the N candidate

communities. Nonetheless, in a randomized trial, the conditional likelihood of the observed data factorizes as

P0(O1, . . . , On|W1, . . . ,WN ) =

n
∏

j=1

g0(Aj1, Aj2|W1, . . . ,WN )P0(Yj1|Aj1,Wj1)P0(Yj2|Aj2,Wj2)

= 0.5

n
∏

j=1

P0(Yj1|Aj1,Wj1)P0(Yj2|Aj2,Wj2)

= P0(O1, . . . , On |W1, . . . ,Wn) = Pn0 (O
n|Wn)

Therefore, given the baseline covariates of the n study units Wn = (W1, . . .Wn), we still have n/2 conditionally

independent observations. Furthermore, recall that the statistical estimand corresponds to the average treatment effect,

conditional on the baseline covariates of the n study units:

Ψ(Pn0 ) =
1

n

n
∑

i=1

Q̄0(1,Wi)− Q̄0(0,Wi)

Since we condition on Wn = (W1, . . . ,Wn) in the target parameter and corresponding TMLE, the actual distribution that

generated these n covariates is not important. Recall we make no assumptions about the joint distribution of P0(W
N ).

We only need to assume that the conditional variance still converges. As a result, we can apply the same TMLE and

asymptotics. As detailed in van der Laan et al. [2], this is a much different result than when the target parameter is

the marginal (population) average treatment effect. In the latter case, the so-called adaptive missingness has important

implications for estimation and inference to a target population of units.

Appendix C: Comparison with complete randomization

In this section, we consider estimation and inference for the conditional average treatment effect (CATE) in a trial, where

the intervention is completely randomized. We consider implementation of the TMLE and the corresponding asymptotics.

We conclude with an efficiency comparison between a trial randomizing the intervention within adaptive pairs and a trial

with complete (independent) randomization.

Appendix C.1: TMLE for the CATE under complete randomization

Let Q̄n(A,W ) be an initial estimator of Q̄0(A,W ), which can be obtained by regressing the outcome Yi on exposure Ai
and covariates Wi, i = 1, . . . , n. For a binary or bounded continuous outcome, the negative log-likelihood is a valid loss

function:

−L(Q̄)(O) = Y log Q̄(A,W ) + (1 − Y ) log(1− Q̄(A,W ))

Now consider the logistic fluctuation submodel:

logit
[

Q̄n(A,W )(ǫ)
]

= logit
[

Q̄n(A,W )
]

+ ǫH(A)

where H(A) =

(

I(A = 1)

g0(A)
− I(A = 0)

g0(A)

)
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Prepared using simauth.cls



Statistics
in Medicine

In a randomized trial with two arms, the probability of receiving the intervention or control is g0(A = a) = P0(A = a) =
0.5. Let ǫn be the minimizer of the empirical mean of the loss function:

ǫn = argmin
ǫ
PnL

(

Q̄n(A,W )(ǫ)
)

=
1

n

n
∑

i=1

L
(

Q̄n(A,W )(ǫ)
)

(Oi)

The TMLE of the conditional mean outcome Q̄0(A,W ) is defined by plugging in the estimated coefficient ǫn into the

fluctuation model Q̄∗
n(A,W ) = Q̄n(A,W )(ǫn). The TMLE of Ψ(Pn0 ) is defined as the corresponding plug-in estimator:

Ψ(Q̄∗
n) =

1

n

n
∑

i=1

{

Q̄∗
n(1,Wi)− Q̄∗

n(0,Wi)
}

As before, initial estimation of the conditional mean function Q̄0(A,W ) can also be based on least squares regression and

targeting achieved with the following fluctuation submodel:

Q̄n(A,W )(ǫ) = Q̄n(A,W ) + ǫH(A)

Recall the definition of D∗(Q̄, g0)(O) as the following function of the observed data O = (W,A, Y ):

D∗(Q̄, g0)(O) =

(

I(A = 1)

g0(A)
− I(A = 0)

g0(A)

)

(Y − Q̄(A,W )),

where the probability of receiving the intervention or the control is g0(A) = P0(A) = 0.5 in a randomized trial. By

construction, TMLE solves D∗(Q̄, g0)(O) at the targeted update Q̄∗
n:

PnD
∗(Q̄∗

n, g0) =
1

n

n
∑

i=1

D∗(Q̄∗
n, g0)(Oi) = 0

where Pn denotes the empirical distribution, placing mass (1/n) on each Oi, i = 1, . . . , n. For all Q̄(A,W ), we also have

Pn0 D
∗(Q̄, g0) =

(

Q̄0(1,Wi)− Q̄0(0,Wi)
)

−
(

Q̄(1,Wi)− Q̄(0,Wi)
)

,

where Pn0 f = E
[

f(On)|Wn
]

denotes the conditional expectation of the function f of the data On, given the covariate

vector Wn. Therefore, the statistical estimand Ψ(Pn0 ) minus the TMLE Ψ(Q̄∗
n) can be written as the empirical mean of

the above conditional expectation:

Ψ(Pn0 )−Ψ(Q̄∗
n) =

1

n

n
∑

i=1

Pn0 D
∗(Q̄∗

n, g0).

Combining the latter equality with PnD
∗(Q̄∗

n, g0) = 0 yields

√
n(ψ∗

n − ψ0) =
1√
n

n
∑

i=1

{

D∗(Q̄∗
n, g0)(Oi)− Pn0 D

∗(Q̄∗
n, g0)

}

.

Recall F is the set of multivariate real-valued functions such that Q̄∗
n(A,W ) is an element of F with probability 1.

Define the process (Zn(Q̄) : Q̄ ∈ F) by

Zn(Q̄) =
1√
n

n
∑

i=1

{

D∗(Q̄, g0)(Oi)− Pn0 D
∗(Q̄, g0)

}

,

Conditional on the covariate vector Wn = (W1, . . . ,Wn), Zn(Q̄) is a sum of n independent mean zero random variables

D∗(Q̄, g0)(Oi)− Pn0 D
∗(Q̄, g0), i = 1, . . . , n. Below we establish asymptotic equicontinuity of (Zn(Q̄) : Q̄ ∈ F) so that

Zn(Q̄
∗
n)− Zn(Q̄) → 0 in probability. Then, we can conclude that

√
n(ψ∗

n − ψ0) =
1√
n

n
∑

i=1

{

D∗(Q̄, g0)(Oi)− Pn0 D
∗(Q̄, g0)

}

+ oP (1).
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Since the main term on the right-hand side, conditional on Wn, is a sum of independent mean zero random variables, we

can apply the central limit theorem for sums of independent random variables.

For a completely randomized trial, let us define the following function of the unit data Oi = (Wi, Ai, Yi):

ICi(Q̄, Q̄0, g0) ≡ D∗(Q̄, g0)(Oi)− Pn0 D
∗(Q̄, g0),

where the notation recognizes that Pn0 D
∗(Q̄, g0) also depends on the true conditional mean Q̄0(A,W ) = E0(Y |A,W ).

We assume that

Σ0 = lim
n→∞

1

n

n
∑

i=1

Pn0 ICi(Q̄, Q̄0, g0)
2

exists as a limit. Then, we have shown
√
n(ψ∗

n − ψ0) ⇒d N(0,Σ0).
To establish the asymptotic equicontinuity result, we use a few fundamental building blocks. Let Fd = {f1 − f2 :

f1, f2 ∈ F}. Let σ2
n(f) = Pn0 Zn(f)

2 be the conditional variance. Note that Zn(f)/σn(f) is a sum of n independent mean

zero bounded random variables and the variance of this sum equals 1. Bernstein’s inequality states that P (|
∑

j Yj |> x) ≤
2 exp

(

− 1
2

x2

v+Mx/3

)

, where v ≥ VAR
∑

j Yj . Thus, by Bernstein’s inequality, conditional on Wn, we have

P

(

| Zn(f) |
σn(f)

> x

)

≤ 2 exp

(

−1

2

x2

1 +Mx/3

)

≤ K exp(−Cx2),

for a universal K and C. This implies ‖ Zn(f)/σn(f) ‖ψ2
≤ (1 +K/C)0.5, where for a given convex function ψ

with ψ(0) = 0, ‖ X ‖ψ≡ inf{C > 0 : Eψ(| X | /C) ≤ 1} is the so called Orlics norm, and ψ2(x) = exp(x2)− 1. Thus

‖ Zn(f) ‖ψ2
≤ C1σn(f) for f ∈ Fd. This result allows us to apply Theorem 2.2.4 in van der Vaart and Wellner [1]: for

each δ > 0 and η > 0, we now have

‖ sup
σn(f)≤δ

| Zn(f) |‖ψ2
≤ K

{
∫ η

0

ψ−1
2 (N(ǫ, σn,Fd)dǫ+ δψ−1

2 (N2(η, σn,Fd)),
}

, (2)

where N(ǫ, σn,Fd) is the number of balls of size ǫ w.r.t. norm ‖ f ‖= σn(f) to cover Fd.

Convergence of a sequence of random variables to zero with respect to ψ2-orlics norm implies convergence in

expectation to zero and thereby convergence of that sequence of random variables to zero in probability. Let δn be a

sequence converging to zero, and let ηn also converge to zero but slowly enough so that the term δnψ
−1
2 (N2(ηn, σn,Fd))

converges to zero as n→ ∞. By assumption,
∫ δn
0
ψ−1
2 (N(ǫ, σn,Fd)dǫ converges to zero. Thus,

lim
δn→0

{

∫ δn

0

ψ−1
2 (N(ǫ, σn,Fd)dǫ + δnψ

−1
2 (N2(ηn, σn,Fd))

}

= 0.

This proves that

E

(

sup
{f :σn(f)≤δn}

| Zn(f) |
)

→ 0.

Thus, if σn(Q̄
∗
n − Q̄) → 0 in probability, then Zn(Q̄

∗
n − Q̄) → 0 in probability. This proves the following theorem.

Theorem 2 Consider the TMLE Ψ(Q̄∗
n) for the statistical estimand Ψ(Pn0 ) = 1/n

∑n
i=1{Q̄0(1,Wi)− Q̄0(0,Wi)} defined

above for a trial with complete (i.e. independent) randomization. Let Pn0 f represents a conditional expectation of a

function f of On, given Wn. This conditional expectation is thus still random through Wn. Let F be a set of multivariate

real valued functions so that Q̄∗
n is an element of F with probability 1. Define

Zn(Q̄) =
1√
n

n
∑

i=1

ICi(Q̄, Q̄0, g0),

where

ICi(Q̄, Q̄0, g0) ≡ D∗(Q̄, g0)(Oi)− Pn0 D
∗(Q̄, g0)

D∗(Q̄, g0)(Oi) =

(

I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)

(Yi − Q̄(Ai,Wi)).

We make the following assumptions.
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Uniform bound: Assume supQ̄∈F supO | D∗(Q̄, g0) |< M <∞, where the second supremum is over a set that contains

the support of each Oi.

Convergence of variances: Assume that for a specified {σ2
0(Q̄) : Q̄ ∈ F}, for any Q̄ ∈ F ,

1
n

∑n
i=1 P

n
0 ICi(Q̄, Q̄0, g0)

2 → σ2
0(Q̄) a.s (i.e, for almost every (Wn, n ≥ 1)).

Convergence of Q̄∗
n to some limit: For any Q̄1, Q̄2 ∈ F , we define

σ2
n(Q̄1 − Q̄2) =

1

n

n
∑

i=1

Pn0
{

ICi(Q̄1, Q̄0, g0)− ICi(Q̄2, Q̄0, g0)
}2
,

where we note that the right-hand side indeed only depends on Q̄1, Q̄2 through its difference Q̄1 − Q̄2.

Assume that for a particular Q̄∗ ∈ F , σ2
n(Q̄

∗
n − Q̄∗) → 0 in probability as n→ ∞.

Entropy condition: Let Fd = {f1 − f2 : f1, f2 ∈ F}. Let N(ǫ, σn,Fd) be the covering number of the class Fd w.r.t

norm/dissimilarity ‖ f ‖= σn(f). Assume that the class F satisfies

lim
δn→0

∫ δn

0

√

logN(ǫ, σn,Fd)dǫ = 0

Asymptotic equicontinuity of process: Then,

Zn(Q̄
∗
n)− Zn(Q̄

∗) converges to zero in probability, as n→ ∞.

First order linear approximation: As a consequence,
√
n(ψ∗

n − ψ0) = Zn(Q̄
∗) + oP (1).

Asymptotic normality: In addition, Zn(Q̄
∗) converges to N(0, σ2

0(Q̄
∗)), so that

√
n(ψ∗

n − ψ0) converges in distribution to N(0, σ2
0(Q̄

∗)).

The asymptotic variance σ2
0(Q̄

∗) equals the limit of

σ2
0,n =

1

n

n
∑

i=1

Pn0

{

ICi(Q̄
∗, Q̄0, g0)

}2

. (3)

If Yi is a d-dimensional outcome, then application of the above theorem to each component of ψ∗
n yields the desired

asymptotic linearity for the d-dimensional ψ∗
n and thereby the asymptotic normality as well.

Appendix C.2: Conservative variance estimation

As before, we can obtain a conservative variance estimator, which does not rely on a consistent estimator of the

conditional mean function Q̄0(A,W ). The asymptotic variance of the standardized estimator in the design with complete

randomization can be expressed as

Σ0 = lim
n→∞

1

n

n
∑

i=1

Pn0
{

D∗(Q̄∗, g0)
}2 −

{

Pn0 D
∗(Q̄∗, g0)

}2

The latter term is zero when Q̄∗(A,W ) = Q̄0(A,W ):

Pn0 D
∗(Q̄∗, g0) =

(

Q̄0(1,Wi)− Q̄0(0,Wi)
)

−
(

Q̄∗(1,Wi)− Q̄∗(0,Wi)
)

Thus, the true variance Σ0 is always less than or equal to an upper bound Σu0 , where

Σu0 = lim
n→∞

1

n

n
∑

i=1

Pn0
{

D∗(Q̄∗, g0)
}2

We can consistently estimate the upper bound Σu0 with

Σ̂u =
1

n

n
∑

i=1

{

D∗(Q̄∗
n, g0)(Oi)

}2

=
4

n

n
∑

i=1

(

Yi − Q̄∗
n(Ai,Wi)

)2
.

where we have used that the treatment assignment mechanism g0(A) = P0(A) = 0.5 in a randomized trial.
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Appendix C.3: Comparison of asymptotic variances of the TMLEs in the independent design (i.e. under complete

randomization) and the adaptive pair-matched design

The above two theorems give us the following approximations for the TMLEs ψ∗
n,I under independent randomization and

ψ∗
n,M under adaptive pair-matching:

√
n(ψ∗

n,I − ψ0) =
1√
n

n
∑

i=1

{

D∗(Q̄, g0)(Oi)− Pn0 D
∗(Q̄, g0)

}

+ oP (1)

√

n/2(ψ∗
n,M − ψ0) =

1
√

n/2

n/2
∑

j=1

{

D̄∗(Q̄, g0)(Ōj)− Pn0 D̄
∗(Q̄, g0)

}

+ oP (1)

where

D̄∗(Q̄, g0)(Ōj) =
1

2

{

D∗(Q̄, g0)(Oj1) +D∗(Q̄, g0)(Oj2)

}

D∗(Q̄, g0)(Oi) =

(

I(Ai = 1)

g0(Ai)
− I(Ai = 0)

g0(Ai)

)

(

Yi − Q̄(Ai,Wi)
)

.

The corresponding asymptotic variances are

Σ0,I = lim
n→∞

1

n

n
∑

i=1

Pn0

[

D∗(Q̄, g0)
2

]

−
[

Pn0 D
∗(Q̄, g0)

]2

Σ0,M = lim
n→∞

1

n/2

n/2
∑

j=1

Pn0

[

D̄∗(Q̄∗, g0)
2

]

−
[

Pn0 D̄
∗(Q̄∗, g0)

]2

,

respectively. Expanding out the squared terms and simplifying, the asymptotic variance of the standardized estimator in

the independent design is

Σ0,I = lim
n→∞

1

n

n
∑

i=1

{

2E0

[

(

Yi − Q̄0(1,Wi)
)2
∣

∣

∣

∣

Ai = 1,Wn

]

+ 2E0

[

(

Yi − Q̄0(0,Wi)
)2
∣

∣

∣

∣

Ai = 0,Wn

]

+
[

Q̄0(1,Wi)− Q̄(1,Wi) + Q̄0(0,Wi)− Q̄(0,Wi)
]2
}

Likewise, the asymptotic variance of the standardized estimator in the adaptive design is

Σ0,M = lim
n→∞

1

2n

n
∑

i=1

{

2E0

[

(

Yi − Q̄0(1,Wi)
)2
∣

∣

∣

∣

Ai = 1,Wn

]

+ 2E0

[

(

Yi − Q̄0(0,Wi)
)2
∣

∣

∣

∣

Ai = 0,Wn

]

+
[

Q̄0(1,Wi)− Q̄(1,Wi) + Q̄0(0,Wi)− Q̄(0,Wi)
]2
}

− ρ0

= 0.5Σ0,I − ρ0

where ρ0 is the following pairwise product

ρ0 = lim
n→∞

1

n

n/2
∑

j=1

{

[

Q̄0(1,Wj1)− Q̄(1,Wj1) + Q̄0(0,Wj1)− Q̄(0,Wj1)
]

×

[

Q̄0(1,Wj2)− Q̄(1,Wj2) + Q̄0(0,Wj2)− Q̄(0,Wj2)
]

}

The proof is omitted here, but readily available upon request from the authors.

Thus, the asymptotic variance of the TMLE in the independent design is Σ0,I/n whereas the asymptotic variance of

the TMLE in the adaptive design is Σ0,M/(n/2) = Σ0,I/n− 2ρ0/n. When we match well on measured and unmeasured

factors, the product of the deviations between the true conditional means and the estimated means within matched pairs is

expected to be positive:

ρ0 ≥ 0
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Under this condition, the adaptive design will be more efficient than the completely randomized trial. As an example,

consider the unadjusted estimator and suppose we match perfectly on W , which is predictive of the outcome. Then the

relevant term is
[

Q̄0(1,Wj)− Q̄n(1) + Q̄0(0,Wj)− Q̄n(0)
]2
> 0

If we consistently estimate Q̄0(A,W ), then the cross-term ρ0 is zero and the efficiency bound of the two designs is the

same:

Σ0,M/(n/2) = Σ0,I/n

In finite samples, we also expect there to be an efficiency gain from pair-matching. Comparing the proposed variance

estimators, we have

Σ̂uM =
1

n/2

n/2
∑

j=1

[

(

Yj1 − Q̄∗
n(1,Wj1)

)

−
(

Yj2 − Q̄∗
n(0,Wj2)

)

]2

=
1

n/2

n/2
∑

j=1

[

(

Yj1 − Q̄∗
n(1,Wj1)

)2
+
(

Yj2 − Q̄∗
n(0,Wj2)

)2

− 2
(

Yj1 − Q̄∗
n(1,Wj1)

)(

Yj2 − Q̄∗
n(0,Wj2)

)

]

Σ̂uI =
4

n

n
∑

i=1

(Yi − Q̄∗
n(Ai,Wi))

2

=
4

n

n/2
∑

j=1

(

Yj1 − Q̄∗
n(1,Wj1)

)2
+
(

Yj2 − Q̄∗
n(1,Wj2)

)2

Then, the difference is

Σ̂uI
n

− Σ̂uM
n/2

=
2

(n/2)2

n/2
∑

j=1

(

Yj1 − Q̄∗
n(1,Wj1)

)(

Yj2 − Q̄∗
n(0,Wj2)

)

If we succeed in matching pairs on predictive covariates W , then the sample covariance of residuals within matched

pairs will be positive. Under this condition (expected to hold in practice), adaptive pair-matching will yield more precise

estimates in finite samples.

Appendix D: Simulation results under the null

The following tables give the simulation results when there is no effect. The null scenario was simulated by randomly

assigning the intervention, but generating the outcomes under the control (A = 0). Recall Simulation A represents a rare

outcome and Simulation B represents a more common outcome.

References

[1] van der Vaart A, Wellner J. Weak convergence and empirical processes. Springer: Berlin Heidelberg New York, 1996.

[2] van der Laan M, Balzer L, Petersen M. Adaptive Matching in Randomized Trials and Observational Studies. Journal

of Statistical Research 2012; 46(2):113–156.

Statist. Med. 0000, 00 1–11 Copyright c© 0000 John Wiley & Sons, Ltd. www.sim.org 11
Prepared using simauth.cls



Statistics
in Medicine

Table 1. For Simulation A (rare outcome) and Simulation B (more common outcome) with no treatment effect, summary

of the estimator performance over 5,000 simulations of n = 32 communities. The rows indicate the estimator and the

columns the performance metric.

Biasa Std. Dev.b Std. Errorc t-statd CI Cov.e αf

Simulation A No Matching

Unadj. 0.00015 0.0061 0.0060 0.0 95 5

TMLE linear for Z 0.00001 0.0033 0.0032 0.0 94 6

TMLE logit for Z 0.00003 0.0032 0.0030 0.0 94 6

TMLE linear for (W,Z) 0.00003 0.0030 0.0026 0.0 91 9

TMLE logit for (W,Z) 0.00005 0.0029 0.0024 0.0 90 10

Adaptive Pair-Matching

Unadj. 0.00002 0.0034 0.0034 0.0 96 4

TMLE linear for Z 0.00005 0.0028 0.0028 0.0 95 5

TMLE logit for Z 0.00005 0.0027 0.0027 0.0 95 5

TMLE linear for (W,Z) 0.00005 0.0027 0.0026 0.0 94 6

TMLE logit for (W,Z) 0.00005 0.0027 0.0025 0.0 94 6

Simulation B No Matching

Unadj. 0.00017 0.0058 0.0057 0.0 95 5

TMLE linear for Z 0.00006 0.0035 0.0033 0.0 94 6

TMLE logit for Z 0.00007 0.0036 0.0035 0.0 94 6

TMLE linear for (W,Z) 0.00007 0.0031 0.0027 0.0 91 9

TMLE logit for (W,Z) 0.00007 0.0035 0.0030 0.0 91 9

Adaptive Pair-Matching

Unadj. 0.00002 0.0034 0.0033 0.0 95 5

TMLE linear for Z 0.00006 0.0029 0.0028 0.0 95 5

TMLE logit for Z 0.00005 0.0030 0.0029 0.0 95 5

TMLE linear for (W,Z) 0.00004 0.0028 0.0026 0.0 94 6

TMLE logit for (W,Z) 0.00004 0.0030 0.0028 0.0 94 6
a average deviation between the point estimate and sample-specific true value
b square root of the variance of the point estimates
c average standard error estimate based on the influence curve
d average value of the test statistic (point estimate divided by standard error estimate)
e proportion of intervals containing the true parameter value (in percent)
f proportion of studies falsely rejecting the null hypothesis (in percent)
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