Association of Mitochondrial DNA levels with Frailty and All-Cause Mortality

Foram N. Ashar, B.S*., Anna Moes, M.S*., Ann Z. Moore, Ph.D., Megan L. Grove, M.S., Paulo

H.M. Chaves, M.D., Ph.D., Josef Coresh, M.D., Ph.D., Anne B. Newman, M.D., M.P.H., Amy

M. Matteini, Ph.D., Karen Bandeen-Roche, Ph.D., M.S., Eric Boerwinkle, Ph.D., Jeremy D.

Walston, M.D., and Dan E. Arking, Ph.D.

From the McKusick-Nathans Institute of Genetic Medicine (F.N.A., A.M., D.E.A.), Department of Medicine (D.E.A.) and Division of Geriatric Medicine and Gerontology (A.M.M, J.D.W.), Johns Hopkins University School of Medicine, Baltimore, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (A.Z.M., J.C.); Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA (M.L.G., E.B.); Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA (A.B.N.); Department of Biostatistics, Johns Hopkins University, Baltimore, USA (K.B.R.); Benjamin Leon Center for Geriatric Research and Education and Department of Medicine, Florida International University, Miami, USA (P.H.M.C.)

*Ms. Ashar and Ms. Moes contributed equally to this article.

Word count: 2,780

Corresponding Author:

Dan E. Arking, Ph.D. Johns Hopkins University School of Medicine 733 N. Broadway Miller Research Building, Room 447 Baltimore, MD 21205 (410) 502-4867 Office (410) 614-8600 FAX arking@jhmi.edu

Supplementary Figure 1: Effects of mtDNA copy number on cause-specific mortality

		Hazard Ratio	
Study	Events		HR 95%-Cl
Diseases of the Circulatory Syste			
CHS-whites	860		1.32 [1.06; 1.63]
CHS-blacks	126		1.46 [0.86; 2.46]
ARIC-whites	656	-	- 2.59 [2.02; 3.32]
ARIC-blacks	383		2.07 [1.49; 2.87]
Fixed effect model	0	\diamond	1.79 [1.55; 2.06]
Random effects model		\diamond	1.81 [1.26; 2.61]
Heterogeneity: I-squared=83%, tau-squa	red=0.1106, Q=17.6	5, df=3, p=0.0005	
Needland			
Neoplasms	4.45		
CHS-whites	445	-	1.54 [1.15; 2.07]
CHS-blacks	77		0.85 [0.42; 1.71]
ARIC-whites	864		1.35 [1.10; 1.65]
ARIC-blacks	238	-	0.87 [0.58; 1.31]
Fixed effect model	0	\diamond	1.29 [1.11; 1.50]
Random effects model		\diamond	1.21 [0.94; 1.57]
Heterogeneity: I-squared=54.2%, tau-sq	uared=0.0349, Q=6.	5, df=3, p=0.0878	
Diseases of the Respiratory Syst	em		
CHS-whites	170		1.69 [1.05; 2.72]
CHS-blacks	22 —	•	0.63 [0.18; 2.16]
ARIC-whites	224		1.43 [0.94; 2.18]
ARIC-blacks	45		- 1.38 [0.51; 3.70]
Fixed effect model	0	\sim	1.45 [1.08; 1.94]
Random effects model		\diamond	1.45 [1.08; 1.94]
Heterogeneity: I-squared=0%, tau-squar	ed=0, Q=2.2, df=3,	p=0.5413	
	0.2	0.5 1 2	5

Hazards ratio reflect effect of lowest quintile of mtDNA relative to highest quintile on survival. Baseline models were adjusted for age, sex, and collection site. Heterogeneity between estimates of HR for subgroups of cause of death was evaluated using a random effects model. Diseases of the circulatory system were defined by ICD9 codes 390-459, neoplasms by 140-239 and diseases of the respiratory system by 460-519.

Supplementary Table 1: Sample characteristics stratified by collection site-adjusted quintiles

			CHS-Whites			
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	Pval
No. of samples	819	822	821	822	822	
Age (in yrs)	73.0 +/- 0.2	72.8 +/- 0.2	72.5 +/- 0.2	72.2 +/- 0.2	71.9 +/- 0.2	< 0.001
Number of malesno (%)	407 (49.7)	409 (49.7)	368 (44.8)	328 (39.9)	302 (36.7)	< 0.001
Follow up time (in yrs)	11.09 +/- 0.18	11.7 +/- 0.17	12.27 +/- 0.17	12.4 +/- 0.17	12.99 +/- 0.16	< 0.001
No. of deathsno (%)	580 (70.8)	539 (65.7)	494 (60.2)	487 (59.3)	430 (52.3)	< 0.001
Mean age at death (in yrs)	83.15 +/- 0.27	83.4 +/- 0.26	83.7 +/- 0.28	83.26 +/- 0.27	83.49 +/- 0.3	0.42
				CHS-Blacks		
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	Pval
No. of samples	156	157	156	157	157	
Age (in yrs)	74.0 +/- 0.5	73.1 +/- 0.5	72.8 +/- 0.5	72.5 +/- 0.4	72.2 +/- 0.4	0.002
Number of malesno (%)	74 (47.44)	53 (33.76)	52 (33.33)	62 (39.49)	61 (38.85)	0.18
Follow up time (in yrs)	9.86 +/- 0.34	10.19 +/- 0.36	10.15 +/- 0.35	10.98 +/- 0.34	10.67 +/- 0.35	0.03
No. of deathsno (%)	94 (0.6026)	87 (0.5541)	92 (0.5897)	73 (0.465)	83 (0.5287)	0.07
Mean age at death (in yrs)	82.77 +/- 0.73	82.18 +/- 0.71	81.72 +/- 0.74	81.86 +/- 0.77	81.2 +/- 0.67	0.09
	ARIC-Whites					
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	Pval
No. of samples	1804	1805	1805	1805	1805	NA
Age (in yrs)	58.85 +/- 0.14	58.23 +/- 0.14	58.13 +/- 0.14	57.84 +/- 0.14	57.56 +/- 0.14	< 0.001
Number of malesno (%)	896 (49.7)	853 (47.3)	845 (46.8)	814 (45.1)	835 (46.3)	0.002
Follow up time (in yrs)	15.77+/-0.13	16.66+/-0.12	16.58+/-0.11	17.14+/-0.1	17.03+/-0.11	< 0.001
No. of deathsno (%)	638 (35.4)	497 (27.5)	501 (27.8)	399 (22.1)	400 (22.2)	< 0.001
Mean age at death (in yrs)	72.05 +/- 0.31	72.7 +/- 0.34	72.97 +/- 0.32	71.91 +/- 0.38	72.26 +/- 0.38	0.68
	ARIC-Blacks					
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5	Pval
No. of samples	496	497	496	497	497	NA
Age (in yrs)	57.99 +/- 0.28	57.28 +/- 0.27	57.3 +/- 0.27	57.18 +/- 0.27	56.64 +/- 0.26	0.002
Number of malesno (%)	188 (37.9)	178 (35.8)	193 (38.9)	185 (37.2)	177 (35.6)	0.68
Follow up time (in yrs)	14.5+/-0.28	15.44+/-0.25	15.77+/-0.24	15.87+/-0.23	16.32+/-0.23	< 0.001
No. of deathsno (%)	225 (45.4)	195 (39.2)	185 (37.3)	172 (34.6)	150 (30.2)	< 0.001
Mean age at death (in yrs)	69.43 +/- 0.53	69.99 +/- 0.54	70.21 +/- 0.52	70.09 +/- 0.61	69.89 +/- 0.63	0.8

Data are presented as Mean±SD. Quintiles were calculated from collection site- (and PCs for ARIC) adjusted mtDNA copy number (details in Methods). 'Pval for trend' is the pvalue for effect of trait on standardized mtDNA copy number as a continuous variable.

Supplementary Table 2: Sample characteristics stratified by whether participants were included in the study.

Г

CHS

	Included	Excluded
No. of samples	4,892	995
Age at visit1 (in yrs)	72.6 +/- 5.5	74.3 +/- 6.0
Number of malesno (%)	2,118 (43.3)	377 (37.9)
Follow up time from visit1 (in yrs)	11.8 +/- 4.9	10.8 +/- 4.9
No. of deathsno (%)	2,960 (60.5)	726 (72.9)
Prevalent CHD at visit1no (%)	917 (18.7)	237 (23.8)
Prevalent diabetes at visit1no (%)	763 (15.6)	190 (19.1)
Prevalent hypertension at visit1no (%)	2,858 (58.4)	599 (60.2)

ARIC

	Included	Excluded
No. of samples	11,509	4,283
Age at baseline (in yrs)	54.0 +/- 5.7	54.4 +/- 5.9
Number of malesno (%)	5,166 (44.9)	1,916 (44.7)
Follow up time from baseline (in yrs)	19.7 +/- 5.1	18.1 +/- 6.6
No. of deathsno (%)	3,362 (29.2)	1,548 (36.1)
Prevalent CHD at baselineno (%)	566 (5.0)	200 (4.8)
Prevalent diabetes at baselineno (%)	1,267 (11.1)	603 (14.3)
Prevalent hypertension at baselineno		
(%)	3,832 (33.5)	1,672 (39.3)

Data are presented as Mean +/- standard deviation.

CHS				
Whites	BL	BL + 3		
	4,104	4		
Blacks	BL	BL + 3		
	194	578		
ARIC				
Whites	visit1	visit2	visit3	visit4
	367	7,201	1,395	32
Blacks	visit1	visit2	visit3	visit4
	117	1,922	398	35

Supplementary Table 3: Detailed breakdown of time of DNA collection by cohort

CHS DNA was isolated at baseline (BL) for majority of the white participants, and at a subsequent visit 3 years following baseline for majority of the black participants. ARIC visits were carried out 2-3 years apart—visit1 (1987-89), visit2 (1990-92), visit3 (1993-95), and visit4 (1996-98).