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ABSTRACT  Biparental demographic models violate lin-
earity. However, in their early “dilute” stages before linited
environment resources bring need for competitive selection,
first-degree-homogeneous relations obtain. For them, a repro-
ductive-value function of the initial coordinates is defined to
re:::ritulate their contribution to the asymptotically dominating
mode of exponential growth: now the generalized Fisher re-
productive value of one sex is altered by relative numbers of the
other sex. The new reproductive-value function is also derived
for general systems of homogeneous-first-degree differential
and difference equations, and is shown to grow from the start
at the asymptotic growth rate.

Review of general linear case

Samuelson (1) provided a comprehensive review of the concept
of reproductive value defined by Fisher (2). For the discrete-
time Leslie (3) matrix version and for the Sharpe-Lotka (4)
integral-equation version of linear demographic systems, re-
productive value summarizes the relative quantitative contri-
bution to the system’s long-run growth of each initial-condition
element: thus, it is the normalizable dominant characteristic
(row) eigenvector of the Leslie demographic matrix and the
integral-equation equivalent in the continuous-time case.

Generalizing from the one-sex-dominant models of con-
ventional Lotka demography, Samuelson showed how to define
and calculate the reproductive-value vector, [v1,05] = v, fora
linear biparental system like that discussed by Kendall (5) or
Goodman (6):

i=Ax 1]
_ [d’h/dt] - [71!31 =0 7B ] [xl]
dxo/dt Y281 Y2B2 — d2] Lxo
i+ 7v2=1 vB:i>0
x(t) =~ {vx(0)} xert
detfA = M]=(p=NA2—\), 02p>
Ax=px, [1 llx=1
vVA=vp, vx=1

vx(t) = et vx(0).

Bold-face type in the equations above denotes matrices and
vectors. The above relations recapitulate Samuelson (ref. 1,
equations 12-13).

First-degree-homogeneous biparental case

It is proposed here to show how Fisher’s concept of reproductive
value can be properly generalized for the manageable bipa-
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rental nonlinear models of the type discussed by Kendall (5),
Goodman (6), Pollard (7), Yellin and Samuelson (8), and others.
Instead of the linear system in 1, we encounter

%1 = v1B[x1,x2] — 01x) (2]
%o = v2B[x),x9] — dox2
Y1+ v2=1 7,6, >0.

Here, as before, §; is the force of mortality for the ith category. -
The sex ratio at birth is a constant, v;/v2 % 1. What is new is
the jointly interacting biparental birth function, B[x;,x2], which
is biologically nonlinear: with zero males, births are zero; with
zero females, births are zero; as one increases the number of one
sex alone, the number of the other sex held constant, one en-
counters the law of diminishing returns in births; however, if
one doubles both sexes together, births double so long as the
environment’s limitation of resources is not yet binding on the
dilute system.

This means that B[x;,x5] is a homogeneous-first-degree,
concave, monotone-increasing function:

B[x1,x2] = N"1B[Axy, Axo] = x1f[x2/21] 2 0 [3]
0=B[x,0]= B0xs); £[v]>0>f[v], v>o0.

What is not clear is whether, for x; frozen, a large enough in-
crease in z; can raise the rate of birth above any preassigned
level, as with the “geometric-mean” example

B[x),x3] = ax;%xe!™, 0<a<l [4.1]

lim B[l,xg] = ®» = lim B[x,1}
x> x)—®
or whether, as would actually seem more realistic, limiting the
number of one sex must limit the level of possible rate of births
no matter how numerous is the other sex—as with the “har-
monic-mean” example:

x1X2

—mr g<a<l  [42]
ax; + (1 — a)xg

Blx1,x2] =a

lim B[l,xg] =a(l — a)"! < © >aa~!= lim B[x),1]

X3~ ® x>
Still other examples are
B[x1,x2] = @ Min(x,/c1,x2/ca] (4.3]
B[xl,le = a[axl" + (l - a)xz"]l/", 0#606<1. [4.4]

The asymptotic solution of 2’s nonlinear biparental model
has the essential exponential-mode properties of the Lotka-
Fisher model, or of 1’s 2-parent linear model.

More precisely, for |8; — 82| and |1 — 2| not too large (or,

* This is the second paper of a pair; the first paper is ref. 1.
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in 4.1’s case where B[1,x5] and B[x},1] are unbounded, for any
positive s and +s), and for initial [x;°] positive:

lim f =pZ0, (=12, x0)>0  [51]
t—>

. x,(t) — 2 _
=%>0, =1 5.2
ey R > 152]

2
lim E‘;fﬂ = p[x1%,%2°] = A~ 1o[Ax)0, Ax20] [5.3]

t—o  ert
in which (p; X),X2) are the unique positive real roots of
p =viflxa/x1] — &) [6.1]
= yof[xe/x1](x2/x1)~" — b2 [6.2]
x+x2=1 x>0 [6.3]

and in which v[x,%x4°)] is a determinate generalized repro-
ductive-value function calculable from the existent solutions
to 2, [X;[t; x(0)], and 5.3’s limit.

[Remark: As shown by Yellin and Samuelson (ref. 8, table 1,
sections 9-11) and by Samuelson (ref. 9, p. 110), there need not
always be an exponential solution to a homogeneous demo-

graphic system: instead, the sex ratio may diverge to infinity—

as for example when f{ ] is derived from 4.2 and the death rate
of one of the sexes is very much larger than the other, so that
the sex ratio goes to zero or infinity as both groups hasten to

extinction. ]
The reader will note the complete parallelism of the non-
linear relations of 5-6 to the already established linear repro-

ductive-value relations given in 1.

The reproductive-value function

It remains to investigate the properties of 5.3’s reproductive-
value function, v[x;%x,°], which is the desired nonlinear gen-
eralization of Fisher’s linear reproductive-value concept, v1x,°

+ Uoxg + ...
Actually, it can be shown from the homogeneity property
of B[x,x2] that v[x,%x2%] must have a similar first-degree-

homogeneous property
oA Ax20] = Ao[2,020] = 0, A >0 (7.1]

o 1= 00[x,%%0/0x,°>0, (i=12), [x;,°>0
[7.2]
22%05[x,%,15°]

= x1%(21%x2°]
o[x1%22°]

v[x1%x20]

. [7.3]

Now that we have our generalized reproductive-value-

function, we shall find that it lacks some of the properties that
Fisher was able to find in the linear case of v[x,%x5°] = v;x,°
+ v2x20. No longer can Fisher speak of the reproductive value
of one segment of the population without regard to its pleni-
tude relative to other segments. How much an extra female
is “worth” to Australia in 1911 cannot be put in a table like that
of Fisher (ref. 2, figure 2, p. 28) without regard to how many
males there are in Australia—as Fisher implicitly realizes
elsewhere in his discussion. On the other hand, he seems to nod
in inferring (ref. 2, p. 159):

If we consider the aggregate of an entire generation of such off-
spring [ready to reproduce, which would seem to be (x;2,x29) in
our modelling] it is clear that the total reproductive value of the:
males in this group is exactly equal to the total value of all females,
because each sex must supply half the ancestry of all future gener-
ations of the species.

What can this mean? That half of v[x,%x5°] in some sense
belongs to each sex? The least ambiguous measure of each sex’s
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separate total reproductive value would seem to be given by
1;990(x1%,250)/ dx;° from 7.3. For each of these to be always
one-half because every diploid birth has both a mother and
father, this last prosaic biological fact would have to imply that
0[x,%x49] is of the equally weighted geometric-mean type

?
o[x1%x2%] = c[x1%,0]1/2 (8]

This, however, is quite invalid—as any experimentation with
actual admissible instances of B[x},x2] in 2 will confirm. Indeed
I have not yet been able to find even one admissible B[x},xg]

function for which 8 obtains!
What is a different and more trivial matter is that, under the

singular assumption of complete symmetry,
Blx),x2] = Blxg,x1], vi=v2=1le, 1 =0d2=06 [9]

it is obvious that v[x,%x, 9] is then a symmetric function, with
each sex of “equal reproductive value” when the sex ratio is
balanced (and only then):

o120 = 0[x20,2,°] (10.1]
21%1[%19,22°] = 25%3[x,%,%%] = Yo[2,%,20] © [10.2]

when
x1° = x2°. [10.3]

The reproductive value of each member of a sex, as mea-
sured by dv[x%x20]/0x;%, will rise as it becomes scarce and
x;9/x;0 falls; but one cannot predict in advance how the total
reproductive value of all members of that sex moves when x;°/
x;0 falls, because x;%(dv[x,%x2%]/9x;°) may rise or fall in the
general case. . )

A counterexample

To grasp the meaning of these corrections to the conventional
view, begin with the case that would seem most favorable to the
Fisher quotation—the case of complete symmetry and 4.1’s
geometric mean:

) = B(x1x2)'/2 — ox,
£g = B(x1x2)V/2 — bx; B,6>0. [11]

For x,° = 0, obviously the solution is given by [x;(t)] =
[0,x5% ~%t]. However, as soon as we move ever so little from
either axis, making both [x;°] positive, the system’s asymptotic
growth rate becomes the faster growth rate exp[(8 — 8)t]. As
will be seen below, the exact solution can be written as

x(t) = o[x,%x%le G911 + €(t)} (12.1]
= [Yax1® + Ygxo® + Yo(x:%250)1/2]e B-H{1 + €(t)}

tlim €(t) = 0 for all positive (x,°x.0). [12.2]
From 12.1 we see that even in this case most favorable to
Fisher’s purported equal sharing of reproductive value among
the two (needed!) sexes, it is actually the case that the scarcest
sex has the least total reproductive value.

To verify 12 and handle more realistic cases of nonvanishing
|¥1 — 72| and |5, — 82|, we may analyze the one nonlinear case
shown by Kendall (ref. 5, equation 72) to be exactly solvable.
Put 4.1's symmetric geometric mean into 2 to get

x‘i = 7‘23(x1x2)1/2 - 6{x{’ (i = 152) [13]
M+v2=1 v,6,8>0; [x;9>0.
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Transform the [%;] to new variables [y;]:
/2=y, 2l 2=y 2=y 2=yl >0 [14.1]

x‘l = 2!/4!)0 (‘ = 1’2)' [14'2]

Then 13 is transformed into the exactly linear system, with the
following properties

] _ . _[-%6 7B 1
Y= [!?2] = A= ['yzﬁ -1/262] [Zz] 151)
det[A — M) = A2 + Y(3, + §)A
+ Yy(6102 — 4v1726?) [15.2]
(b=NAz=N), 0Zp>x

A[?‘]= [?‘]; 720, G1+72=1 [153
go] =7 o 7 71+ 72 (15.3]
[v102]A = [0y vo]p, ;20 [15.4]

01Y1 + vayp =0y =1 [15.5]

wi(t) = [0191° + 02y°lGie?t -
X {1 + ¢ exp[(A2 — p)t]} [15.6]

x(t) = yi(t)? = [022x1° + 02%x2° + 20109(x1%20)1/ 2]y, 220!
X {1 + 2¢; exp[(Az — p)t]
+ ciZexp[2(Ae — O)t]}, (1=12). [15.7]
Hence, for our nonlinear system 13, the correct reproductive

value is calculated to be _
o[x1%22%) = (01)%1:° + (022)x2° + 20109(x1%%:%)/2 [16.1]
ov[x,%%59]/0x;,0 = (v;)2 + 0102(xjo/x¢0], j#=i [16.2]

x,{00[x,%x20)/ dx,} = (v;)%x,°

+ 0109(x1%20)1/2,  a rising function of x,°. [16.3]

Warning: For an %, = 0, the ¢2** growth mode becomes ir-
relevant: so it is dangerous to go all the way to the limit x,° —
0, for the reason that the Kendall transformation of variables
in 14 fails on either x; axis. Always in 5 and 8 it is important to
avoid cases where either x; vanishes and where exp(—é;t) so-
lutions supercede the exponential growth modes of 6.

Invariant growth rate of reproductive value

Because we know from the established linear analysis that vy(0)
in 15.6 grows from the beginning like e, we know that
Zfv;x(t)!/2 has the invariant growth rate of p. Its square has
the invariant growth of 2p. So 16’s reproductive-value function
v[x1%,229] does grow from the beginning at the nonlinear sys-
tem’s asymptotic growth rate of 2p. But, is this important Fisher
property valid only for nonlinear systems that are merely a
disguised transformation of a linear system in other variables—
as in 13-14, which is admittedly a special, Santa Claus, case?
Fortunately, we can give the following proof that the non-
linear system's reproductive-value function, v[x1(t)x2(t)],
defined by 5, has Fisher’s invariant growth rate property.
We have

2
Lx(t + 1)
lim 2
7> erT
= p[x)(t),x2(t)], by 5.3’s definition [17.1]
2
; x,(t + 1')
oot Yo L A
L t+h£1— e prgra £ by substitution
= ertp[x,(0),x2(0)] QE.D. [17.2]
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Thus, for the most general nonlinear system that approaches
asymptotically to a balanced state of exponential growth, we
can define a reproductive-value function with the usual Fisher
properties. Indeed, there is nothing of black magic involved in
this invariant growth rate of the reproductive-value function
from the beginning: that property is implicit in its original
definition.

Generalizations

We have completed the task of properly defining a nonlinear
function of so-called reproductive value. There remains the task
of showing how this applies to any number of coordinates,
(%1, . ..,%p), n 2 2; and the task of showing how the concept
is defined for difference rather than differential equations.

Consider the alternative first-degree-homogeneous sys-
tems:

dx/dt = fix),... x,), (G=1,...,n)
= AUfAxy, .. Axa], A0 (18.1]

and
x(t + 1) =F'x)(t),... 2. ()], (G=1,...,n) [18.2]
= ATIF Ay (2), .. . Axa(2)], A > 0.

These can represent essentially the same system in the following
sense. Write down the solution of 18.1 at ¢ + 7 in terms of its
non-negative initial conditions at ¢, [x;(t)]:

x‘l(t + T) = X‘[T" xl(t)’ e »xn(t)]» (i = l’ e ,ﬂ)
= N"1Xr; Ax(t), ..., Axa(t)).

The indicated first-degree-homogeneity of 18.3’s solution fol-
lows from that of 18.1. Now set 7 = 1 in 18.3 to derive

(it + 1)=XY1; x(2),....x.(t), ({E=1,...,n)
[18.4]

It will now be obvious that 18.4 is identical in form and sub-
stance to 18.2: hence, it is seen that the differential-equationr
system 18.1 generates at equally spaced intervals of ¢ exactly
the same solution as 18.2 does.

The same exponential-growth mode will exist for 18.1 as for
18.2, [x%;)(e”) or [m](1 + 7)%

1+r=eﬂ’

(18.3]

(19.1]

and where the s are the positive solutions of the equivalent
alternative sets

p =log.(1 + 1)

pE=F ... %) LE=1 (19.2]
1

1+ r5=F%,... %], @=1,...,n). [19.3]

It is of course not necessary that there exists a solution in 19,
or that it be unique, or even that an existent unique solution be
“locally stable.” Thus, Yellin and Samuelson (ref. 8, table 1) give
examples of null solutions and of locally unstable solutions that
can obtain in feasible demographic models. In reducible ex-
amples—one such is the trivial case where #;/x; = %2/x2 =
p— 19 has an infinity of solutions; hence, there is a different
reproductive-value function for each x; or for any of an infinite
number of homogeneous-first-degree functions of x; and x!
Unfortunately, the standard Hardy—Weinberg case in genetics
possesses just such degeneracy.

It is shown by Solow and Samuelson (10), that, provided the
partial derivatives (F;*[xy, . . . ,x»]) are all positive numbers in
the non-negative orthant [x;] = 0, such unique solutions will
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exist. Indeed, if the off-diagonal elements of (F%[ ]) or of
(f4[ 1) are positive for [x;] = 0 and the diagonal efements are
bounded, that will suffice to guarantee a unique and stable
exponential growth mode, 3;(1 + 7).

The generalized reproductive-value function is now easily
defined as v[x;?, . . . ,x,°% in 20.2

D)) 40 G=1...m) [20]

li
ginelo x,(t)
; x;(t)
tani 117y =p[x,9...,5,9 [20.2]

= A"1lp[Axi0, ..., A, 9]

This completes the generalization. One should conclude with
a warning: Every environment has ultimately limited resources
that serve in the end to terminate the dilute first-degree-ho-
mogeneous stage of Malthus and von Neumann (11). In that
case, reproductive value is by definition zero because the initial
conditions [x}%, . . . ,x,°] wash out in the limit:

lim Xt; x9....x.%=x* (@(=1...n) [21]

t— o

In concluding, one must warn that the concept of repro-
ductive value has often been used in a loose way. There remains
the analytic task of auditing its claims, as for example in con-
nection with optimal harvesting and other problems. Unfor-
tunately, the homogeneity assumptions underlying dilute sys-
tems then become peculiarly vulnerable and the whole concept
of reproductive value must be handled with care.
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