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Materials and Methods 
Sample 

The study sample of 14,002 individuals included 10,621 individuals from 12 case-control 
studies of common disease and 3,381 individuals from two population samples (table S4).  Cases 
were selected from 12 common disease collections: coronary artery disease, metabolic 
syndrome, multiple sclerosis, osteoarthritis, rheumatoid arthritis, irritable bowel syndrome, 
epilepsy, Alzheimer’s disease, unipolar depression, bipolar disorder, schizophrenia and chronic 
obstructive pulmonary disease.  Population controls were included from two samples: CoLaus 
from Lausanne, Switzerland and LOLIPOP from London, UK, both having extensive 
cardiovascular trait measurements and the former including extensive psychiatric assessments.  
The two CEU and YRI trios sequenced at high depth by the 1000 Genomes Project (30) were 
also included.  In total, 14,204 unique samples and 143 randomly selected sample duplicates 
were prepared for sequencing.  The primary selection criteria applied to each study was the 
availability of at least 10 μg of DNA with a concentration at least 195 ng/μl from a primary 
blood sample. An overview of the samples selected from each collection is included below.  

CoLaus Study. A population-based study of 6,188 European white subjects aged 35-75 
years drawn from Lausanne Switzerland, through the CHUV University Hospital (31).  Subjects 
included in the current study include 1,774 participants in the follow-on study of psychiatric 
traits (PsyCoLaus) (32) and 772 extremes of several selected cardiovascular disease-associated 
traits.  There was an overlap of 460 subjects between these two selections. 

LOLIPOP Study. A population-based study of 21,915 subjects, primarily of Indian Asians 
and Northwestern Europeans aged 35–75 years, identified from the lists of 58 general 
practitioners in West London (33).  Subjects included in the current study include a random 
selection of 499 Indian Asians, 400 European whites selected for overlap with previous genome-
wide genotyping studies, 149 European whites selected as extremes from several cardiovascular 
disease-related traits and 285 subjects of other non-European ancestry.  

Metabolic Syndrome GEMS Study.  The GEMS Study of Metabolic Syndrome and 
related traits included two types of samples; families and a set of unrelated cases and controls.  
Families (3,384 individuals from 535 families) were recruited from six study sites located in 
Australia, Canada, Finland, Switzerland, Turkey and the United States.  Eligible families 
consisted of a minimum of two siblings (an affected sib-pair) with atherogenic dyslipidemia 
(ADL).   In the case-control arm, a set of approximately 1,000 cases with ADL and 1,000 
normolipidemic controls were recruited from the same GEMS sites. Details of the recruitment 
procedures, subject characteristics, and inclusion/exclusion criteria for both the family and case 
control studies have been previously described (34, 35). The current study includes 1,570 
unrelated cases and controls and 30 parent-offspring trios for assessing sequence data quality, 
selected from all sites except the US and Turkey. 

Coronary Artery Disease (CAD) MedStar Study. A premature CAD collection designed 
to investigate the genetics of plaque stability in acute coronary syndrome (ACS).  The full study 
is comprised of 452 ACS CAD cases, 491 non-ACS CAD cases, and 483 non-CAD controls 
(36).  Subjects were identified prospectively from the patient population of Cardiovascular 
Research Institute (MedStar/Washington Hospital Center).  Standard criteria were used to 
identify cases with myocardial infarction and cases diagnosed with clinically significant 
coronary atherosclerosis without myocardial infarction.  Subjects included in the current study 
include a selection of 609 ACS and non-ACS CAD cases. 
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Osteoarthritis GOGO Study. A large multicenter family-based study of 1,155 families 
from 5 United States and 2 United Kingdom sites with multiple joint osteoarthritis characterized 
both clinically and radiographically (37). The current study includes 836 cases. 

Irritable Bowel Syndrome Study. A population-based study of 678 cases and 539 controls 
from 3 recruitment sites in Canada and the United States.  Deeply phenotyped cases with a 
history of irritable bowel syndrome (IBS) for at least 6 months confirmed by a physician and 
according to the Rome II criteria and either a colonoscopy/barium enema with normal results 
supporting IBS diagnosis.  Controls were matched to IBS cases and had no previous IBS 
diagnosis.  The current study includes 317 cases. 

Genetics of Rheumatoid Arthritis (GORA) Study. Patients with rheumatoid arthritis 
were recruited from Sheffield, United Kingdom, as described previously (38). Cases (~1,000) 
were of Northern European descent and all fulfilled the 1987 American College of 
Rheumatology classification criteria.  A similar number of healthy controls were recruited. The 
current study includes 615 cases. 

Multiple Sclerosis geneMSA Study.  A study of 1,005 multiple sclerosis (MS) cases and 
1,012 matched controls primarily of European ancestry from three sites in the United States, the 
Netherlands and Switzerland (39).  The current study includes 673 cases. 

Multiple Sclerosis African American Study. A study of African American cases and 
controls with subjects recruited from 39 states (40, 41).  Cases were characterized through a 
systematic medical record review.  Controls were invited to participate in the study by the 
probands and constitute primarily non-consanguinous spouses or friends of MS patients.  All 
study participants were self-reported African-Americans and ancestry was documented based on 
genotyping results of 186 informative SNPs (42).  The current study included 340 cases and 260 
controls. 

Epilepsy HitDIP Study. A study of 719 cases and 687 controls recruited from Norway and 
Finland. All patients had a definite diagnosis of epilepsy according to International League 
Against Epilepsy (ILAE) definitions. Controls had no neuropsychiatric conditions (43).   The 
current study includes 185 Finnish cases. 

Epilepsy GenEpa Study.  A study of 318 cases and 348 controls from Swiss Epilepsy 
Centre, Zurich (43, 44). All patients had a definite diagnosis of epilepsy according to ILAE 
definitions. Controls had no neuropsychiatric condition.  The current study includes 125 cases. 

Alzheimer’s Disease genADA Study.  Study includes individuals with Alzheimer’s disease 
(AD) diagnosed by the National Institute of Neurological and Communicative Diseases and 
Stroke/ Alzheimer’s Disease and Related Disorders Association criteria.  Subjects were recruited 
from nine memory referral clinics in Canada (45).  The current study includes 705 cases. 

Unipolar Depression Study.  A study of 1,000 cases recruited from three ascertainment 
sites in Southern Germany (Munich, Augsburg and Ingolstadt) and 1,029 controls ascertained by 
the Max Plank Institute of Psychiatry in Munich. Cases diagnosed with recurrent major 
depressive disorder and controls were age and gender-matched non-affected controls (46). The 
current study includes 775 cases. 

Schizophrenia Study. A study of approximately 1,600 cases and 850 controls collected 
from four sites in Aberdeen, UK, Greenock, UK, Munich, Germany and Quebec City, Canada.  
Cases were diagnosed with schizophrenia according to DSM-IV or ICD-10 criteria and healthy 
volunteers were randomly selected from the general population (47). The current study includes 
1,109 cases. 
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Bipolar Disorder Study.  A study of 965 bipolar cases and 933 controls from a multicenter 
study subjects of European ancestry from three different sites the Centre for Addiction and 
Mental Health in Toronto, Canada, the Institute of Psychiatry in London, UK and the University 
of Dundee, UK.  Each case was assessed when euthymic and was diagnosed (lifetime) with the 
DSM-IV/ICD-10 bipolar I or bipolar II disorder (47).  The current study includes 786 cases. 

Chronic Obstructive Pulmonary Disease ECLIPSE Study. ECLIPSE (Evaluation of 
COPD Longitudinally to Identify Predictive Surrogate End-points) is a three-year non-
interventional longitudinal study being conducted at 46 centers in 12 countries and is comprised 
of clinically relevant COPD cases with Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) stage 11_IV COPD with a number of smoking and non-smoking and non-disease 
controls   (48). The current study includes 1,002 cases from ten countries.  Samples from the 
New Zealand site were excluded. 

COPD HitDIP Study.  A study of approximately 1,000 cases and 1,000 controls from 
Bergen, Norway. Cases consist of α1-antitrypsin deficiency-negative individuals with moderate 
to severe COPD according to GOLD criteria. (49).  The current study includes 782 cases. 
 
Informed consent 

All study participants in the component studies provided written informed consent for the 
use of their DNA in genetic studies.  A careful review was conducted to verify that the consents 
were consistent with the activities of this study.  In selected instances further Institutional 
Review Board approval was sought and obtained where the appropriateness of the informed 
consent for the current study was not clear. 
 
Self-reported ancestry information 

We assigned each sampled individual to one of four ancestry groups: African-American (N 
= 594), European (N = 12,514), Southern Asian (N = 566, mostly from India) and other (N = 
327) based of self-reported ancestry.  Europe was further subdivided into eight geographic 
regions.  These groupings do not reflect discrete structure in the data, rather the practical need to 
create sub-groups with reasonable sample sizes for more detailed analyses.  
 

The demographic information available was variable across subjects.  The most complete 
information contained self-identified ethnicity, country of birth and first language for the subject, 
two parents and four grandparents.  Based on this information, we first attributed a best-guess 
geographic label to each of the family members based on the following rules:  1) missing data 
was ignored; 2) if ethnicity conflicted with birthplace or first language data, only ethnicity was 
considered; 3) if birthplace and first language disagreed, a higher level container label was 
chosen (e.g. an individual who was born in France but reported his first language to be 
Norwegian was labeled European); and 4) white individuals born in the US or Canada were 
attributed according to the first language information alone, if other than English.  The 
geographic label for a sampled individual was then based upon the labels attributed to 1) the four 
grandparents, 2) two grandparents and one parent, 3) the two parents, or 4) the individual, based 
upon data availability. Conflicting labels of ancestors resulted in an attribution to a higher level 
label.  

We divided Europe into geographic groups based on the UN geo-scheme for Europe, which 
has the four regions UN Northern, UN Western, UN Southern and UN Eastern Europe. We then 
further subdivided the regions with more than 500 individuals sampled (all but UN Eastern 
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Europe). UN Northern Europe was split into North-Western Europe (Great Britain & Ireland) 
and Northern Europe, which includes all other UN Northern countries but Finland. The Finnish 
population is known to be unique in its genetic diversity due to a strong, recent population 
bottleneck (23) and was thus treated as an independent unit. UN Western Europe was split into 
Western Europe (Belgium, France, Luxembourg, and the Netherlands) and Central Europe 
(Austria, Germany, and Switzerland). Finally, UN Southern Europe was split into South-Western 
Europe (Spain, Portugal, and Andorra) and South-Eastern Europe (all others). See table S10 for 
the European regions considered and the number of samples per group.  
 
Target genes 

The overriding objective of the experiment was to characterize a selection of target genes of 
interest to GlaxoSmithKline and conduct genotype-phenotype association analysis to identify 
potential drug repositioning opportunities (50, 51).  Genes were selected from drug target genes 
across the pipeline, and for scale and feasibility reasons, was limited to 202 genes.  The selected 
genes included 12 genes encoding targets of currently marketed drugs (Phase IV), 44 genes 
encoding targets of drugs which had been terminated after administration to humans (Phases I-
III), and 76 genes encoding targets of drugs under active clinical development (Phases I-III). 
Drugs known to target multiple genes were omitted. In addition, 70 genes encoding targets of 
interest for pre-clinical development were included.  The names and sequence characteristics of 
the genes are presented in table S1.  The non-overlapping target regions are provided in database 
S1. 

We compared several characteristics of the 202 genes selected in this study to the rest of the 
protein coding genome defined by GENCODE release 6 (52).  There were 20,593 total protein 
coding GENCODE genes and 20,369 that overlapped with Ensembl Genes version 61 in 
GRCh37.p2.  Of those, there were Gene Ontology terms (53) available for 20,340 genes 
downloaded from Ensembl BioMart on February 2, 2011 with a median length of 1,434 bp.  The 
genes selected for this study had significantly longer coding regions than the rest of the coding 
genome, with medians of 1,756 and 1,434 bp, respectively (Wilcoxon p = 7.2×10-5).   

The genes in this study differed from the rest of those in the genome in several common 
Gene Ontology terms (table S2).  Significant terms were selected that were present in at least 5% 
of genes, either in GENCODE overall or within the study genes, and the differences in 
frequencies were statistically significant (p-value < 0.01 here).  There were 16 cellular 
component terms that differentiated the set of genes under study, including substantial 
enrichment for proteins locating to the external side of the plasma membrane, membrane raft, 
integral to the plasma and postsynaptic membranes (all with odds ratio [OR] > 10).  The study 
genes were significantly enriched for 27 different biological processes, including positive 
regulation of peptidyl-tyrosine phosphorylation, elevation of cytosolic calcium ion concentration 
and chemotaxis (OR > 15).  There were 12 molecular functions that differed significantly 
between the two gene sets, including enrichment for G-protein coupled receptor activity, ion 
channel activity, receptor activity and cytokine activity (OR > 6) and a near absence of nucleic 
acid binding genes (OR = 0.08).  These characteristics (table S2) that differentiate the genes in 
this study from the genome overall are expected for genes encoding drug targets. 

Comparison of nonsynonymous:synonymous ratios with the protein-coding genome.  
Analysis of the number of sites at which sequenced subjects carried non-reference 
nonsynonymous (NS) alleles were fewer than expected based on projections from the 1000 
Genomes Project pilot (30), as described in the main text.  To determine if this could have been 
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due to experimental differences in the studies or differences in the rates of NS variants in the 
selected drug target genes, we assessed the ratio of nonsynonymous:synonymous (NS:S) variant 
alleles carried by each CEU subject using the published genotypes from the low coverage 
genome-wide 1000 Genomes Project sequence data, 
CEU.low_coverage.2010_09.genotypes.vcf.gz, accessed from ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/paper_data_sets/a_map_of_human_variation/low
_coverage/snps on March 15, 2011.  Annotation of NS and S variants was obtained from 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/working/20100511_snp_annotation 
on March 15, 2011.   

The results, shown in fig. S9, demonstrate that NS:S differs dramatically between the drug 
target genes in this study compared to the rest of the coding genome.  To compare how different 
these genes are from other genes associated with human health and disease, we repeated this 
analysis using the genes reported from genome-wide association studies from the NHGRI 
Catalog of Genome-wide Association Studies (N = 3,736) (22), accessed on March 18, 2011, 
genes included in OMIM (N = 1,895), prepared as described below, and genes involved in drug 
absorption, distribution, metabolism and excretion (ADME; see http://www.pharmaadme.org for 
the gene listing; N = 299).  We similarly found lower ratios in these selected genes, though not to 
the extent observed amongst the selected drug target genes. 
 
DNA sequencing 

DNA libraries were prepared from each sample by fragmenting 3 μg of genomic DNA to 
around 200 bp, followed by the addition of an 8 bp index sequence to each end to uniquely 
identify each sample and quantified in preparation for combining into 48-sample pools.  Coding 
and noncoding exon boundaries were obtained via an Ensembl BioMart query of human genes 
against NCBI genome build 36.3.  Fifty bases of flanking sequence were added, covering a total 
of 863,883 bases.  The target gene regions were enriched for sequencing using a custom Roche 
(Madison, Wisconsin, USA) Nimblegen HD2.1M sequence capture array.  Amplification of the 
eluted libraries was carried out with 12 PCR cycles.  Loading volumes were determined by 
qPCR.  Paired end sequencing was conducted for each 48-sample indexed pool on a single 
Illumina (San Diego, CA, USA) Genome Analyzer 2x lane.  Over 93% of target bases were 
successfully sequenced in at least half of the study samples.  The median sequencing depth was 
27×.   
 
SNP calling 

Paired-end short reads were aligned with SOAP (54) and variants were called using 
SOAPsnp (55).  Candidate SNV sites were identified for each sample where a genotype 
including non-reference allele was called with a minimum sequencing depth of four, a minimum 
consensus quality of 20 and no other SNV satisfying these criteria located within four base pairs 
in the same sample.  Candidate SNVs were aggregated across all sequenced samples and 
consensus genotypes were called at these bases on each sample that had a minimum depth of 
seven and a minimum consensus quality of 20.  There were a total of 50,432 such candidate 
variant sites identified.  Additionally, variants were excluded if 1) singleton heterozygote 
variants had less than ten reads (N = 1,158), 2) fewer than 50% of sequenced subjects yielded a 
successful genotype (N = 1,373), or 3) duplicate genotype discordance was greater than 2% (N = 
226).  Samples were excluded from analysis if 1) their average sequencing depth was less than 
10, 2) sequence-based genotypes were more than 15% discordant with genome-wide panel 
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genotypes (possible for 9,346 samples that had previous genotype data available to exclude 
possible sample mix-ups) or 3) the sample was sequenced multiple times and had lower average 
sequencing depth.   

 
Missing genotype rates 

Overall, missingness increased with allele frequency.  Common variants (MAF > 0.05) had 
a median missing genotype rate of 2.1% compared to variants with MAF ≤ 0.001 with median 
missing rates less than 0.7%.  As expected, we found a strong relationship between the distance 
of a sequenced base from the end of the target region and the subsequent depth, quality and 
missing genotype rates, as illustrated in fig. S10.  Average sequencing depth is at its greatest 
approximately 100 bases from the end of the target region, and hence will generally have higher 
average genotype data quality and lower missing genotype rates.  Hence it is more likely that 
rare variants will be missed (false negative) near the exon boundaries (50 bases from target start) 
than those that are further interior to the exon. 
 
Transition:transversion ratios 

The ratio of SNVs caused by transitions to transversions provides a qualitative assessment 
of the false positive rate as transition mutations are more than twice as common as transversions, 
whereas the two are equally likely as a result of sequencing errors.  The transition:transversion 
ratios in our data are shown in table S11 for all variants, singletons, doubletons and a subset of 
the highest quality variants (MAF > 0.1% and missing less than 10% of genotype calls).  The 
ratios are shown separately for NS, S, UTR and intronic SNVs as the expectations can differ 
markedly between variants of different types, particularly for S SNVs.  Overall, the ratios are 
consistent with a high sequence data quality, though they are noticeably lower for singletons 
compared to doubletons and the highest quality variants. 
 
Proximity to known insertions and deletions  

The presence of insertions or deletions (indels) can result in incorrectly calling SNVs with 
calling algorithms that do not simultaneously carry out local realignments around known or 
suspected indels, as is the case for SOAPsnp in this study.  We assessed the impact of this on 
variant quality of SNVs located around indels reported by the recent whole-genome sequencing 
of 179 individuals by the 1000 Genomes Project (30).  The distance of each SNV to the nearest 
indel was calculated, where a distance of zero was given for variants located at or between the 
two reference bases spanning known indels, or the number of bases from those flanking 
positions.   

Of 245 indels reported by the 1000 Genomes Project located within target regions, 206 
included one or more SNVs located within 20 bases.  There was a substantial excess of SNVs 
located within indel regions, a total of 150 SNVs within 106 unique indels, compared to 
surrounding SNVs (fig. S11).  The majority of these are located within the UTR (96) and intronic 
(46) compared to coding (5) regions owing to the dearth of common coding indels.  The average 
depth, quality and duplicate concordance of SNVs called within or near indels were significantly 
lower than those more distant.  This pattern was noticeable for SNVs up to ten bases away.  
Similarly, transition:transversion ratios were significantly lower for the 267 SNVs within five 
bases of known indels, but indistinguishable for SNVs more distant.  These 267 SNVs represent 
less than 1% of all variants observed, and only 0.2% (15) of NS SNVs.  Although these results 
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emphasize the value of local realignment around known or suspected indels for genotype calling, 
they would have a minimal impact on the inferences of this study. 

 
Determination of sequencing accuracy 

Duplicate concordance. DNA samples from approximately one percent of subjects 
included in this study were randomly selected to be sequenced in duplicate.  Duplicate samples 
were placed on separate microtiter plates and subsequently sequenced in separate indexed pools.  
We evaluated the duplicate sequence of 130 samples that passed subject-level quality control. 
We tabulated the number of discordant genotypes between duplicate pairs and estimated the 
overall and heterozygote discordance rates as well as the underlying error rates via maximum 
likelihood that gave rise to them (56).  Table S12 contains counts of concordant and discordant 
genotypes for all variable base positions and stratified by whether the variant is included in 
dbSNP (release 126).  Amongst singleton variants with genotypes called in both sample 
duplicates, 204 were observed to be heterozygous in both duplicates whereas 3 were 
heterozygous in only one.  This gives a singleton duplicate heterozygous discordance rate of 
0.015.  Corresponding estimates of genotype error rates, assuming a single-allele error model 
(i.e. excluding the possibility that a genotype homozygous for one allele could be called as 
homozygous for another allele) are presented in table S13.  The duplicate concordance reported 
here follows the exclusion of 226 SNVs with overall discordance rates >2%, which is only 
possible for variants with MAF >1% (at least 2% heterozygous calls).  Most excluded variants 
were quite common.  As a result, the error rate estimate for common variants is somewhat biased 
downward.  However, independent methods (see below) were applied to further characterize the 
variant calling and genotype data quality. 

1000 Genomes Project concordance. We included the CEU and YRI trios that were 
sequenced to high depth in pilot 2 of the 1000 Genomes Project (30) in this study to allow direct 
comparison of variants and genotypes called in independent experiments.  We relied on the 
conservative genotype calls provided by the 1000 Genomes Project, that included only variants 
that passed stringent quality criteria, including Mendelian segregation, and had genotypes that 
were concordant between Broad and University of Michigan Genotype calls (30).  Of these, there 
were 658 and 854 variants with genotype calls from both studies in the CEU and YRI samples, 
respectively.  The genotype confusion table is shown in table S14.  Combining the results from 
the two trios, we estimated an overall discordance rate of 0.42% and a heterozygote discordance 
rate of 0.95%.  Although the overall discordance rate is strongly influenced by the frequencies of 
the variants available for comparison, the heterozygote discordance rate can be directly 
compared to the within-study duplicate heterozygote discordance rate described above.  We find 
the two to be nearly identical at 0.95% versus 0.92%, respectively.  No singleton discordances 
were observed. 

Mendel errors.  Thirty parent-offspring trios from the GEMS collection were sequenced.  
An analysis of genotype transmission patterns identified 37 Mendel errors involving 35 SNVs 
from 22 trios with one to three errors per pedigree.  32 of 37 errors involved homozygous parents 
and a heterozygous child.  The SNVs involved were predominantly common, 24 of 35 with MAF 
greater than 0.5%.  One singleton (of 21 carriers; 4.8% with exact 95% confidence interval = 
0.12 to 24%) and no doubleton (of 73 carriers) variants resulted in Mendel errors.  The overall 
genotyping error rate estimated from the Mendelian errors, from among 2,256 SNVs 
polymorphic in this sample of pedigrees, was estimated to be 0.06% using the method of 
Saunders et al. (57). 
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Capillary sequence concordance of singletons.  Data from two standard Sanger capillary 
sequencing experiments were available to assess the singleton false discovery rate in this study. 
In the first, 985 of the subjects included in this study were sequenced in eight overlapping genes 
― GPR119, GPBAR1, MLNR, PLA2G7, SIRT1, SIRT2, SIRT3 and SIRT6 ― covering 
approximately 10,000 coding and 24,000 noncoding bases.  All amplicons were sequenced in 
both directions under standard conditions and resolved on ABI 3730xl automated sequencing 
instruments.  Amplicons that passed quality control were analyzed to identify single base 
differences relative to the NCBI 36.3 reference sequence using PolyPhred v.5.04 and v.6.0.  
Genotype calls for all subjects at each coding variant position were manually reviewed.  
Sequencing, variant calling and manual review was carried out at Beckman Coulter Genomics 
(Danvers, MA). 

We observed 40 singleton SNVs amongst the 985 subjects within the overlapping 
sequenced regions from the SOAPsnp data in the current study.  When matched against the 
capillary sequencing results we found 35 of 40 SNVs were called heterozygous by both methods.  
All 22 of the coding singletons in the current study, subjected to manual review for genotype 
calling, were completely concordant between the two methods.  Of the five remaining singleton 
SNVs that were not identified by the automated genotype calling software from the capillary 
sequence data, three were not successfully sequenced, one was found to show a clear double 
peak corresponding to the heterozygous genotype called in this study and one was undetermined 
(the read on one strand appeared clearly heterozygous while the other strand homozygous).  
Thus, of 37 singleton genotypes available for independent validation none were found to 
disagree between the two forms of sequencing, including two singleton trialleles.   

In a second experiment specifically designed to assess the accuracy of the singleton calls 
from the short read sequence in this study, we randomly selected 125 singleton variants found 
amongst the 2,059 sequenced CoLaus subjects.  As a typical capillary sequencing reaction would 
capture approximately 450 bases, we further identified any additional singleton variants carried 
by CoLaus subjects located within 200 bases of the randomly selected singleton.  From among 
these variants we selected 225 singleton variants, sequencing three subjects for each singleton 
region.  This design provided two negative controls (homozygous for the reference allele) and 
one heterozygous carrier for each singleton variant.  Oligonucleotides were ordered from IDT 
(Integrated DNA Techologies, Coralville, Iowa).  PCRs were set up using ABI GeneAmp 
FastPCR Master Mix (Applied Biosystems, Foster City, CA), and DNA sequencing reactions 
were set up using ABI BigDye Terminator v3.1 (1:10).  Sequencing products were purified using 
CleanSEQ paramagnetic beads (Agencourt, Beverly, MA) automated on the Beckman FX 
(Beckman Coulter, Brea, CA) and sequenced on the ABI 3730xl DNA Analyzer.  Sequence 
chromatograms were edited and aligned to the human genomic reference sequences using 
Sequencher (GeneCodes, Ann Arbor, MI) (v4.9) software.  Secondary peak detection threshold 
was set as a minimum of 20 percent of major peak height to detect heterozygous peaks, and 
alleles were confirmed by automated and visual peak inspection for each polymorphism location.  

Of the 225 sequencing reactions attempted, 15 failed.  Of 210 successfully sequenced 
singleton carriers, six expected heterozygotes were found to be homozygous reference.  All eight 
triallelic variants called with SOAPsnp were validated.  Combining these results with those 
above from eight genes, capillary sequencing validated 240 out of 245 singletons identified in 
this study.  The estimated false discovery rate is 2.0% with a 95% confidence interval of 0.7% to 
4.7% (Pearson-Klopper exact method implemented from the binom package in R (58)).  There 
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were no instances of calling non-reference homozygotes at singleton positions in the non-carriers 
from this study. 

False negative rates.  There are several potential reasons why true variants and variant 
carriers may be missed, including low genotype call rates at a variant site or genotyping errors 
that may result from allele-specific amplification biases, errors in short read sequence alignment, 
or other biases against calling non-reference alleles inherent in the genotype calling method 
employed here.  The first source of false negatives is expected to disproportionately affect very 
rare variants, as there is a greater chance that they would be among the variants overlooked due 
to reduced genotype call rates.  We approached assessment of this source by examining the 
relationship between SNV rates (number of SNVs observed per bp of sequence) over a range of 
call rates (fig. S12).  Assuming that the false negative rate would be negligible amongst bases 
with call rates >95%, we used this subset of bases comprising 84% of all sequenced bases (>660 
kb) to estimate the expected SNV rate.  The SNV rate clearly decreases with decreasing call 
rates, though less than 4% of sequenced bases (passing the 0.5 call rate QC threshold) fall below 
80% call rates where a significant drop in the SNV rate is observed.  As expected, most of the 
undercalling is attributable to missed singletons (fig. S12B).  Overall, we estimate that only 
1.02% of all and as many as 2.72% of singleton variant sites were uncalled due to missing 
genotypes. 

Other sources of uncalled variants can be difficult to identify and quantify.  We carefully 
reviewed the capillary sequence data from the coding regions in eight genes described above.  Of 
the bases that were successfully sequenced in this experiment, we identified 52 singleton variants 
carried by one of the 985 sequenced subjects.  Of those, four were not identified among the 
SOAPsnp genotypes of the same subjects.  One was due to an uncalled genotype (depth = 7, 
quality = 19; failing QC on both measures), in line with the expectations estimated in the 
previous paragraph.  The remaining three show strong support in the capillary sequence traces, 
but no indication of the presence of the indicated allele in the short read data, in spite of high 
read depth (19, 32 and 76×) and genotype quality (91, 99 and 99).  With both sources of data of 
such high quality, the true genotype cannot be determined.  Assuming these are true singleton 
variants, the estimated false negative rate is 7.7%, though with fairly low precision (95% exact 
CI = 2.1-18.5%).  In contrast, for the SNVs found in common between the capillary and short 
read sequence data, the probability of calling a reference homozygote in the short read data given 
a subject was found to be heterozygous by the capillary sequence data is 1.3% (28 of 2194 
heterozygotes, 95% exact CI = 0.85–1.8%).  This smaller value and non-overlapping confidence 
intervals suggests that some polymorphic sites may fail to be identified due to genomic context 
that may affect sequencing, alignment, and genotype calling. 
 
SNP annotation 

A substantial fraction of exonic SNPs will exert their effects on the protein function by 
altering protein structure. Starting with a table of NCBI build 36.3 SNP coordinates and 
annotation from the SNP calling pipeline, a Perl-based high-throughput protein analysis pipeline 
was developed to automate the use of two functional prediction tools. The primary output was a 
table of annotations containing the PolyPhen (59) and SIFT (60) predictions for the NS SNPs 
and the Ensembl consequence prediction for all SNPs.  

The first step of the pipeline converted the build 36.3 SNP coordinates to those of NCBI 
build 37 using the Ensembl API (61). The build 37 SNP coordinates, reference base pair and 
mutation base pair were then used to query the SIFT web site. The next steps were required to 
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generate a list of UniProt identifiers and the residue changes as input for the PolyPhen program.  
For each SNP the Ensembl API was used to output the corresponding prediction and also a 200 
bp RNA flanking sequence of SNP coordinates from all Ensembl transcripts which could contain 
that SNP. The RNA flanking sequence was aligned against UniProt protein sequences using 
BLAST. These alignments allowed the automated determination of the corresponding protein 
and any amino acid residue changes. Inconsistencies were automatically flagged for manual 
checking, for example synonym mismatches between the UniProt/HUGO Gene Symbol and the 
Gene Symbol provided by the SNP calling pipeline, alignments to gap regions (indicating 
alternative transcripts) and for mutations that would affect an existing start codon. Neither 
PolyPhen nor SIFT accounted for mutations in start codons. PolyPhen input files were generated 
containing the UniProt identifier, the amino acid residue position and the reference and mutant 
amino acid residues; the canonical amino acid residue found in the UniProt protein was used for 
the analysis even when it differed from that predicted by the build 37 reference genome. The 
PolyPhen input files were then submitted to the PolyPhen server grid via the PolyPhen Perl 
interface in batches of up to 50 residue changes at a time. The results were then extracted via the 
PolyPhen Perl interface and combined into a single file.  

The final step in the process was to aggregate the Ensembl consequence predictions, 
warnings, the PolyPhen predictions and the SIFT predictions together with the original 
annotations. We note that our methods did not include all possible transcripts and protein 
isoforms, but rather the canonical forms. 

The 46-way placental alignment phyloP conservation scores (62) were retrieved from the 
UCSC Genome archive (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way/) on 
October 10, 2010.  Genome build 37 chromosome positions were converted to NCBI build 36 
using the Ensembl API. 

We assessed which variants were novel based on the overlap with dbSNP and 1000 
Genomes Project variants.  Overlapping variants were found by use of the SeattleSeq Annotation 
server (http://gvs.gs.washington.edu/SeattleSeqAnnotation/) using dbSNP build 131 and 1000 
Genomes variants released in March 2010 using NCBI build 37 reference positions.   
 
Triallelic variants 

In total we found 745 triallelic and 12 tetraallelic sites, which corresponds to 2% of all 
variable sites to include at least a third allele.  As expected, the rarest allele at most multi-allelic 
sites was usually very rare, seen only once or twice in 99% of instances.  The expected number 
of triallelic variants increased almost linearly with sample size, reaching 1.2-1.9 variants per 
kilobase, depending on functional class (fig. S2).  

Here we explored two complementary approaches to better characterize to what extent this 
observation is influenced by genotyping errors.  First, we computed a liberal upper bound on the 
fraction of positions at which we expected to see a third allele based on known genotyping error 
rates from the duplicate analysis (see above).  In addition, we assessed the expected number of 
triallelic sites expected given the observed mutation rate. 

Expected tri-alleles due to genotyping error. As reported earlier, the rates of genotyping 
errors depend on the underlying genotype.  We therefore computed the probability that a third 
allele is inferred due to genotyping error at a site by weighting the different error rates assuming 
Hardy-Weinberg equilibrium.  Let us denote by ܰ the total number of individuals successfully 
genotyped at locus ݈ ൌ ሼ1, … , - and ݊ the frequencies of the reference and nonݎ ሽ and byܮ
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reference alleles at locus l, respectively.  The fraction f of bi-allelic sites wrongly inferred as 
triallelic sites was then estimated as 
 

݂ ൌ
1
ܮ  ܰ ቀ1 െ ൫ݎ

ଶሺ1 െ ோோሻߝ  ݊ሺ1ݎ2 െ ோேሻߝ  ݊
ଶሺ1 െ ேேሻ൯ቁߝ



ୀଵ

, 

where the sum runs over L bi-allelic sites observed in the data sets and the genotyping error rates 
that lead to a calling a third allele are denoted by ߝோோ, ߝோே and ߝேே, depending on the underlying 
true genotype homozygous reference (RR), heterozygous (RN) and homozygous non-reference 
(NN), respectively.  

We obtained estimates of genotyping error rates from individuals for whom duplicates were 
sequenced (see above).  A key observation was that error rates to miscall both alleles of an 
individual (for instance, calling a NN genotype RR) are virtually zero and we are ignoring such 
errors in the following.  The rate at which a reference homozygous genotype (RR) is wrongly 
called heterozygous (RN or Rx) was also directly estimated from the duplicate analysis at 
2.36 ൈ  10ିଵଵ.  However, assuming a transition:transversion ratio of 2:1 (which SOAPsnp 
does), on average only 7/12 of such errors lead to a third allele.  We thus assumed ߝோோ ൌ
1.38 ൈ 10ିଵଵ.  For the other two error rates (ߝோே and ߝேே) the error rates inferred from the 
duplicate analysis serve as liberal upper bounds.  For instance, due to the strong reference bias of 
SOAPsnp, the rate at which homozygous non-reference genotypes (NN) are called heterozygous 
(RN) is much larger than the rate at which the same genotype is called heterozygous with a new 
non-reference allele (Nx).  A liberal approach is thus to assume ߝேே ൌ 

ଵଶ
8.34 ൈ 10ିହ ൌ 1.45 ൈ

10ିହ.  Given that the most common error at heterozygous genotypes is to call a homozygous 
genotype instead, we assumed ߝேே serves as a liberal upper bound on ߝோே and thus assume 
ோேߝ ൌ  .ேேߝ

Based on those error rates, a liberal upper bound of the expected fraction of diallelic sites at 
which a third allele is observed due to error was estimated at 0.8%.   This strongly suggests that a 
considerable fraction of the 2% polymorphic sites observed to be triallelic are not due to 
genotyping error.   

Expected tri-alleles due to repeated mutation. A complementary approach is to estimate 
the fraction of polymorphic sites that are expected to be triallelic given the observed mutation 
rate.  We assumed that the number of mutations M falling on the coalescent tree for a given site 
is Poisson distributed such that 

ܲሺܯ ൌ ݇ሻ ൌ షഊఒೖ

!
. 

Then we could estimate λ using the proportion of monomorphic sites we observed (~20/21) 
obtaining  ߣ ൌ െln ሺଶ

ଶଵ
ሻ ൌ 0.0487.  Here we assumed a homogenous mutation rate across the 

whole sequence.   The true mutation rate at polymorphic sites is likely to be above average, and 
hence this approach will slightly underestimate the expected fraction of triallelic sites. 

We now derived the probability that a given site is triallelic. Due to the very small 
probability that M > 2, we assumed triallelic sites arise only when M = 2, in which case the site 
may be monomorphic, diallelic, or triallelic, depending on where the mutations fall on the 
coalescent tree. We distinguished three cases: 

a) Different lineages:  no single lineage (from root to extant individual) contains both 
mutations, i.e. neither location is a descendant of the other. 
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b) Same lineage, different edges:  the two mutations fall in a single lineage, but with a node 
between them, i.e. one is a descendant of the other, but there has been branching between 
them. 

c) Same lineage, same edge:  the two mutations fall on the same edge of the coalescent tree. 

We assumed for simplicity that the probability that a given mutation is a transition is 
independent of the ancestral state, and denoted this probability by α.  Similarly, we assumed the 
transversion probabilities to be independent of both the ancestral and derived state, and denoted 
this common probability by β.  At any site, a mutation can be a transition or one of two possible 
transversions, so we had α + 2β = 1. 

Case (a) [different lineages]: The site is diallelic if we have parallel mutation, i.e. both 
mutations have the same derived base. Otherwise, the site is triallelic: 

 P (diallelic|different lineages) = α2 + 2β2  
 P (triallelic|different lineages) = 1 − (α2 + 2β2) 
Case (b) [same lineage, different edges]: The site is diallelic if the second mutation reverts 

the first mutation, and triallelic otherwise. 
 P (diallelic|same lineage, different edges) = α2 + 2β2  
 P (triallelic|same lineage, different edges) = 1 − (α2 + 2β2) 

Note that the probabilities are the same as in case (a). 
Case(c) [same lineage, same edge]: The site is monomorphic if the second mutation reverts 

the first, and diallelic otherwise.  We assumed that this case is rare. 
We considered the case when α ≈ 4β, which corresponds to a transition:transversion ratio of 

2:1, in which we had: 
 α = 2/3 
 β = 1/6 
 α2 + 2β2 = 1/2 

An estimate on the proportion of triallelic sites was thus given by: 
P(triallelic | M=2) ൈ P(M=2) / P(M=1 or 2) = 1.2% 

In summary, these calculations strongly suggested a considerable fraction of the observed 
triallelic sites are expected to be seen and are not due to genotyping error.  Further, all ten 
singleton triallelic variants subjected to Sanger capillary sequencing were validated (see above).  
Finally, there was also functional evidence for the triallelic variants to be real: sites at which we 
observed more than two alleles are on average less conserved among mammals that singleton, 
diallelic sites (fig. S3). 
 
Overlap with HGMD and OMIM 

We investigated the SNVs that overlapped between the current study and the HGMD and 
Online Mendelian Inheritance in Man (OMIM) variants to determine which and what fraction of 
variants reported to impact human health we observed, at what frequencies and how they relate 
to the predicted functional impact as assessed by SIFT, PolyPhen and phyloP.  HGMD variants 
were queried from Professional version 2010.3.  HGMD variants were merged with the current 
study based on their chromosome and map positions using NCBI human genome build 36.3.  
OMIM variants cross-referenced to SwissProt, curated by Dr. Andrew C. R. Martin, were 
downloaded from http://www.bioinf.org.uk/omim, last updated on August 20, 2010.  OMIM 
variants were merged with the current study based on the amino acid position and UniProt 
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identifier.  Due to the relatively high rate of misreports in OMIM (63, 64), we carefully reviewed 
each entry in table S6 and assessed the evidence for a causal effect based on the information in 
the entry, or if needed, in the primary publication.  This led to a categorization of the evidence 
supporting their involvement in the disorder as low, medium, or high.  Top level observations in 
Europeans are described in the Supplementary Text below.   
 
Frequency spectra 

To generate frequency spectra for 2n chromosomes, we first excluded all sites for which 
less than n individuals had been genotyped. For sites with greater than 2n chromosomes 
observed, we downsampled by calculating the expected number of sites with minor allele count i, 
which is given by the hyper geometric distribution (65). The sample size n was chosen for each 
population such that 80% of all targeted sites were used, with the exception of the European 
sample, for which the number was rounded down to an even number of 11,000 (which resulted in 
84.6% of targeted sites to be included). We further generated two-dimensional frequency spectra 
for all population pairs using the same technique. 

We summarized the frequency spectra by computing two estimators of 4Neμ:  θπ, which is 
based on pairwise nucleotide diversity and θw, Watterson’s estimator based on the number of 
segregating sites (66).  We normalize these statistics by gene length by applying the same QC 
filters to monomorphic sites to determine the total number of fully observed base pair sites.  
Only autosomal genes were included in calculating the site frequency spectra. 
 
Variant discovery curves 

The fraction of sites expected to be found in a sample of size n was computed from the 
frequency spectra using the hyper-geometric distribution if n was smaller than the sample size 
(65) of the original spectrum, and using a jackknife approach for upward predictions for n larger 
than the observed sample size (7). 
 
Allele sharing 

Following (7) we computed sharing ratios between pairs of populations for each variant site 
as the probability that two randomly drawn carriers of the pooled sample are from different 
populations, normalized by the panmictic expectation. Computations were based on the expected 
two-dimensional frequency spectra with 474 chromosomes per population to have comparable 
values across population pairs while including all European populations. Reported values are 
averages across all variant sites in a given minor allele frequency bin, where minor allele 
frequencies were computed on the pooled, pairwise samples.  
 
Expected ratio of NS to S variants 

To compute the expected ratio of NS to S mutations in a given coding sequence we used the 
following method.  We assumed known rates of mutation from a given nucleotide (e.g. C) to 
each of the other three nucleotides (e.g. A, G, T), conditioned on whether or not the nucleotide is 
within a CpG dinucleotide.  Let S = b1 b2 … bL be a coding sequence of L nucleotide bases for a 
single gene. For two bases x and y, we let μxy be the rate of mutation from x to y if x is not in a 
CpG, and we let μxy

* be the rate of mutation from x to y if x is in a CpG. 
For each nucleotide base bi, we aimed to calculate the NS mutation rate ri

N and S mutation 
rate ri

S.  This calculation is best illustrated by an example.  Suppose bi is the C nucleotide in the 
codon AAC, which codes for asparagine.  We first looked at both the previous and next 
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nucleotide in the reference sequence to determine whether bi is in a CpG (67, 68).  We also 
consider the result of each possible mutation in the standard genetic code – in this case, AAT 
also codes for asparagine, while AAA and AAG code for lysine, i.e. C→T is S, while C→A and 
C→G are NS.  In this case, we set ri

S = μCT and ri
N = (μCA + μCG).  Note that if bi is in a CpG, we 

used the rates μxy
* instead of μxy. 

Then the overall NS:S mutation rate ratio for a single gene was calculated as: 

          ri
N

i=1

L

∑ ri
S

i=1

L

∑  

To calculate a rate across all genes, we computed the sum over all nucleotides across all 
genes.  For genes which have multiple transcripts, we chose the longest transcript, and suspect 
the overall results are robust to this choice as we found little variation from transcript to 
transcript in computed NS:S ratios.  

For the mutation rates assumed by the calculation, we used values from two published 
studies on human-chimp nucleotide differences.  Ebersberger et al. (67) (Tables 1-2) report 
frequencies of each possible nucleotide substitution observed at CpG and non-CpG sites based 
on 1.9Gb of human-chimp aligned sequence.  Nachman and Crowell (68) (Table 4) report 
estimated transition and transversion mutation rates at CpG and non-CpG sites from 
pseudogenes.  In the latter case, we needed to assume the two possible transversions for a given 
nucleotide are equally likely (and hence we took the rate for each of the two possible 
transversions from a given nucleotide to be one half of the overall transversion rate).  To assess 
the robustness of estimated ratio of NS to S mutations to assumed rates, we used both sets of 
reported values, and we found they gave very similar predicted ratios (2.01 using Ebersberger et 
al’s numbers vs. 2.08 using Nachman and Crowell’s numbers). 
 
Demographic history and mutation rate inference 

Model and data.  We followed the basic approach of Coventry et al. (8) to infer the current 
effective size of Europeans, N, the recent growth rate in the European population r and gene 
specific mutation rates μ={μ1, ..., μg}. This approach extends the demographic model of 
Schaffner et al. (69) to include a period of exponential growth in European population size that is 
parameterized by the current effective size of Europeans, N, the recent growth rate in the 
European population r and gene specific mutation rates μ={μ1, ..., μg}. In this model, the 
European expansion time is determined by solving for the time at which the ancestral European 
population of size 7,700 (from the Schaffner model) would need to start growing at rate r to 
reach a current size of N.  

Likelihood approximation via Monte Carlo. The likelihood for a single gene is given by 
,ሺܰܮ ,ݎ ሻܵ|ࣆ ൌ   ܲሺܵ|ܩ, ሻߤ · ܲሺܩ|ܰ, ሻݎ

ஏאீ

, 

where S is the site frequency spectrum for the gene,  Ψ is the set of all possible genealogies G. 
Since Ψ is prohibitively large, the likelihood is approximated via Monte-Carlo. To be specific, 
we first generated M random genealogies Gi, i={1, ...,400} for each combination of demographic 
parameters N and r using fastsimcoal (70), a coalescent simulator that allows for multiple 
coalescent events per generatio. We approximate ܮሺܰ, ,ݎ ,ܩ|ሻ as the average of ܲሺܵܵ|ߤ  ሻ acrossߤ
these samples: 
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,ሺܰܮ ,ݎ ሻܵ|ࣆ ൎ
1
 ܯ ܲሺܵ|ܩ, ሻߤ

ெ

ୀଵ

. 

Assuming that mutations follow a Poisson process on the genealogy, ܲሺܵ|ܩ,  ሻ can beߤ
calculated as the product of a “shape likelihood” and “rate likelihood” (44). 

ܲሺܵ|ܩ, ሻࣆ ൌ ܲሺܵ|ܩ, ܵ௧௧ሻܲሺܵ௧௧|ܩ,  .ሻߤ
The shape likelihood, ܲሺܵ|ܩ, ܵ௧௧ሻ is specified by a multinomial with ܵ௧௧ ൌ ∑ ܵ


ୀଵ  total 

observations, observed counts ܵ, and success probabilities for a count of sites with x minor allele 
counts given by the relative length of all branches of the genealogy ܩ with x descendants.   The 
rate likelihood, ܲሺܵ௧௧|ܩ,  ሻ, is specified by a Poisson distribution for ܵ௧௧ with a rate thatߤ
depends on the total length of the genealogy and the mutation rate times the total number of sites 
considered: 

ܲሺܵ௧௧|ܩ, ሻߤ ൌ ݁ିఓ ·
ሺ݊ߤܮሻௌ

ܵ! , 
where L is the total length of the genealogy ܩ and n the number of sites considered.   

The above likelihood calculation can be done for each gene ݃, giving a likelihood 
,ሺܰܮ ,ݎ ҧߤ ሻ. To extend to multiple genes, we letߤ ൌ ሺߤଵ, … ,  ሻ where ܼ is the number ofߤ
genes, and the likelihood for all genes was calculated by taking the product over all genes: 

,ሺܰܮ ,ݎ ҧሻߤ ൌ ෑ ܮ



௭ୀଵ

ሺܰ, ,ݎ  ௭ሻߤ

For the model with a single μ value for all genes, we let ߤ ൌ  .݃ for all ߤ
We restricted our inference to frequency spectra generated for genes on autosomes only and 

we only included four-fold degenerate synonymous sites. This allowed us to include a total of 
188 genes in this analysis. Following Coventry et al. (8) we also pooled variants with minor 
allele counts > 17 into a single type.  The frequency spectra are available in database table S3.   

Initial grid approximation to the likelihood surface and comparison to Coventry et al.  
We initially used the same grid, marginal likelihood and posterior mean calculations as in 
Coventry et al.  However, when we investigated the effect of changing the parameter grid, we 
found that the posterior mean estimates were dependent on the choice of parameter grid points.  
In effect, the Coventry method assigns a uniform prior over the parameter grid points, which will 
give different posterior distributions when, for example, the grid range is extended, or when the 
grid points for a parameter are placed on a logarithmic scale.  For this reason, we chose to follow 
a strict maximum likelihood approach (retaining the Monte Carlo approximation to the 
likelihood of Coventry et al.), which gives estimates of N, r, and per-gene mutation rates that are 
more robust to the choice of grid points.   

Expanded grid and strict maximum likelihood inference.  Our initial per-gene mutation 
rate mutation rate estimates were very close to 1e-8, which is at the edge of our initial grid, so we 
expanded the grid over mutation rate values from 1e-9 to 1e-7 on a logarithmic scale (101 steps).  
Similarly, we extended the range of possible values of N to extend from 10,000 to 100 million on 
a logarithmic scale (41 steps).  We chose our grid for r such that r – 1 extended from .005 to .14 
on a logarithmic scale (57 steps), and we also included r = 1.0 (no growth).   This grid spans the 
domains of parameter space with non-trivial likelihood and yet allows relatively fine-scale 
calculation of the surface in the regions of highest likelihood. To speed up the calculations, we 
recycled the coalescent trees for all grid points sharing the same Ne and r values. 
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The maximum likelihood estimate for N was 4.0 million with a 2 log-likelihood profile 
likelihood confidence interval of (2.5 × 106, 5.0 × 106) and for r was 1.017 (CI = 1.012, 1.023).  
The profile likelihood surface and per-gene mutation rate estimates are shown in Fig. 1C and 1D 
of the main text.  Profile likelihood surfaces of Ne  and a single global ߤ (or of r and ߤ, fig. S15) 
confirm that ߤ is an identifiable parameter in this inference scheme (i.e. the likelihood surface 
has a single point maximum as opposed to the ridge along fixed values of ܰߤ expected in 
traditional population genetic inference).  

Robustness to false negatives.  We next checked the robustness of our inference to variants 
that were undetected due to variable coverage.  Our quality control indicated a false negative rate 
of ~2%-8% for singletons plausible, so we spiked in extra singletons to mimic missing 2% and 
8% of the total number of singletons. 

Our maximum likelihood estimate of r was 1.018 in both cases and thus slightly higher than 
the estimate from the raw data. The maximum likelihood estimate for N were very similar with 
4.0 × 106 and 5.0 × 106 for 2% and 8% singletons added, repectively. The resulting median per 
gene mutation rates were 1.45 × 10-8 in both cases and thus only marginally larger than our initial 
estimate of 1.38 × 10-8. 

Robustness to conservation of functional synonymous sites.  One concern with our 
analysis is that some synonymous sites may be functionally constrained or experiencing 
background selection, which may lead to an artifical variance in inferred mutation rates across 
genes. We note that the average phyloP for the four-fold degenerate sites considered in this 
analysis is close to zero (0.08) and only 10% of all four-fold degenerate sites have phyloP scores 
above the median phyloP score observed at non-synonymous sites. More importantly, when we 
correlate the MLEs for ߤ for each gene with the average phylop score at all coding sites in a gene 
we find no correlation (p=0.08). 
 
Ratio-based estimates of deleteriousness conditional on frequency 

Given the ratio of nonsynonymous to synonymous variants ri within minor allele frequency 
i and the same ratio rf observed among variants of frequency f, an estimator of the fraction of 
nonsynonymous variants with frequency i that are deleterious enough to never reach frequency f 
is given by 1-(rf/ri) (2). While we note this inference procedure does not account for changing 
population size and/or the effects of background selection on synonymous variants, we used this 
approach to estimate the fraction of nonsynonymous mutations deleterious enough to never get 
fixed in humans (rf = 0.266 from (2)) and the fraction to never reach high frequencies (rf = 0.516 
estimated from all variants > 5% in our European sample). The same rationale can be used to 
infer the fraction of new mutations never to be found polymorphic in a sample of 11,000 
individuals by contrasting the expected ratio of nonsynonymous to synonymous variants of 
random mutations (ri=2.01, see above) and the same ratio observed among singletons (rf = 
1.743). We thus estimate that about 13% of newly arising NS SNVs are deleterious enough not 
to be discovered in a sample of 11,000 individuals. 

This last calculation provides an upper bound for the fraction of novel nonsynonymous 
mutations that are dominant lethal.  We can thus estimate an upper bound on the number of de 
novo dominant lethal mutations arising per generation in a single individual. Given the total 
length of the human exome of 35.2 Mb (71), using our inferred median mutation rate of 
1.38ൈ10-8 as a proxy for the whole coding genome and assuming that 2/3 of all de novo 
mutations in coding regions are non-synonymous we arrive at ~0.32 de novo non-synonymous 
mutations per generation per individual. Hence, we estimate that no more than 0.32ൈ0.13 = 
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0.042 dominant lethal mutations arise de novo per generation per individual, which corresponds 
to less than one per 23 generations. 
 
Association analysis 

Each of the sequenced collections includes a wide range of clinical and laboratory measures 
that merit careful analysis and interpretation, which are under way.  However, to illustrate an 
analysis strategy and investigate possible associations of common coding and rare variants with 
the diseases represented in this collection, we present a standardized and simplified analysis for 
each of the 12 diseases.   

As shown in table S4, very few disease-matched controls were included in this study.  A 
population control strategy was employed to test for association with disease status.  Control 
subjects were available from two population samples (CoLaus and LOLIPOP) and from other 
case groups where consent and/or the approval of an ethics review board was granted.  There 
were a total of 10,114 subjects of European origin identified as possible controls.  In this 
analysis, the only criteria used to select controls was genetic similarity assessed by principal 
component analysis (PCA) in the entire European sample using available genome-wide genotype 
data on a common set of SNPs present on the variety of genotyping platforms, including 
Affymetrix 5.0 and 6.0 and Illumina 550K.  The genetic similarity between each case-control 
pair was based on the weighted Euclidean distance between each case and control (72) using the 
first five principal components.  For each case collection, a range of case to matching control 
ratios was explored, selecting the maximum number of controls that resulted in a median 
distance less than 0.02.  The resulting numbers of cases and controls and median Euclidean 
distance between them is listed in table S7 for each study. 

Association analysis with case status was carried out using logistic regression, including the 
first five principal components as covariates in the model and assuming an additive genetic 
model.  Given the use of population controls, no study-specific covariates were included.  The 
one exception is the GEMS dyslipidemia study where normolipidemic study controls were 
available; age, sex, body mass index, physical activity and alcohol use were included as 
covariates.  In the analyses presented here, only coding variants were included.  Single variant 
analyses were carried out for all SNPs with a European allele frequency greater than 0.5% (606 
“common” SNPs in this analysis).  Coding variants, including those in splice sites, were 
analyzed as an aggregate indicator of rare variant carriage status, taking on a value of zero for no 
rare variants and one where one or more rare variants were present in a subject.  Two aggregate 
tests were carried out and reported here: 1) all rare variants that lead to a change in the amino 
acid sequence (NS, nonsense and splice site variants) and 2) all amino acid-changing variants 
that are predicted to be functional by SIFT or PolyPhen or occur at a highly conserved base 
position (phyloP ≥ 2). 
 
Power analysis 

Statistical power to test the null hypothesis of no difference in cumulative rare variant 
frequencies in cases versus controls was carried out asymptotically by computing the 
noncentrality parameter of a chi-square distribution with one degree of freedom.  The 
noncentrality parameter was derived using the expected genotype frequencies in cases and 
controls given the cumulative minor allele frequency observed for each gene, the number of 
cases and population controls, and assuming Hardy-Weinberg equilibrium and a disease 
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prevalence of 5% (see (73) for details).  Power was computed at a test-wise significance level of 
0.05/202. 

Supplementary Text 
Gene-to-gene variation of common and rare variants and mutation rates 

Although the number of common (MAF > 0.5%) and  rare (MAF ≤ 0.5%) NS variants (fig. 
S13) and the cumulative NS rare variant frequencies (fig. S4) are correlated with the number of 
successfully sequenced coding bases, we observed a substantial amount of gene-to-gene 
heterogeneity.  Ordinary least squares regression with sequenced coding length as a predictor 
explained only 15% of the intergenic variation in the number of common NS variants, but 71% 
of the rare variants, and 53% of the cumulative MAF (cMAF) of rare variants predicted to affect 
protein function by SIFT or PolyPhen or occur at a highly conserved base (phyloP ≥ 2) (table 
S15).  Mutation rate was not associated with coding length. 

We investigated several possible explanations for the variation remaining after adjusting for 
sequenced coding length, including average coding sequence conservation scores, GC content, 
recombination rate, as well as Gene Ontology and Interpro terms, and embryonic lethality of 
mouse knock outs of the homologous gene.  We estimated the average phyloP and GC content 
for all successfully sequenced coding bases for each gene and average sex-adjusted 
recombination rate within genes.  Adjusting for coding length by division (except for mutation 
rate), we tested the association of these variables with a likelihood ratio test and estimated the 
amount of variation it explained (table S15).  Average phyloP score was strongly associated with 
all dependent variables except mutation rate.  GC content was strongly associated with the 
number of rare NS variants and mutation rate.  Recombination rate was not significantly 
associated in any of the tests conducted and was dropped from the final models.  The overall 
amount of variation explained, after adjusting for coding length, was 12%, 20%, 3%, and 5% for 
the number of common NS variants, number of rare NS variants, cMAF, and mutation rate, 
respectively.   

We investigated whether the differences in the coding length-adjusted measures of genetic 
variation were explained by differences in gene activity or function using Gene Ontology and 
Interpro terms.  Each gene may have several GO terms in each of three categories.  We selected 
for analysis any term that was observed in at least 5% of the selected genes.  For each term, we 
evaluated its association with each of the three length-adjusted measures of genetic variation by 
comparing those genes with the selected term to all others with a Wilcoxon sign rank test.  As 
there are many terms, we only considered those with p-values less than 0.05 divided by the 
number of terms within the GO class to be statistically significant (Bonferroni adjustment).  We 
found no statistically significant associations to report.  We conducted a similar analysis using 
the Interpro (74) version 30.0 accessed from Ensembl BioMart on February 2, 2011.  Again, no 
statistically significant associations were identified. 

Finally, we investigated whether knocking out the gene resulted in embryonic lethality in a 
mouse knockout model provided any additional explanation for the intergenic variability in NS 
variation.  Mouse knockout phenotypes were downloaded from the Jackson Labs MGI Biomart 
(75) on March 1, 2011.  We identified genes with any type of lethal phenotype.  Only 17 (8%) of 
our genes had documented lethal mouse knockout phenotypes (ADAM10, ADIPOQ, BRD4, 
EDNRA, EDNRB, FGF10, GSK3B, HHIP, HTR4, IKBKB, MAPK14, PIK3CA, PPARD, PSEN1, 
PSEN2, STIM1, and TNFRSF1A) compared to 27% of all genes with documented phenotypes.  
We found the lethality phenotype was associated with the number of rare NS variants after 
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adjusting for coding length (p = 0.0017), but not with the number of common variants or 
cumulative MAFs.  However, lethality was also significantly associated with average phyloP.  
After adjusting for average phyloP, lethality was no longer significantly associated. 

Hence, amongst the possible explanations for the intergenic variability investigated in this 
study, only average sequence conservation was consistently associated.  However, although 
statistically significant, average phyloP did not explain a sufficient amount of variation to prove 
particularly useful in predicting the amount of rare NS variation expected.  

 
Overlap with OMIM and HGMD 

Fifty three of the 202 genes in this study are reported to have disease-causing mutations in 
HGMD.  A total of 170 of 1,460 (11.6%) disease causing (DM) variants in 35 genes were 
observed in the combined sample.  Of those, 149 were observed in Europeans, 40 in South 
Asians and 51 in African Americans.  In Europeans, all disease-causing mutations had MAF less 
than 5%, and 23.5% had MAF greater than 0.1%, with nearly half (48.3%) being observed in 
only one or two subjects. 

A total of 46 OMIM variants in 25 genes were observed in the combined sample.  Of those, 
44 were observed in Europeans, 20 in South Asians and 26 in African Americans.  In total, 
17.0% of disease-causing variants in these genes were observed in our sample but were not 
clustered within any particular disease cohort with the exception that the Alzheimer’s disease 
variants were enriched in the Alzheimer’s cases (1.0% in cases versus 0.28% in others; Fisher’s 
p = 0.005, odds ratio = 3.8).  There were 35 variants in 17 genes after excluding relatively 
common SNVs (table S6).  The combined European frequency of those variants with medium to 
high evidence that they cause the corresponding indicated disorder in a dominant fashion was 
2.7%.  However, most are exceedingly rare.  After excluding two variants with MAF >0.5% 
yields a combined frequency of 0.35%.  However, caution is needed interpreting this result as 
little is known about the penetrance of most of these variants, having been reported in a single 
study or pedigree.  Many of these variants may have relatively low penetrance in the general 
population. 
 
Comparison of SIFT, PolyPhen and phyloP 

Of 10,995 total NS SNVs called in the entire sample, 97.7% and 98.7% resulted in 
PolyPhen and SIFT predictions, respectively (table S16).  Of those variants called by both 
PolyPhen and SIFT, 43.3% were called as benign/tolerated by both and 12.7% as probably 
damaging/damaging by both (i.e. 77.7% concordant excluding possibly damaging and low 
confidence damaging groups; table S17).  A similar percentage were called damaging by SIFT 
but benign by PolyPhen (14.0%); however, only 2.2% were called probably damaging by 
PolyPhen but tolerated by SIFT.  
The relationship between sequence conservation assessed by phyloP score and predicted 
functionality by SIFT and PolyPhen were very similar (fig. S14), though they differed 
significantly between methods.  SIFT tolerated NS SNVs had significantly lower phyloP scores 
compared to PolyPhen benign (p = 3.4×10-8).  The same was true of the low confidence 
damaging compared to the possibly damaging classes.  The distribution of phyloP scores 
between SIFT damaging and PolyPhen probably damaging NS SNVs were not statistically 
significantly different (p = 0.13).  The difference between the median phyloP scores between 
tolerated/benign and damaging/probably damaging NS SNVs was 1.1 and 0.92 for SIFT and 
PolyPhen, respectively.  This difference was similar to that observed between common and 
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singleton NS SNVs (Fig. 2E).  A total of 5957 NS variants (63%) were predicted to be damaging 
by PolyPhen or SIFT, or occurred at a nucleotide position with a phyloP conservation score 
greater than 2.0. 

Rare NS SNVs were more often predicted to be damaging by SIFT (p < 10–4) (60) and 
PolyPhen (p < 10–3) (59) than common, NS SNVs (Fig. 2D).  Similar, patterns of evolutionary 
conservation as measured by phyloP score (62) were negatively correlated with the frequency of 
NS variants (p < 10–12), but not S variants (p = 0.62). Such negative correlation is expected if 
long-term conservation and on-going purifying selection act on the same sites.  We also saw a 
negative correlation for UTR variants (p < 10–9) and a weaker, but still significant relationship 
for intronic variants (p < 0.005).   

The 297 SNVs from the current study found in the Human Gene Mutation Database 
(HGMD) include five classifications: disease-associated and putatively functional 
polymorphisms (DP, N = 45), disease-associated polymorphisms with additional support (DFP, 
N = 40), in vitro or in vivo functional polymorphisms (FP, N = 41), frameshift or truncating 
variant (FTV, N = 1) and disease-causing mutations (DM, N = 170).  We explored the 
relationship between HGMD class and SIFT and PolyPhen predictions and phyloP sequence 
conservation.  We found no relationship between HGMD class and functional predictions (Fisher 
p > 0.05).  However, we did observe that phyloP scores differed significantly among classes.  DP 
and DFP classes had median scores of 0.36 and 0.48, respectively, with their third quartiles 
falling below the medians of the other three classes.  FP and DM were distributed similarly with 
medians of 1.2 and 1.4 (Wilcoxon p = 0.90).  The single FTV SNV had a phyloP score of 2.9, 
nearly the maximum achievable in the placental alignment. 

We observed similar patterns in the analysis of the 46 HGMD SNVs observed in this study 
that were also reported in OMIM compared to those that were not.  SIFT and PolyPhen 
predictions were not associated with OMIM inclusion (Fisher p > 0.05), but phyloP score was 
significantly associated with medians of 2.1 and 1.0 (Wilcoxon p = 0.025) for those SNVs that 
were and were not in OMIM, respectively. 
 
Association analysis results 

An alternative strategy to uncover the contribution of a gene to traits of interest is the 
analysis of rare variants in aggregate (5). Two metrics of rare variant burden are the number of 
rare variants and the cumulative minor allele frequency (cMAF) of rare and potentially 
deleterious SNVs within each gene. As we saw for the number of variants, the values of rare 
cMAF across our whole sample irrespective of disease were strongly correlated with the number 
of sequenced bases per gene (r2 = 0.54). The cMAF ranged from 0 to 3.9% (Figs. 1F, S4). 
Among genes with the lowest cMAF, singletons and doubletons accounted for 71% of the cMAF 
(Fig. 1E); among genes with the highest rare variant cMAF singletons and doubletons accounted 
for 25% of the cMAF. 

The high level summary of the association results are presented as quantile-quantile plots 
for each disease in fig. S6.  These plots and corresponding genomic control λs illustrate that even 
with principal components in the model, some type I error inflation remains in several of the 
common and rare variant results.  The common and rare variant λs were significantly correlated 
(>0.45) and the average λ was very similar amongst the three tests presented (1.21, 1.31 and 1.22 
for common, rare amino acid changing and rare functional, respectively), suggesting that the 
effect of population structure was  less well controlled for rare as opposed to common variant 
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tests with this study design. The drop in average λ for the rare functional test is likely due to 
decreased power tied to lower cumulative minor allele frequencies (cMAFs). 

Considering the number of tests conducted for each disease (1010), and excluding 
osteoarthritis due to the severe type I error inflation, there were five associations that were 
statistically significant (αTest = 0.05/1010 = 5×10-5; not accounting for testing multiple diseases), 
all amongst common variants.  Common variants in BRD2 located with the major 
histocompatibility complex (MHC) of chromosome 6 were significantly associated with multiple 
sclerosis and rheumatoid arthritis, both known to have relatively large MHC risk factors.  
Subsequent analysis with HLA alleles demonstrated that the BRD2 associations were the result 
of linkage disequilibrium within the locus.  The same was true of an association observed 
between NFKBIL1 and multiple sclerosis.  Three common variants within CHRNA3 and 
CHRNA5, occurring at the same locus on chromosome 15 previously associated with nicotine 
dependence and smoking behavior, were significantly associated with COPD.   Previous studies 
of COPD suggest that this association reflects the lack of control for smoking behavior in the 
choice of population controls.  A common S variant within KCNMA1 was also significantly 
associated with COPD status (rs45527834, MAF = 0.9%, p = 1.9×10-6, OR = 2.9).  The depth 
and quality of this variant were high with very few missing genotypes. Given the low frequency 
of this variant, and its absence from HapMap sample genotypes, it is not likely to be well tagged 
by current genotyping platforms and could have escaped detection from previous GWAS.  
However, no other variants in this gene, common or rare, showed any evidence of association 
with COPD status.  None of the rare variant tests satisfied the disease-specific statistical 
significance threshold. 

We next investigated any insight that may be gained from having sequenced genes that had 
been previously shown to have common variant associations with the diseases studied here.  We 
identified the set of candidate genes by filtering the NHGRI GWAS Catalog(22) (accessed on 
August 3, 2011) for associations with genes and diseases that overlap with the current study, 
shown in table S8.   There was an overlap of 13 genes in six diseases.  Using these gene-trait 
pairs as a set of a priori candidate genes, we reevaluated the rare variant association tests 
adjusting for the number of genes selected within each of the six diseases.  There were four 
resulting associations that were found to be statistically significant (p < 0.05 after adjusting for 
the number of tests for the given disease): the test of amino acid-changing variants in IL6 and 
TNFRSF1A with multiple sclerosis and ITGB1 with unipolar depression and the test of 
functionally damaging variants in IL6 and multiple sclerosis (table S9).   

Of these, the association of variants predicted to be functionally damaging in IL6 with 
multiple sclerosis is the most statistically compelling.  The cumulative frequency of amino acid-
changing variants in IL6, a 212 amino acid protein, was 0.15% overall and 0.06% for those 
predicted to affect protein function.  Cases were five times more likely to carry a NS variant than 
controls and 12 times more likely to carry one predicted to be functionally damaging.  Only one 
variant, carried by a case, was predicted to be functionally damaging by SIFT and PolyPhen.  
These results suggest that in addition to the modest effect of at least one common variant located 
near IL6 (MAF = 0.05, OR = 0.57) (76), carriage of rare variants that affect the amino acid 
structure increase susceptibility to multiple sclerosis.  Given the nature of these very rare variants 
carried by cases, future replication of this association will be reliant on sequencing the coding 
regions of additional cases and controls.  To have 80% power to replicate the observed 
association, approximately 700 cases and controls would need to be sequenced. 
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The absence of compelling rare variant associations led us to estimate the magnitudes of 
genetic effects that would be required with available sample sizes to have high statistical power 
to identify significant gene-disease associations. Given the range of cMAFs of rare variants 
predicted to affect gene function observed (Fig. 1F), in an association study of 1,000 cases and 
4,000 population controls (a size approached by half the studies here), only 8% of genes would 
have enough rare alleles to result in at least 80% power to detect an average odds ratio of 2.5 
across selected variants, and only 56% of genes could detect odds ratios of 5 (fig. S5). Sample 
sizes of more than 10,000 cases and controls would be needed to have adequate power to detect 
odds ratios on the order 2.5 in at least half of the genes. Currently, little is known about the range 
of effect sizes that rare variants might have on common disease or to what extent rare variants 
functional may be enriched in extreme cases or tails of a quantitative distribution. However, the 
results here suggest the sample sizes required to study them will have to be very large, 
particularly for genes with small coding regions critical to gene function. 
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Fig. S1. 
The fraction of variants previously reported.  The fraction of the variants found in this study 
already reported in dbSNP 132 (solid line) and after excluding all variants only reported by the 
1000 Genomes Project (dashed lines; reflecting the contribution of that study to the catalog of 
known variants) for Europeans, African Americans and Southern Asians. 
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Fig. S2.  
Rate of triallele variant discovery in Europeans.  Number of triallelic variants discovered per 
kilobase sequenced with increasing sample size, stratified by variants found within introns, UTR 
and coding exons.  NS and S coding lengths are adjusted by the number of base mutations that 
could give rise to their respective changes. 
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Fig. S3.   
Distribution of vertebrate sequence conservation at singleton diallelic, triallelic and 
tetraallelic positions in Europeans.  P-values are the result of the nonparametric Wilcoxon test 
of homogeneity of location comparing di- and trialleles phyloP scores. 
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Fig. S4. 
Cumulative minor allele frequencies (cMAFs) of rare protein-changing minor alleles.  
Upper row : Cumulative MAFs of uncommon (MAF ≤ 0.5%) minor alleles are shown for each 
gene, including all protein-changing variants, variants predicted to be functional by SIFT, 
PolylPhen or have a phyloP score ≥ 2, or are predicted to be functional by both SIFT and 
PolyPhen versus their coding length (successfully sequenced).  Lower row: The proportion of 
rare cumulative MAFs shown in the upper row accounted for by variants with frequencies less 
than or equal to 0.0001, (0.0001,0.001] and (0.001,0.005] from light to dark red.  Gene-level 
cumulative MAFs are binned into five groups as shown on the x axis.  The number of genes with 
cumulative frequencies falling into each bin is shown above each stacked bar.  Genes with 
cumulative MAFs equal to zero are excluded. 
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Fig. S5. 
Statistical power to conduct a burden test of association.  Cumulative rare variant MAF 
(cMAF) as described in Fig. 1 and the corresponding  statistical power to test each gene for 
association with a binary outcome given the observed cMAF, a condition with a prevalence of 
5%, and a significance threshold of 0.05/202 (Bonferroni adjustment for testing all genes in this 
study).  Power is shown with case:control sample sizes of 1000:4000, 4000:4000 and 
10,000:10,000.  
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Fig. S6A.  
Distribution of case control association p-values for common variants (MAF > 0.5%).  
Genomic control values (λ) are shown in the upper left corner of each panel. 
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Fig. S6B.  
Distribution of case control association p-values for rare amino acid-changing variants 
(MAF ≤ 0.5%).  Genomic control values (λ) are shown in the upper left corner of each panel. 
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Fig. S6C.  
Distribution of case control association p-values for rare amino acid-changing variants 
(MAF ≤ 0.5%) predicted to be functionally damaging.  Genomic control values (λ) are shown 
in the upper left corner of each panel.  Functionally damaging variants were defined as those 
predicted to be damaging by SIFT or PolyPhen, or occurring at evolutionary conserved base 
positions (phyloP ≥ 2). 
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Fig. S7. 
Allele sharing and variant abundance. (A-C) The average allele sharing between pairs of 
populations for variants in different minor allele frequency bins (MAF) computed as the 
frequency in the pooled population pair.  The sharing between African Americans (AA) or 
Southern Asia (AS) with Europe (EU) is shown as the median value across the comparisons with 
each individual population in Europe.  (D) The number of variants per kilobase found in 
population samples of 2,500 individuals.  
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Fig. S8.   
Sharing between pairs of European populations decreases with larger geographic distance 
in Europe.  Each dot represents an edge in Figure 3. Sharing between the Finnish and other 
European population (orange dots) is generally lower than between other pairs of European 
populations (black dots). Allele sharing decreases with larger geographic distance, independent 
of MAF bin (gray lines, p < 0.005 in all cases), after excluding comparisons with the Finnish 
(black line, p < 10-4) or among the comparisons with the Finnish (orange line, p < 0.05). 
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Fig. S9.  
Ratio of nonsynonymous to synonymous variant allele carriage between the drug target 
genes in this study, other groups of genes and the rest of the protein-coding genome.  The 
distribution of the ratio of non-reference NS and S alleles carried by each CEU subject 
sequenced at low depth by the 1000 Genomes Project.  Ratios were computed for the drug target 
genes in this study versus OMIM, NHGRI GWAS Catalog, ADME (absorption, distribution, 
metabolism and excretion; see www.pharmaadme.org), and all other coding genes.   
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Fig. S10.   
Impact of base position relative to target boundaries on sequence depth.  Each sequenced 
base was rescaled by the number of bases from the nearest target boundary (x axis).  Depth 
distribution summaries for each base position are shown on the y axis, with black lines 
corresponding to the 25th, 50th, and 75th percentiles and the gray line the mean.  The blue line 
corresponds to the number of observations (i.e. sample size) at each base position.  The sample 
size at a distance of one is two times the number of target regions. 
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Fig. S11.  
Distribution of SNVs within 10 bp of known indels.  Variants are divided by location in 
introns, untranslated region exons (UTR), coding exons (CDS) and gene flanking regions. 
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Fig. S12. 
Influence of genotype call rates on SNVs discovery rates for (A) all variant and (B) 
singleton base positions.  The mean SNV rate (dot) and 95% exact confidence interval are 
presented for bases that fall into each genotype call rate bin.  Summary statistics within each call 
rate bin include, in order, the number of SNV positions, the number of sequenced bases (variable 
and non-variable), SNV rate, percent of sequenced bases (of total with call rate > 0.5), expected 
number of SNVs based on positions with >95% call rates, the percent of expected SNVs 
observed, and the cumulative percentage of uncalled SNVs. 
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Fig. S13. 
Relationship between the length of target sequenced in each gene and the number of SNVs 
observed in Europeans. The number of SNVs within successfully sequenced target regions is 
shown for each gene.  The top row corresponds to SNVs observed across all target regions for 
each gene, and the bottom row to only NS SNVs and coding sequence.  The slope of the 
regression line is given as the number of sequenced bases per SNV.  Lines correspond to the 
ordinary least squares regression line and 99% prediction intervals used to identify outliers. 
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Fig. S14.   
Relationship between phyloP conservation scores and SIFT and PolyPhen function 
predictions. Lower bars show minimum value that falls within 1.5 times interquartile range 
(IQR), points that fall below this value, boxes show IQR, black points correspond to the sample 
median, and upper bars extend to maximum value.  Y-axis was truncated at -3 to emphasize 
differences around IQR; minimum values are as low as -9.5.  Tolerated, Dmg (Low Conf) and 
Dmg correspond to SIFT predictions with scores >0.05, ≤0.05 with low confidence and scores 
≤0.05, respectively.  Benign, Poss Dmg and Prob Dmg correspond to PolyPhen predictions of 
benign, possibly damaging and probably damaging, respectively. 
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Table S1. 
Sequenced genes.  
 

Gene Description Chrom Start End Length 
Coding 
Length 

ABCB1 
ATP-binding Cassette, Sub-
family B, Member 1 7 86970884 87180500 209616 3843

ADAM10 
ADAM Metallopeptidase 
Domain 10 15 56675802 56829469 153667 2247

ADIPOQ 
Adiponectin, C1Q And Collagen 
Domain Containing 3 188043157 188058946 15789 735

ADORA1 Adenosine A1 Receptor 1 201326405 201403156 76752 981
ADORA2A Adenosine A2a Receptor 22 22996866 23168325 171460 4593
ADRB3 Adrenergic, Beta-3-, Receptor 8 37939673 37943341 3668 1227

ALOX5AP 
Arachidonate 5-lipoxygenase-
activating Protein 13 30207669 30236556 28887 486

APCS Amyloid P Component, Serum 1 157824240 157825285 1045 672

APH1A 
Anterior Pharynx Defective 1 
Homolog A 1 148504423 148508156 3733 809

APH1B 
Anterior Pharynx Defective 1 
Homolog B 15 61356844 61385807 28964 774

APP 
Amyloid Beta (A4) Precursor 
Protein 21 26174732 26465003 290271 2313

BDKRB2 Bradykinin Receptor B2 14 95740950 95780542 39592 1176
BICD1 Bicaudal D Homolog 1 12 32151448 32422408 270961 2928
BRD2 Bromodomain Containing 2 6 33044415 33057059 12645 2406
BRD3 Bromodomain Containing 3 9 135887784 135922913 35130 2181
BRD4 Bromodomain Containing 4 19 15209301 15252262 42962 4100

C5AR1 
Complement Component 5a 
Receptor 1 19 52504944 52517167 12223 1053

CACNA1B 

Calcium Channel, Voltage-
dependent, N Type, Alpha 1B 
Subunit 9 139892062 140138897 246836 7020

CAMKK2 
Calcium/calmodulin-dependent 
Protein Kinase Kinase 2, Beta 12 120159878 120220494 60616 1773

CASR Calcium-sensing Receptor 3 123385220 123488032 102812 3237
CCKAR Cholecystokinin A Receptor 4 26092116 26101140 9024 1287
CCKBR Cholecystokinin B Receptor 11 6237542 6249932 12390 1344

CCL11 
Chemokine (C-C Motif) Ligand 
11 17 29636800 29639312 2512 294

CCL7 
Chemokine (C-C Motif) Ligand 
7 17 29621353 29623373 2021 300

CCL8 
Chemokine (C-C Motif) Ligand 
8 17 29670168 29672534 2367 300
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CCR1 
Chemokine (C-C Motif) 
Receptor 1 3 46218204 46224836 6632 1068

CCR3 
Chemokine (C-C Motif) 
Receptor 3 3 46227186 46283166 55981 1068

CCR5 
Chemokine (C-C Motif) 
Receptor 5 3 46386637 46392701 6064 1059

CCR9 
Chemokine (C-C Motif) 
Receptor 9 3 45903023 45919671 16648 1110

CD28 CD28 Molecule 2 204279443 204310801 31358 663
CD3D CD3d Molecule, Delta 11 117714999 117718669 3670 516
CD3E CD3e Molecule, Epsilon 11 117680656 117692100 11445 624
CD3G CD3g Molecule, Gamma 11 117720311 117729979 9669 549
CD4 CD4 Molecule 12 6768912 6800237 31325 1377
CDH2 Cadherin 2, Type 1, N-cadherin 18 23784933 24011189 226256 2721

CHRM3 
Cholinergic Receptor, 
Muscarinic 3 1 237858996 238139343 280347 1773

CHRM4 
Cholinergic Receptor, 
Muscarinic 4 11 46363216 46364734 1519 1440

CHRNA3 
Cholinergic Receptor, Nicotinic, 
Alpha 3 15 76674706 76700377 25671 1518

CHRNA4 
Cholinergic Receptor, Nicotinic, 
Alpha 4 20 61445109 61463192 18083 1884

CHRNA5 
Cholinergic Receptor, Nicotinic, 
Alpha 5 15 76644961 76673515 28554 1407

CHRNA6 
Cholinergic Receptor, Nicotinic, 
Alpha 6 8 42726920 42742776 15856 1485

CHRNA7 
Cholinergic Receptor, Nicotinic, 
Alpha 7 15 30110018 30248541 138523 1509

CHRNB2 
Cholinergic Receptor, Nicotinic, 
Beta 2 1 152806881 152818978 12097 1509

CLEC16A 
C-type Lectin Domain Family 
16, Member A 16 10945846 11183547 237702 3162

CNR2 Cannabinoid Receptor 2 1 24073047 24112404 39357 1083
CNTN5 Contactin 5 11 98397081 99732683 1335603 3303
CTSK Cathepsin K 1 149035311 149047436 12125 990

CXCL1 
Chemokine (C-X-C Motif) 
Ligand 1 4 74953973 74968249 14277 324

CXCL2 
Chemokine (C-X-C Motif) 
Ligand 2 4 75181616 75183861 2245 324

CXCL3 
Chemokine (C-X-C Motif) 
Ligand 3 4 75121170 75123354 2184 324

CXCL5 
Chemokine (C-X-C Motif) 
Ligand 5 4 75080223 75083286 3064 345

CYSLTR1 
Cysteinyl Leukotriene Receptor 
1 X 77414786 77469743 54957 1014

CYSLTR2 
Cysteinyl Leukotriene Receptor 
2 13 48178952 48181499 2547 1041

DPP3 Dipeptidyl-peptidase 3 11 66004456 66033706 29250 2214
DPP4 Dipeptidyl-peptidase 4 2 162557001 162639298 82297 2301
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DRD2 Dopamine Receptor D2 11 112785527 112851103 65577 1332
DRD3 Dopamine Receptor D3 3 115330247 115380589 50342 1203

DYRK3 

Dual-specificity Tyrosine-(Y)-
phosphorylation Regulated 
Kinase 3 1 204875504 204889165 13662 1784

EDG1 
Sphingosine-1-phosphate 
Receptor 1 1 101475043 101479662 4619 1149

EDNRA Endothelin Receptor Type A 4 148621575 148685555 63980 1284
EDNRB Endothelin Receptor Type B 13 77367617 77447665 80049 1446
EGR1 Early Growth Response 1 5 137829080 137832903 3823 1632
ELA2 Elastase, Neutrophil Expressed 19 803291 807246 3955 804

EVI5 
Ecotropic Viral Integration Site 
5 1 92746841 93030549 283708 2433

FAAH Fatty Acid Amide Hydrolase 1 46632575 46652104 19529 1740
FGF10 Fibroblast Growth Factor 10 5 44340831 44424623 83793 627
FH Fumarate Hydratase 1 239727526 239749677 22151 1533

GABRA2 
Gamma-aminobutyric Acid 
(GABA) A Receptor, Alpha 2 4 45946341 46086702 140362 1356

GABRA3 
Gamma-aminobutyric Acid 
(GABA) A Receptor, Alpha 3 X 151086290 151370993 284704 1479

GHSR 
Growth Hormone Secretagogue 
Receptor 3 173645617 173648940 3324 1175

GJD2 
Gap Junction Protein, Delta 2, 
36kDa 15 32831934 32834074 2141 966

GLP1R 
Glucagon-like Peptide 1 
Receptor 6 39124595 39163498 38903 1392

GPBAR1 
G Protein-coupled Bile Acid 
Receptor 1 2 218833983 218836826 2843 992

GPR109A 
G Protein-coupled Receptor 
109A 12 121751793 121753857 2064 1092

GPR119 G Protein-coupled Receptor 119 X 129346095 129347102 1007 1008

GRIN1 
Glutamate Receptor, Ionotropic, 
N-methyl D-aspartate 1 9 139152663 139183029 30367 2886

GRIN2B 
Glutamate Receptor, Ionotropic, 
N-methyl D-aspartate 2B 12 13605411 14024319 418908 4455

GRM5 
Glutamate Receptor, 
Metabotropic 5 11 87880626 88420838 540213 3543

GSK3B 
Glycogen Synthase Kinase 3 
Beta[Homo Sapiens] 3 121028233 121295954 267722 1302

HCRTR1 Hypocretin Receptor 1 1 31855888 31865508 9621 1278
HCRTR2 Hypocretin Receptor 2 6 55147025 55255377 108353 1335
HHIP Hedgehog Interacting Protein 4 145786623 145879337 92715 2103
HRH1 Histamine Receptor H1 3 11153779 11280243 126465 1464
HRH3 Histamine Receptor H3 20 60223421 60228718 5297 1338

HTR1A 
5-hydroxytryptamine (serotonin) 
Receptor 1A 5 63292034 63293302 1268 1269
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HTR1B 
5-hydroxytryptamine (serotonin) 
Receptor 1B 6 78228641 78229900 1260 1173

HTR2C 
5-hydroxytryptamine (serotonin) 
Receptor 2C X 113724807 114050880 326074 1377

HTR4 
5-hydroxytryptamine (serotonin) 
Receptor 4 5 147810788 148013934 203146 1489

HTR6 
5-hydroxytryptamine (serotonin) 
Receptor 6 1 19864367 19878642 14275 1323

IKBKB 

Inhibitor Of Kappa Light 
Polypeptide Gene Enhancer In 
B-cells, Kinase Beta 8 42247986 42309122 61136 2271

IL13 Interleukin 13 5 132021764 132024700 2936 441
IL18 Interleukin 18 11 111519186 111540050 20865 582
IL1R1 Interleukin 1 Receptor, Type I 2 102125678 102162766 37089 1710

IL23A 
Interleukin 23, Alpha Subunit 
P19 12 55018926 55020461 1536 570

IL28B Interleukin 28B 19 44426033 44427609 1577 591
IL4 Interleukin 4 5 132037272 132046267 8995 462
IL5 Interleukin 5 5 131905035 131907113 2078 405
IL6 Interleukin 6 7 22732028 22738145 6118 639
IL7R Interleukin 7 Receptor 5 35892748 35912681 19933 1380
IL8 Interleukin 8 4 74825139 74828297 3158 300

IL8RB 
Chemokine (C-X-C Motif) 
Receptor 2 2 218698991 218710220 11229 1083

ITGA4 Integrin, Alpha 4 2 182029864 182110719 80855 3099
ITGAV Integrin, Alpha V 2 187163045 187253873 90828 3147
ITGB1 Integrin, Beta 1 10 33229326 33287204 57878 2627
JAK3 Janus Kinase 3 19 17797961 17819800 21839 3375

KCNC2 

Potassium Voltage-gated 
Channel, Shaw-related 
Subfamily, Member 2 12 73720163 73889778 169615 1979

KCNMA1 

Potassium Large Conductance 
Calcium-activated Channel, 
Subfamily M, Alpha Member 1 10 78299366 79067757 768392 3574

KCNN4 

Potassium Intermediate/small 
Conductance Calcium-activated 
Channel, Subfamily N, Member 
4 19 48962525 48977249 14724 1284

KIAA1967 KIAA1967 8 22518202 22533929 15727 2772
L1CAM L1 Cell Adhesion Molecule X 152780163 152804802 24640 3774
LDHA Lactate Dehydrogenase A 11 18372687 18385969 13282 999
LEP Leptin 7 127668567 127684917 16350 504
LRRK2 Leucine-rich Repeat Kinase 2 12 38905081 39049354 144273 7584
MAG Myelin Associated Glycoprotein 19 40474868 40496547 21680 1914

MAPK11 
Mitogen-activated Protein 
Kinase 11 22 49044269 49050949 6681 1095
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MAPK14 
Mitogen-activated Protein 
Kinase 14 6 36103551 36186513 82962 1216

MCHR1 
Melanin-concentrating Hormone 
Receptor 1 22 39405045 39408764 3720 1269

MCHR2 
Melanin-concentrating Hormone 
Receptor 2 6 100474507 100548835 74328 1023

METAP2 Methionyl Aminopeptidase 2 12 94391953 94433746 41793 1437

MIF 
Macrophage Migration 
Inhibitory Factor 22 22566565 22567409 844 348

MLNR Motilin Receptor 13 48692475 48694514 2039 1239

MME 
Membrane Metallo-
endopeptidase 3 156280130 156384212 104082 2253

MMP12 Matrix Metallopeptidase 12 11 102238674 102250922 12248 1412
MMP9 Matrix Metallopeptidase 9  20 44070954 44078607 7653 2124

MS4A1 
Membrane-spanning 4-domains, 
Subfamily A, Member 1 11 59979858 59994801 14944 894

NCSTN Nicastrin 1 158579687 158595366 15679 2130

NFKBIL1 

Nuclear Factor Of Kappa Light 
Polypeptide Gene Enhancer In 
B-cells Inhibitor-like 1 6 31622626 31634585 11960 1146

NLRP1 
NLR Family, Pyrin Domain 
Containing 1 17 5345443 5428556 83113 4493

NLRP3 
NLR Family, Pyrin Domain 
Containing 3 1 245646098 245679033 32935 3111

NMNAT2 
Nicotinamide Nucleotide 
Adenylyltransferase 2 1 181484001 181654360 170360 994

NOS2A 
Nitric Oxide Synthase 2, 
Inducible 17 23107919 23151682 43763 3462

NR1D1 
Nuclear Receptor Subfamily 1, 
Group D, Member 1 17 35502567 35510499 7932 1845

NRXN1 Neurexin 1 2 50000992 51113178 1112187 4693

NTRK2 
Neurotrophic Tyrosine Kinase, 
Receptor, Type 2 9 86473286 86828325 355039 2584

OPRK1 Opioid Receptor, Kappa 1 8 54300829 54326747 25918 1143
OPRM1 Opioid Receptor, Mu 1 6 154402136 154609693 207557 1488
OSM Oncostatin M 22 28988818 28992840 4022 759
OXTR Oxytocin Receptor 3 8767094 8786300 19206 1170

P2RX7 
Purinergic Receptor P2X, 
Ligand-gated Ion Channel, 7 12 120055061 120108259 53198 1788

P4HA1 
Prolyl 4-hydroxylase, Alpha 
Polypeptide I 10 74436981 74526630 89650 1676

P4HA2 
Prolyl 4-hydroxylase, Alpha 
Polypeptide II 5 131555430 131591455 36026 1668

P4HB 
Prolyl 4-hydroxylase, Beta 
Polypeptide 17 77394323 77411833 17510 1527

PDE4A 
Phosphodiesterase 4A, CAMP-
specific 19 10392333 10441306 48974 2969
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PDE5A 
Phosphodiesterase 5A, CGMP-
specific 4 120634998 120769429 134431 2654

PGK1 Phosphoglycerate Kinase 1 X 77246425 77268980 22555 1254

PIK3CA 
Phosphoinositide-3-kinase, 
Catalytic, Alpha Polypeptide 3 180349005 180435194 86189 3207

PLA2G7 Phospholipase A2, Group VII  6 46780068 46811069 31002 1326

PPARD 
Peroxisome Proliferator-
activated Receptor Delta 6 35418313 35503933 85621 1326

PRKAG1 
Protein Kinase, AMP-activated, 
Gamma 1 Non-catalytic Subunit 12 47682322 47698863 16542 996

PSEN1 Presenilin 1 14 72672908 72756862 83955 1404
PSEN2 Presenilin 2  1 225124896 225150429 25534 1347

PSENEN 
Presenilin Enhancer 2 Homolog 
(C. Elegans) 19 40928334 40929743 1409 306

PTGDR Prostaglandin D2 Receptor  14 51804181 51813192 9011 1080
PTGER1 Prostaglandin E Receptor 1 19 14444278 14447174 2896 1209
PTGES Prostaglandin E Synthase 9 131540433 131555165 14732 459

PTGIR 
Prostaglandin I2 (prostacyclin) 
Receptor  19 51815565 51820194 4629 1161

PTGS1 
Prostaglandin-endoperoxide 
Synthase 1  9 124173050 124197802 24752 1800

PTGS2 
Prostaglandin-endoperoxide 
Synthase 2 1 184907592 184916179 8587 1815

PTHR1 
Parathyroid Hormone 1 
Receptor 3 46894240 46920293 26054 1782

PYGB Phosphorylase, Glycogen; Brain 20 25176706 25226648 49942 2532

RIPK2 
Receptor-interacting Serine-
threonine Kinase 2 8 90839110 90872433 33323 1623

RORA RAR-related Orphan Receptor A 15 58576755 59308794 732039 2032
RORC RAR-related Orphan Receptor C 1 150045171 150070972 25802 1564
RTN4 Reticulon 4 2 55052829 55131468 78640 3613
SCD Stearoyl-CoA Desaturase 10 102096762 102114578 17816 1080

SCN9A 
Sodium Channel, Voltage-gated, 
Type IX, Alpha Subunit 2 166759941 166940749 180809 5934

SDHB 
Succinate Dehydrogenase 
Complex, Subunit B, Iron Sulfur  1 17217804 17253252 35448 843

SDHD 

Succinate Dehydrogenase 
Complex, Subunit D, Integral 
Membrane Protein 11 111462832 111471727 8895 480

SIRT1 Sirtuin 1 10 69314433 69348149 33716 2244
SIRT2 Sirtuin 2 19 44061037 44082342 21306 1171
SIRT3 Sirtuin 3 11 205030 226362 21332 1200
SIRT4 Sirtuin 4 12 119224546 119235430 10885 945
SIRT5 Sirtuin 5 6 13682812 13720500 37688 976
SIRT6 Sirtuin 6 19 4125106 4133596 8490 1068
SIRT7 Sirtuin 7 17 77463107 77469332 6225 1203
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SLC10A1 
Solute Carrier Family 10, 
Member 1 14 69312305 69333759 21455 1050

SLC10A2 
Solute Carrier Family 10, 
Member 2 13 102494351 102517197 22846 1047

SLC5A1 
Solute Carrier Family 5, 
Member 1 22 30769259 30836645 67386 1995

SLC6A4 
Solute Carrier Family 6, 
Member 4 17 25545463 25586841 41379 1893

SLC6A9 
Solute Carrier Family 6, 
Member 9 1 44234742 44269721 34979 2151

SP110 SP110 Nuclear Body Protein 2 230741896 230792932 51036 2202
STIM1 Stromal Interaction Molecule 1 11 3833509 4071015 237506 2058
STK39 Serine Threonine Kinase 39 2 168518776 168812365 293590 1638
SYK Spleen Tyrosine Kinase 9 92603891 92700652 96762 1908
TACR1 Tachykinin Receptor 1 2 75129738 75280122 150385 1228
TACR2 Tachykinin Receptor 2 10 70833964 70846680 12716 1197
TACR3 Tachykinin Receptor 3 4 104730074 104860422 130348 1398
TBXA2R Thromboxane A2 Receptor 19 3545504 3557658 12154 1160

TGFB1 
Transforming Growth Factor, 
Beta 1 19 46528491 46551656 23165 1173

TGFBR1 
Transforming Growth Factor, 
Beta Receptor 1 9 100907233 100956295 49062 1512

TLR4 Toll-like Receptor 4 9 119506431 119519589 13158 2520
TLR7 Toll-like Receptor 7 X 12795123 12818401 23278 3150
TLR9 Toll-like Receptor 9 3 52230138 52235219 5081 3099

TNFRSF1A 
Tumor Necrosis Factor Receptor 
Superfamily, Member 1A 12 6308184 6321522 13338 1368

TNFSF11 
Tumor Necrosis Factor (ligand) 
Superfamily, Member 11 13 42034872 42080148 45277 954

TNNI3K TNNI3 Interacting Kinase 1 74436535 74782696 346162 2508

TRPC3 

Transient Receptor Potential 
Cation Channel, Subfamily C, 
Member 3 4 123019633 123092285 72653 2547

TRPC6 

Transient Receptor Potential 
Cation Channel, Subfamily C, 
Member 6 11 100827577 100959869 132293 2796

TRPM8 

Transient Receptor Potential 
Cation Channel, Subfamily M, 
Member 8 2 234490782 234592905 102123 3315

TRPV1 

Transient Receptor Potential 
Cation Channel, Subfamily V, 
Member 1 17 3415490 3459454 43964 2519

UTS2R Urotensin 2 Receptor 17 77925490 77926659 1169 1170

ZAP70 
Zeta-chain Associated Protein 
Kinase 70kDa 2 97696463 97722755 26292 1860

aChromosome positions based on NCBI build 36.3. 
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Table S2A.  
Differences in Gene Ontology terms between 202 study genes and the rest of the genome: 
molecular function.  
 

 GENCODEa Current Study   Odds 
Ratio GO Term Count Percent Count Percent Diff. P-value 

G-protein coupled receptor activity 383 1.9 51 25.3 23.4 4.1E-113 17.4
ion channel activity 241 1.2 19 9.4 8.2 1.3E-23 8.6
receptor activity 1291 6.4 72 35.6 29.3 2.2E-60 8.1
cytokine activity 165 0.8 11 5.5 4.6 2.4E-11 7.0
protein heterodimerization activity 245 1.2 13 6.4 5.2 3.4E-10 5.6
receptor binding 254 1.3 11 5.5 4.2 9.3E-7 4.5
protein homodimerization activity 409 2.0 15 7.4 5.4 3.5E-7 3.9
protein binding 7127 35.0 131 64.9 29.8 6.5E-18 3.4
protein serine/threonine kinase 
activity 515 2.5 16 7.9 5.4 5.8E-6 3.3
peptidase activity 483 2.4 14 6.9 4.6 8.8E-5 3.0
protein kinase activity 536 2.6 15 7.4 4.8 8.4E-5 2.9
nucleic acid binding 1159 5.7 1 0.5 -5.2 2.3E-3 0.08

aGene ontology description for all protein coding genes annotated by the GENCODE project. 
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Table S2B.  
Differences in Gene Ontology terms between 202 study genes and the rest of the genome: 
cellular component. 

 GENCODE Current Study   Odds 
Ratio GO Term Count Percent Count Percent Diff. P-value 

external side of plasma 
membrane 144 0.7 17 8.4 7.7 1.3E-32 12.8
membrane raft 121 0.6 14 6.9 6.3 3.4E-26 12.3
integral to plasma membrane 997 4.9 74 36.6 31.7 3.8E-88 11.1
postsynaptic membrane 155 0.8 15 7.4 6.7 2.5E-23 10.3
dendrite 168 0.8 15 7.4 6.6 2.2E-21 9.5
cell surface 269 1.3 22 10.9 9.6 1.5E-28 9.0
neuronal cell body 190 0.9 15 7.4 6.5 1.1E-18 8.4
plasma membrane 2939 14.5 113 55.9 41.5 1.5E-59 7.4
membrane fraction 522 2.6 26 12.9 10.3 2.0E-18 5.6
synapse 271 1.3 12 5.9 4.6 1.6E-7 4.6
extracellular space 748 3.7 26 12.9 9.2 4.6E-11 3.8
cell junction 403 2.0 14 6.9 5.0 3.0E-6 3.6
integral to membrane 4471 22.0 100 49.5 27.5 4.9E-20 3.4
endoplasmic reticulum 933 4.6 22 10.9 6.3 5.9E-5 2.5
endoplasmic reticulum 
membrane 553 2.7 13 6.4 3.7 3.1E-3 2.4
extracellular region 1867 9.2 34 16.8 7.7 3.8E-4 2.0
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Table S2C.  
Differences in Gene Ontology terms between 202 study genes and the rest of the genome: 
biological process. 
 

 GENCODE Current Study   Odds 
RatioGO Term Count Percent Count Percent Diff. P-value 

positive regulation of peptidyl-tyrosine 
phosphorylation 47 0.2 11 5.5 5.2 1.5E-39 24.6
elevation of cytosolic calcium ion 
concentration 99 0.5 19 9.4 8.9 1.5E-58 21.0
cellular calcium ion homeostasis 69 0.3 13 6.4 6.1 7.2E-39 20.0
chemotaxis 130 0.6 18 8.9 8.3 1.4E-40 15.1
inflammatory response 245 1.2 31 15.4 14.1 1.5E-64 14.7
response to ethanol 80 0.4 11 5.5 5.1 2.8E-24 14.4
calcium ion transport 124 0.6 15 7.4 6.8 2.1E-29 12.9
cell surface receptor linked signaling 
pathway 233 1.2 26 12.9 11.7 2.2E-47 12.6
response to lipopolysaccharide 121 0.6 12 5.9 5.4 4.2E-19 10.4
synaptic transmission 178 0.9 17 8.4 7.5 4.2E-26 10.3
immune response 347 1.7 29 14.4 12.7 1.2E-38 9.6
response to hypoxia 166 0.8 14 6.9 6.1 9.3E-19 9.0
G-protein coupled receptor protein 
signaling pathway 905 4.5 56 27.7 23.3 5.9E-53 8.2
positive regulation of apoptosis 159 0.8 12 5.9 5.2 3.2E-14 7.9
response to drug 281 1.4 18 8.9 7.5 1.4E-17 6.9
positive regulation of cell proliferation 351 1.7 20 9.9 8.2 6.4E-17 6.2
cell-cell signaling 250 1.2 14 6.9 5.7 1.1E-11 5.9
protein amino acid phosphorylation 576 2.8 24 11.9 9.1 2.3E-13 4.6
negative regulation of cell proliferation 324 1.6 14 6.9 5.3 2.0E-8 4.6
ion transport 532 2.6 21 10.4 7.8 6.8E-11 4.3
positive regulation of transcription from 
RNA polymerase II promoter 375 1.8 14 6.9 5.1 6.5E-7 3.9
signal transduction 1309 6.4 41 20.3 13.9 1.4E-14 3.7
cell proliferation 326 1.6 11 5.5 3.8 7.4E-5 3.5
apoptosis 518 2.6 16 7.9 5.4 6.5E-6 3.3
cell adhesion 553 2.7 15 7.4 4.7 1.4E-4 2.8
transport 752 3.7 20 9.9 6.2 1.2E-5 2.8
proteolysis 477 2.4 11 5.5 3.1 9.0E-3 2.4
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Table S3. 
Genotype data quality assessments. 
 

Validation Experiment Measure 
All 

variants Singletons 
130 sample duplicates Heterozygote discordance 0.92% 1.5% 
 Heterozygote error rate 0.50% - 
Capillary sequence, 245 
singletons 

False discovery rate - 2.0% 

1000 Genomes high coverage 
trios 

Heterozygote discordance 0.95% 0.0% 

30 parent offspring trios Mendelian error rate 0.06% 4.8% 
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Table S4.  
Overview of sequenced sample collections.  
 

 
 

   
Passed Quality 

Control 
Collection Ethnicity Countrya Platedb Sequenced Count Percent
CoLaus European Switzerland 2086 2064 2059 99%
LOLIPOP European United Kingdom 549 541 541 99%

 
Indian 
Asian United Kingdom 499 497 497 100%

 Other United Kingdom 285 284 284 100%
Metabolic Syndrome 
(GEMS), Trioc European Canada 35 35 35 100%
 European Finland 45 45 45 100%
Metabolic Syndrome 
(GEMS), Case European Australia 188 188 186 99%
 European Canada 283 281 280 99%
 European Finland 75 75 75 100%
 European Switzerland 158 158 157 99%
 European United States 84 84 84 100%
Metabolic Syndrome 
(GEMS), Control European Australia 192 191 190 99%
 European Canada 253 250 250 99%
 European Finland 80 80 80 100%
 European Switzerland 177 177 176 99%
 European United States 90 90 85 94%
Coronary Artery 
Disease (MedStar) European United States 609 608 604 99%
Osteoarthritis 
(GOGO) European United Kingdom 300 298 298 99%
 European United States 536 534 534 100%
Irritable Bowel 
Syndrome European Canada 165 165 165 100%
 European United States 152 152 152 100%
Rheumatoid Arthritis European United Kingdom 615 611 611 99%
Multiple Sclerosis 
(geneMSA) European Netherlands 158 158 158 100%
 European Switzerland 176 176 175 99%
 European United States 339 339 337 99%
Multiple Sclerosis, 
Case 

African 
American United States 340 339 339 100%

Multiple Sclerosis, 
Control 

African 
American United States 260 254 252 97%

Epilepsy (GenEpa) European Switzerland 125 125 111 89%
Epilepsy (HitDIP) European Finland 185 183 164 89%
Alzheimer's Disease European Canada 705 700 687 97%
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aCountry where subjects were recruited into their respective study. 
bCount of subject DNA samples that were plated for sequencing. 
cA total of 30 trios were sequenced, however some trio members are included as cases or 
controls and hence included in the counts above.  
  

(genADA) 
Unipolar depression European Germany 775 758 741 96%
Bipolar disorder European Canada 376 376 374 99%
 European United Kingdom 81 81 80 99%
 European England 329 329 323 98%
Schizophrenia European Canada 254 254 254 100%
 European Germany 336 336 330 98%
 European United Kingdom 221 221 219 99%
 European United Kingdom 298 298 296 99%
Chronic Obstructive 
Pulmonary Disease 
(HitDIP) European Norway 782 781 780 100%
Chronic Obstructive 
Pulmonary Disease 
(ECLIPSE) European Bulgaria 52 52 52 100%
 European Canada 96 96 95 99%
 European Czech Republic 27 27 27 100%
 European Denmark 44 44 43 98%
 European Netherlands 74 72 71 96%
 European Norway 150 150 148 99%
 European Slovenia 74 72 72 97%
 European Spain 32 32 32 100%
 European United Kingdom 187 186 185 99%
 European United States 266 264 263 99%
1000 Genomes 
Project European Nigeria 3 3 3 100%
 European United States 3 3 3 100%
Total   14204 14117 14002 99%
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Table S5A.  
Single nucleotide variants observed in 12,514 European subjects by frequency and class. 
 

Nonsense 
Readthrough NS S Splice UTR Intron Flank Total 

Singleton 200 5978 3316 181 8323 4870 376 23244 
Doubleton 31 1293 874 30 1927 1097 87 5339 
(0.0001,0.001]a 24 1463 1089 59 2623 1538 93 6889 
(0.001,0.005] 3 196 177 14 478 304 16 1188 
(0.005,0.02] 0 101 92 4 215 131 14 557 
(0.02,0.05] 0 36 46 1 134 60 3 280 
(0.05,0.5] 2 105 209 10 414 280 18 1038 
Total 260 9172 5803 299 14114 8280 607 38535 
Unobservedb 34 1823 1422 65 3538 2106 152 9140 

aExcludes doubletons that may have MAF up to 0.00016 if 50% of genotypes are missing. 
bSNVs observed in the overall study but not in 12,514 Europeans. 
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Table S5B.  
Single nucleotide variants observed in 594 African American subjects by frequency and class. 
 

 
Nonsense 

Readthrough NS S Splice UTR Intron Flank Total 

Singleton 17 905 683 30 1649 964 69 4317 
Doubleton 1 173 148 9 420 237 24 1012 

(0.002,0.005]a 1 173 211 10 464 258 20 1137 
(0.005,0.02] 1 198 249 11 648 344 25 1476 
(0.02,0.05] 2 88 139 5 323 171 21 749 
(0.05,0.5] 2 129 260 10 555 414 20 1390 
Total 24 1666 1690 75 4059 2388 179 10081 
Unobservedb 270 9329 5535 289 13593 7998 580 37594 

 aExcludes doubletons that may have MAF up to 0.0034 if 50% of genotypes are missing. 
bSNVs observed in the overall study but not in 594 African Americans. 
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Table S5C.   
Single nucleotide variants observed in 567 South Asian subjects by frequency and class. 
 

 
Nonsense 

Readthrough NS S Splice UTR Intron Flank Total 

Singleton 16 806 573 25 1392 844 53 3709 
Doubleton 1 163 128 2 322 186 14 816 

(0.002,0.005]a 1 115 122 4 260 161 13 676 
(0.005,0.02] 2 123 120 7 313 172 12 749 
(0.02,0.05] 1 41 77 4 149 50 6 328 
(0.05,0.5] 1 93 202 8 434 303 18 1059 
Total 22 1341 1222 50 2870 1716 116 7337 
Unobservedb 272 9654 6003 314 14782 8670 643 40338 

aExcludes doubletons that may have MAF up to 0.0035 if 50% of genotypes are missing. 
bSNVs observed in the overall study but not in 567 South Asians. 
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Table S6.   
Overlap of variants from Online Mendelian Inheritance in Man (OMIM) with those observed in 
the current study. 

European Southern Asian 
African 

American 

Variant Number Evidence 
GENE   
Variant 

Mode of 
Inherit Disease MAF MAC MAF MAC MAF MAC

APP 
chr21_26191825 Low GLU665ASP Dominant ALZHEIMER DISEASE 8.0E-5 2 0.0 0 0.0 0 
chr21_26185979 Low ALA713THR Dominant 8.0E-5 2 0.0 0 0.0 0 

CASR 

chr3_123455763 High LEU13PRO Recessive 
HYPOCALCIURIC 
HYPERCALCEMIA 4.0E-5 1 0.0 0 0.0 0 

chr3_123485908 Medium PHE806SER Dominant HYPOPARATHYROID 4.0E-5 1 0.0 0 0.0 0 
CD3G 

chr11_117720349 Medium MET1VAL Recessive IMMUNODEFICIENCY 4.0E-5 1 0.0 0 0.0 0 
DRD2 

chr11_112792867 Low VAL154ILE Dominant 
MYOCLONUS-
DYSTONIA SYNDROME 4.0E-5 1 0.0 0 0.0 0 

EDNRB 
chr13_77390541 High GLY57SER Recessive HIRSCHSPRUNG 

DISEASE - SUS. 
7.8E-3 195 8.9E-4 1 8.4E-4 1 

chr13_77373231 Medium SER305ASN Recessive 1.3E-2 321 0.0 0 5.9E-3 7 
GHSR 

chr3_173648189 High ARG237TRP Recessive 
SHORT STATURE - 
IDIOPATHIC 2.0E-4 5 1.8E-3 2 0.0 0 

LRRK2 
chr12_38990503 High ARG1441CYS Dominant 

PARKINSON'S DISEASE 

4.0E-5 1 0.0 0 8.4E-4 1 
chr12_39020469 High GLY2019SER Dominant 3.6E-4 9 0.0 0 0.0 0 

chr12_39043595 High 
GLY2385AR
G Dominant 4.0E-5 1 8.9E-4 1 0.0 0 
MMP9 

chr20_44070974 Medium MET1LYS Recessive 
METAPHYSEAL 
ANADYSPLASIA 8.0E-5 2 6.2E-3 7 0.0 0 

PLA2G7 

chr6_46785057 High VAL279PHE Recessive 

PLATELET-
ACTIVATING FACTOR 
ACETYLHYDROLASE 
DEFICIENCY 3.4E-4 8 1.8E-3 2 0.0 0 

PSEN1 
chr14_72707406 High ALA79VAL Dominant 

ALZHEIMER DISEASE 

4.0E-5 1 0.0 0 0.0 0 
chr14_72723321 High HIS163ARG Dominant 1.2E-4 3 0.0 0 0.0 0 

chr14_72723321 High HIS163TYR 
Dominant 
 1.2E-4 3 0.0 0 0.0 0 

chr14_72748272 High ASP333GLY Dominant 
CARDIOMYOPATHY - 
DILATED 0.0 0 0.0 0 2.5E-3 3 

PSEN2 
chr1_225138141 Medium ALA85VAL Dominant ALZHEIMER DISEASE 4.0E-5 1 0.0 0 0.0 0 

chr1_225139894 High SER130LEU Dominant 
CARDIOMYOPATHY - 
DILATED 1.4E-3 34 0.0 0 0.0 0 

chr1_225149872 Medium ASP439ALA Dominant ALZHEIMER DISEASE 1.2E-4 3 0.0 0 0.0 0 
SCN9A 

chr2_166876329 Low ILE62VAL Dominant FEBRILE CONVULSIONS 8.1E-5 2 0.0 0 0.0 0 

chr2_166849262 High ASN641TYR Dominant GENERALIZED 
EPILEPSY W/ FEBRILE 
SEIZURES 

4.0E-5 1 0.0 0 0.0 0 

chr2_166846542 High LYS655ARG Dominant 2.4E-3 59 0.0 0 2.5E-3 3 
chr2_166842007 High LEU858HIS Dominant ERYTHERMALGIA 4.0E-5 1 0.0 0 0.0 0 

chr2_166837487 High ARG996 CYS Codom 

PAROXYSMAL 
EXTREME PAIN 
DISORDER 4.2E-5 1 0.0 0 0.0 0 

SDHB 

chr1_17253094 High ALA3GLY Dominant 
COWDEN-LIKE 
SYNDROME 1.7E-4 4 0.0 0 4.2E-2 49 

chr1_17227710 Medium HIS132PRO Dominant PARAGANGLIOMAS 4.0E-5 1 0.0 0 0.0 0 
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 aMAF: minor allele frequency. 
bMAC: minor allele count. 
  

chr1_17226884 High SER163PRO Dominant 
COWDEN-LIKE 
SYNDROME 1.5E-2 364 1.5E-2 17 3.4E-3 4 

chr1_17221730 High ARG242HIS Dominant 
PARAGANGLIOMAS 4 
PHEOCHROMOCYTOMA 0.0 0 0.0 0 8.4E-4 1 

SDHD 
chr11_111463887 High HIS50ARG Dominant CARCINOID TUMORS 8.6E-3 215 2.7E-3 3 0.0 0 

chr11_111464873 High PRO81LEU Dominant 
PARAGANGLIOMAS 1 
PHEOCHROMOCYTOMA 4.0E-5 1 0.0 0 0.0 0 

SLC10A2 

chr13_102499774_A Medium 
THR262 
MET Recessive 

BILE ACID 
MALABSORPTION - 
PRIMARY 2.4E-4 6 8.8E-4 1 8.4E-4 1 

SLC6A4 

chr17_25562500 High ILE425VAL 

OBSESSIVE-
COMPULSIVE 
DISORDER - SUS. 8.8E-4 22 0.0 0 1.7E-3 2 

TACR3 

chr4_104860004 Medium GLY93ASP Recessive 
HYPOGONADOTROPIC 
HYPOGONADISM 0.0 0 0.0 0 0.0 0 
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Table S7.   
Sample sizes and summary statistics for case-control analyses. 
 

Study 

Case: 
Control 
Ratio Cases Controls

Genetic 
Distancea

Inflation λb 

Common
Amino 
Acid Functional

Alzheimer's 1:10 649 6490 0.018 1.09 1.16 1.08
Bipolar Disorder 1:6 778 4667 0.018 1.01 1.32 1.08
COPD 1:6 947 5682 0.017 1.18 1.41 1.41
Coronary Artery Disease 1:8 604 4832 0.018 1.19 1.28 1.03
Dyslipidemia 1:1 769 769 N/A 1.07 1.50 1.20
Epilepsy 1:50 120 6000 0.017 1.09 1.31 1.43
Irritable Bowel 
Syndrome 1:12 314 3768 0.014 1.26 1.40 1.39
Multiple Sclerosis 1:10 642 6420 0.019 1.12 1.01 0.99
Osteoarthritis 1:6 798 4788 0.019 2.18 1.51 1.62
Rheumatoid Arthritis 1:6 608 3648 0.019 1.31 1.83 1.32
Schizophrenia 1:4 1066 4264 0.018 1.12 1.63 1.28
Unipolar Depression 1:6 718 4308 0.020 1.35 1.32 1.54

aMedian Euclidean genetic distance between cases and controls 
bGenomic control λ for common variant and aggregate rare variant tests, including all amino 
acid-changing variants and just those predicted to be functional by PolyPhen or SIFT, or 
occurring at evolutionarily conserved bases. 
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Table S8.   
Overlap of genes and disease traits with NHGRI GWAS Catalog. 
 

Study Trait Gene NHGRI Reported Trait 
NHGRI 
Reported Gene Reference 

Bipolar Disorder CNTN5 Bipolar disorder and schizophrenia CNTN5 (77) 
Schizophrenia CNTN5 Bipolar disorder and schizophrenia CNTN5 (77) 

COPD HHIP 
Chronic obstructive pulmonary 
disease HHIP (49, 78) 

Coronary Artery 
Disease OPRM1 Coronary heart disease OPRM1 (79) 
Unipolar Depression RORA Depression--quantitative trait RORA (80) 
Unipolar Depression ITGB1 Depression--quantitative trait ITGB1 (80) 
Multiple Sclerosis TNFRSF1A Multiple sclerosis TNFRSF1A (81) 
Multiple Sclerosis IL6a N/A N/A (76) 
Multiple Sclerosis IL7R Multiple sclerosis IL7R (76, 81, 82) 
Multiple Sclerosis EVI5 Multiple sclerosis EVI5, RPL5 (82, 83) 
Multiple Sclerosis CLEC16A Multiple sclerosis CLEC16A (81, 82) 
Schizophrenia PTGS2 Schizophrenia Intergenic (84) 
Coronary Artery 
Disease CHRNA5 Sudden cardiac arrest CHRNB4 (85) 
Coronary Artery 
Disease CHRNA3 Sudden cardiac arrest CHRNB4 (85) 

aThe association between IL6 and multiple sclerosis reported in reference (76) was not included 
in the NHGRI GWAS catalog due to stringent significance criteria.  As this was one of the top-
associated genes in that report (p = 5.9×10-8; more significant than IL7R and several other 
associations reported in this table) and it overlaps with the current study, we include it here.  
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Table S9.   
Statistically significant rare variant associations resulting from GWAS candidate gene analysis. 
 

    
Carrier/Noncarrier 

Count P-valueb Odds 
Ratio  

 
Study GENE Test MAFa Controls Cases Unadjusted Adjusted (95% CI) 
Multiple 
Sclerosis IL6 

Functionally 
Damaging 0.0006 4/6393 4/635 0.0014 0.0071 12.3 (3.1,49.8) 

Multiple 
Sclerosis IL6 

Amino Acid 
Changing 0.0015 15/6382 6/633 0.0043 0.0215 4.9 (1.9,12.9) 

Multiple 
Sclerosis TNFRSF1A 

Amino Acid 
Changing 0.0023 25/6372 8/631 0.0056 0.0277 3.6 (1.6,8.2) 

Unipolar 
Depression ITGB1 

Amino Acid 
Changing 0.0044 42/4251 2/716 0.0240 0.0481 0.3 (0.1,1.1) 

aCumulative minor allele frequency in cases and controls. 
bP-value adjusted for the number of candidate genes for each disease (see Supplementary Table 
X). 
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Table S10.  
Sample sizes for population genetic and geographic analyses. 
 

 # individuals sampled # chromosomes in 
frequency spectraa 

African-American 594 1,168 
Southern Asia 567 1,068 
Europe 12,514 22,000 
North-Western Europe 2,489 4,546 
North European 963 1,838 
Finland 261 474 
Western Europe 1,625 3,006 
Central Europe 946 1,734 
Eastern Europe 263 482 
South-Western Europe 289 532 
South-Eastern Europe 370 688 

aAll samples were down-sampled to retain 80% of all targeted sites, except for the European 
continental sample, where the number was rounded down to an even number (84.6% of all sites 
retained). 
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Table S11.  
Single-nucleotide variant transition:transversion ratios.   
 

 All Variants Singletons Doubletons MAF > 0.1% and 
Missing < 10% 

Nonsynonymous 2.10 1.90 2.57 2.25 
Synonymous 4.79 4.25 5.23 5.20 
UTR 2.00 1.82 2.29 2.45 
Intron 2.04 1.97 2.22 2.15 
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Table S12.   
Discordant genotypes and rates observed in 130 sample duplicates.  
 

Sample 1 Sample 2 Genotypea Discordance Rate 
Genotype 0 1 2 Overall Heterozygote 

All variant positions (N = 44,230)    
0 5,169,859 313 0 7.05E-5 9.23E-3 
1  39,625 56   
2   24,418   

Variants in dbSNP (N = 2,641)    
0 257,216 146 0 6.22E-4 5.38E-3 
1  36,573 52   
2   24,308   

Variants not in dbSNP (N = 41,589)   
0 4,912,643 167 0 3.48E-5 5.31E-2 
1  3,051 4   
2   110   

Singleton variants (N = 25477)    
0 2,949,160 3 0 1.02E-6 1.45E-2 
1  204 0   
2   0   

aSample genotypes are categorized as 0, 1 and 2 corresponding to reference homozygote, 
heterozygote or non-reference homozygote, respectively.  As duplicate sample order is arbitrary, 
all discordant genotype counts are presented in the upper triangle. 
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Table S13.  
Genotype error rate estimates based on duplicate discordance assuming a single-allele error 
model. 
 

Observed True Genotypea 
Genotype 0 1 2 
All variant positions (N = 44,230)  

0 1.00E+00 3.94E-3 0.00E+00
1 2.36E-11 9.95E-1 8.34E-5
2 0.00E+00 6.48E-4 1.00E+00

Total Error Rate 2.36E-11 4.59E-3 8.34E-5
Variants in dbSNP (N = 2,641)  

0 1.00E+00 1.36E-3 0.00E+00
1 9.09E-5 9.98E-1 7.48E-5
2 0.00E+00 6.56E-4 1.00E+00

Total Error Rate 9.09E-5 2.02E-3 7.48E-5
Variants not in dbSNP (N = 41,589)  

0 1.00E+00 2.67E-2 0.00E+00
1 4.65E-21 9.73E-1 1.73E-6
2 0.00E+00 6.27E-4 1.00E+00

Total Error Rate 4.65E-21 2.73E-2 1.73E-6
aSample genotypes are categorized as 0, 1 and 2 corresponding to reference homozygote, 
heterozygote or non-reference homozygote, respectively.   
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Table S14.  
Discordant genotypes and rates observed comparing genotypes from current study to two 1000 
Genomes Project deep sequenced trios. 
 

 1000 Genomes Genotypea Discordance Rate 
Genotype 0 1 2 Overall Heterozygote 
CEU and YRI combined    

0 1900 12 0 4.21E-3 9.52E-3 
1 3 1769 2   
2 0 0 349   

CEU trio      
0 932 4 0 3.18E-3 7.44E-3 
1 2 800 0   
2 0 0 146   

YRI trio      
0 968 8 0 5.11E-3 1.12E-2 
1 1 969 2   
2 0 0 203   

aSample genotypes are categorized as 0, 1 and 2 corresponding to reference homozygote, 
heterozygote or non-reference homozygote, respectively.   
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Table S15. 
Influence of coding length, GC content and average phyloP on measures of nonsynonymous 
gene diversity and mutation among genes. 
 

Response Common NS Rare NS cMAF Mutation Rate 
β pb β p β p β p 

(intercept) 0.1918 3.557 4.81E-4 1.29E-8 
Coding Length 0.000062 3.2E-8 0.0246 <1e-15 3.26E-6 <1e-15 6.27E-13 0.11 
r2 0.15 0.71 0.53 0.013 

Coding Length 
Adjusteda 
(intercept) 0.00241 0.0211 2.06E-6 4.88E-9 
GC Content -0.00021 0.65 0.0334 2.2E-5 -2.82E-7 0.63 1.82E-8 1.9E-3 
phyloP -0.00122 9.0E-7 -0.0095 9.8E-8 8.32E-7 0.01 -3.40E-10 0.75 
r2 0.12 0.2 0.03 0.05 

aMutation rate was not adjusted for coding length, all other response variables were divided by 
length of successfully sequenced coding regions 
bP values computed by likelihood ratio F test (complete versus reduced model) 
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Table S16.  
Annotation nonsynonymous SNVs by PolyPhen and SIFT as a function of allele frequency in 
12,514 Europeans.  
 
 PolyPhen SIFTa 

 Benign 
Possibly 

Damaging
Probably 

Damaging Tolerated
Damaging 

(Low Conf) Damaging 
Singleton 3532 1248 1089 2937 763 2371 
Doubleton 807 253 212 680 160 469 
(0,0.001] 857 311 258 779 202 510 
(0.001,0.005] 127 39 21 121 18 56 
(0.005,0.05] 96 23 13 86 12 41 
(0.05,0.5] 64 21 5 85 10 11 

aPredictions are based on SIFT score as tolerated (score > 0.05), damaging with low confidence 
warning (score ≤ 0.05), and damaging (score ≤ 0.05). 
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Table S17.  
Correspondence between PolyPhen and SIFT predictions of nonsynonymous SNVs in 
Europeans. 
 

 PolyPhen 

SIFT Benign
Possibly 

Damaging 
Probably 

Damaging 
Tolerated 4593 642 218 
Damaging (Low Conf) 457 391 291 
Damaging 1483 1199 1345 
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Additional Data table S1 (separate file) 
Target regions of sequenced genes. The column names and a brief description, where needed, are 
given below. 
 
Gene – RefSeq build 36 gene name 
Gene37 – RefSeq build 37 gene name 
Chromosome 
Exon.NCBI.36.Start – Exon start position 
Exon.NCBI.36.Stop – Exon stop position 
Exon.plus.50.bp.flanking.sequence.NCBI.36.Start – Target start position 
Exon.plus.50.bp.flanking.sequence.NCBI.36.Stop – Target stop position 
Entrez.Gene.ID 
Transcript – Entrez transcript ID 
Ensembl.Gene.ID 
Ensembl.Transcript.ID  
code – Number of coding bases in target region 
utr– Number of UTR bases in target region 
intron – Number of intronic bases in target region 
upstream – Number of upstream bases in target region 
downstream – Number of downstream bases in target region 
code.cover – Corresponding bases with at least 50% genotypes called 
utr.cover  
intron.cover  
upstream.cover  
downstream.cover  
TargetLength – Total target length 
CoverLength – Total target length with at least 50% of genotypes called 
 

  



 
 

73 
 

Additional Data table S2 (separate file) 
Variants and their annotations.  The column names and a brief description, where needed, are 
given below. 
 
VARIANT_ID – Variant ID: NCBI build 36 chromosome, position and minor allele (if multi-
allelic) 
RSID – RefSNP ID 
CHROMOSOME  
POSITION  
GENE – RefSeq build 36 gene name 
REF_ALLELE – Reference allele 
REF_ALLELE_COUNT – Count of observed alleles 
VARIANT – Non-reference allele 
VARIANT_COUNT – Count of observed alleles 
MISSING – Fraction of missing genotypes 
FEATURE – Variant feature 
UP_ID – UniProt ID 
UNIPROT_POSITION  
AA1 – Reference amino acid 
AA2 – Non-reference amino acid 
MINOR_ALLELE – Which allele has frequency less than 0.5 in full resequenced sample 
MINOR_ALLELE_COUNT – Minor allele count 
MULTI_ALLELE  – Which allele this is observed at this base position in descending 
frequency 
HOM_N – Number of major homozygote genotypes observed 
HOM_DEPTH_AVG – Major homozygote average depth 
HOM_Q_AVG – Major homozygote average consensus quality 
HET_N – Number of heterozygote genotypes observed 
HET_DEPTH_AVG – Heterozygote average depth 
HET_Q_AVG – Heterozygote average consensus quality 
Eur.MA_COUNT – Minor allele count in Europeans 
Eur.NOBS – Number of genotypes observed in Europeans 
Eur.FREQ – European minor allele frequency (minor allele defined in full sample) 
Europe.W.FREQ – Western European 
Europe.W.NOBS 
Europe.C.FREQ – Central European  
Europe.C.NOBS 
Europe.SW.FREQ – Southwestern European 
Europe.SW.NOBS 
Europe.S.FREQ – Southern European 
Europe.S.NOBS  
Europe.SE.FREQ – Southeastern European 
Europe.SE.NOBS 
Europe.E.FREQ – Eastern European 
Europe.E.NOBS 
Europe.NW.FREQ – Northwestern European 
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Europe.NW.NOBS 
Europe.N.FREQ – Northern European 
Europe.N.NOBS 
Finnish.FREQ  – Finnish 
Finnish.NOBS 
African_American.MA_COUNT  
African_American.NOBS  
African_American.FREQ  
UN_Southern_Asia.MA_COUNT  
UN_Southern_Asia.NOBS  
UN_Southern_Asia.FREQ  
POLYPHEN_PREDICTION – PolyPhen prediction for nonsynonymous variants 
PSIC – PolyPhen position-specific independent counts 
SIFT_PREDICTION – SIFT prediction 
SIFT_SCORE – SIFT score 
PHYLOP – phyloP score based on 46-way placental alignment 
CHROMOSOME 
  



 
 

75 
 

Additional Data table S3 (separate file) 
Folded site frequency spectra of all four-fold degenerate sites for the 188 autosomal genes used 
for the demographic inference. The spectra were calculated for a sample of 11,000 Europeans as 
detailed.  One column corresponds to each gene and one row for each minor allele bin count. 
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